

Search for Baryogenesis and Dark Matter in B-meson decays at BABAR

Tim Gershon on behalf of the BaBar collaboration 11th July 2025

Many thanks to Sophie Middleton for help with the slides

The BABAR Experiment

For overview of experiment: Nucl. Instrum. Meth. A729 (2013) 615.

- Asymmetric e^+e^- collider with $\sqrt{s} = 10.58$ GeV i.e. Y(4S) resonance:
 - 9 GeV electrons collide with 3 GeV positrons.

Total luminosity: 431 fb⁻¹ (4.7 x 10⁸ $B\overline{B}$ pairs) on Y(4S) peak.

Still producing new results in 2025!!!

Detectors:

- **Tracks:** Silicon Vertex Tracker (SVT) + 40-layer Drift Chamber (DCH), in 1.5 T solenoid.
 - Momentum resolution = 0.47% at 1 GeV/c
- **Energy:** Electromagnetic Calorimeter (EMC)
 - Energy resolution = 3% at 1 GeV.

PID:

- Identify charged pions, kaons and electrons using Ring Imaging Cherenkov detector (DIRC) + ionization loss measurements in the SVT and DCH.
- Instrumented flux return of solenoid used to identify muons.

New Physics in B-Decays?

B-factories an ideal place to explore!

Model-independent searches for missing energy in B decays setting new limits on new physics models: PRL 131 (2023) 201801, PRD 107 (2023) 092001, PRD 111 (2025) L031101

Dark Matter:

- Missing mass could be dark-sector baryon (ψ_D) or some other invisible new physics.
- ψ_D could decay into stable dark sector particles producing the relic abundance we see today.

Several models of B-Mesogenesis which also explain BAU e.g.:

- CP violation from $B^{0}-\overline{B}^{0}$ oscillations generates a matter-antimatter asymmetry.
- B° decays slightly dominate over \overline{B}° decays into anti-baryons, same for DM-anti-DM.
- Visible and dark sectors have equal but opposite asymmetries \rightarrow baryon number conserved.

Y = TeV scale mediator;

B-Mesogenesis and Dark Matter

- Kinematic constraints require that the ψ_D mass lies between 0.94 4.34 GeV/c²
- Need to explore channels which have access to all operators: $O_{i,j} = (\psi_D b) (q_i q_j) (i = u, c and j = d, s);$
- Flavour constraints imply only one operator active in the early universe, one dominates, not a combination of operators.

Initial State	Final State	Operators	∆M (MeV/c²)	BABAR Results
<i>B</i> ⁰	$\psi_D + \Lambda$	0 _{us}	4163.95	Phys.Rev.D 107 (2023) 9, 092001
B^+	$\psi_D + p$	0 _{ud}	4341.05	Phys.Rev.Lett. 131 (2023) 20, 201801
B^+	$\psi_D + \Lambda_c^+$	0 _{cd}	2992.86	Phys.Rev.D 111 (2025) 3, L031101
D	$\varphi_D + m_c$	0 ca	2552.00	Phys.Rev.D 111 (2025) 5, L051101
B^+	$\psi_D + \Xi_c^+$	O_{cs}	2810.36	

*Other modes probe same operators but lower endpoints

Event Reconstruction & Preselection

Hadronic recoil tagging method used to reconstruct event.

- **B-tag** = Fully reconstructed Standard Model decay mode;
- **B-sig** = Potential for signal, search here for missing mass.

Method

In the final analysis, yields were found via a data-driven Poisson counting method, with background and signal regions defined from the study of the background and signal MC simulations.

MC Generators used to model Standard Model Backgrounds:

- $q\overline{q}$ (modelled using JETSET);
- BB (modelled using EvtGen).

EvtGen Used to make BSM Signal:

Simulate events for 8 signal mass hypotheses for each channel.

Pass through Geant4 model of *BABAR*, digitization model and standard reconstruction. Uses real conditions information and beam bkg.

Scanning method:

- Use MC to determine signal selection cuts (and background control regions);
- Derive selection efficiency (ε) for 8 possible masses;
- Determine signal resolution (σ) for 8 possible masses;
- Fit functional forms of fit to 8 points, interpolate for any given ψ_D mass;
- Scan across data samples in missing mass step size dependent on σ.
- Perform profile likelihood fit to determine upper limits on branching rates to BSM channels for given mass.

Signal Selections

 B⁺ → ψ_D + p (O_{ud}) BABAR proton PID algorithms used to identify proton candidate; signal side must have + charge and only one charged particle. 	$B^{+} \begin{array}{c} u \\ \overline{b} \end{array} \begin{array}{c} & u \\ & &$
B ⁰ → ψ_D + Λ (O _{us}) • one Λ candidate (only) in the signal side; • Λ → pπ ⁻ reconstructed; use PID to identify proton and pion candidates; • significance of Λ decay length (α _Λ) > 1.0; • four-momentum kinematic fit χ^2 of Λ reconstruction ≤ 100.	$B^{0} \xrightarrow{d} \xrightarrow{d} \xrightarrow{d} \xrightarrow{d} \xrightarrow{d} \xrightarrow{f} \xrightarrow{f} \xrightarrow{f} \xrightarrow{g} \xrightarrow{f} \xrightarrow{g} \xrightarrow{f} \xrightarrow{g} \xrightarrow{f} \xrightarrow{g} \xrightarrow{g} \xrightarrow{g} \xrightarrow{g} \xrightarrow{g} \xrightarrow{g} \xrightarrow{g} g$
 B⁺ → ψ_D + Λ_c⁺ (O_{cd}) one Λ_c⁺ candidate (only) in the signal side; Λ_c⁺ → pK⁻π⁺ reconstructed, so three charged tracks required on the signal side; high quality charged tracks plus PID requirements for kaon and proton. 	$B^{+} \begin{array}{c} u \\ \overline{b} \\ & \ddots \\ & \ddots \\ & Y \\ & \ddots \\ & & d \end{array} $

 ψ_D

BDT Selection (1)

Further signal and background separation obtained using a custom Boosted Decision Tree for each channel. BDT inputs related to B_{tag} quality, event shape variables, and signal side information (e.g. E_{extra})

Provides signal purity > 99% 41 events pass

BDT Selection (2)

Further signal and background separation obtained using a custom Boosted Decision Tree for each channel.

Limit determination

Final analysis proceeds by:

- reconstructing ψ_{D} from missing energy 4-vector on signal side;
- scanning across mass range, with step size equivalent to σ at that mass;
- extracting resolution (σ) and efficiency (ϵ) from MC;
- estimating signal and backgrounds in data using definitions from MC study.

Profile likelihood method is then used to obtain upper limits on BSM branching fractions.

Results

Parameter space vastly reduced, almost excluded for some operators. Final operator O_{cs} must be probed to fully explore this model.

- World-leading result for $B^0 \rightarrow \psi_D + \Lambda$ (O_{us}), improving on previous result and further constraining model;
- First direct searches for $B^+ \rightarrow \psi_D + p$ (O_{ud}) and $B^+ \rightarrow \psi_D + \Lambda_c^+$ (O_{cd}), placing tight constraints on mesogenesis model;
- Work in progress to probe fourth operator (O_{cs}) BaBar still not finished yet!

Reinterpretation

The signal signature is missing mass in the final state, so results can be interpreted in any model that produces such a signal, e.g.

• Our results provide first limit on RPV SUSY model described in JHEP 02 (2023) 224.

Summary

Results presented constrain mesogenesis models proposed to explaining DM + BAU:

- Used 398 fb⁻¹ of data (4 x 10⁸ $B\overline{B}$ pairs)
- Scanning method allowed improved limits on $B^0 \rightarrow \psi_D + \Lambda$ channel;
- First direct limits for $B^+ \rightarrow \psi_D + p$ and $B^+ \rightarrow \psi_D + \Lambda_c^+$ channels;
- Large amounts of parameter space excluded, but haven't explored all operators yet;
- Results can be reinterpreted in the context of other models producing same experimental signature
 - already done for RPV SUSY model, providing first direct constraints on that model;
 - can also be applied to e.g. Phys Rev. D 105, 055024 Elahi et al, arXiv:2412.14947 Lenz et al).

BABAR still publishing world-leading results after all these years, and not finished yet!

https://inspirehep.net/experiments/1108553?ui-citation-summary=true

BDT Features $(B^+ \rightarrow \psi_D + \Lambda_c^+)$

Phys.Rev.D 111 (2025) L031101

Recoil B ⁻ Features	Signal B ⁺ Features
Decay mode - the hadronic decay channel of B meson decay.	npi0 – number of pions on signal side
B_{tag} purity - the fraction of B _{tag} mesons that are correctly reconstructed for a given decay mode.	$\pmb{\chi}^{2}$ - of the fit applied to the Λ_{c}^{+} candidate
ΔE - the difference of beam energy and the reconstructed B _{tag} energy.	N _{Neut} – number of neutral particles in the signal side
M _{Es} - recoil B meson mass distribution	$\mathbf{m}_{\mathbf{p}\mathbf{K}\mathbf{\pi}}$ – the invariant mass of the Λ_{c}^{+} candidate
Thrust, ThrustZ - The B_{tag} thrust axis is defined as the axis which maximizes the longitudinal momenta of all the particle for B_{tag} reconstruction.	E _{extra} – The total extra neutral energy on the signal side in the center-of-mass frame

Plus:

r2All - the ratio of the second to zeroth Fox-Wolfram moment for all tracks and neutral clusters **cosT** - the cosine of the thrust vector

Systematics $(B^+ \rightarrow \psi_D + \Lambda_c^+)$

Phys.Rev.D 111 (2025) L031101

- Systematic uncertainties in $\varepsilon_{\mbox{\tiny sig}}$ arise from
 - the B_{tag} correction factor $f_{B\overline{B}},\,4.7\%$
 - − $B(\Lambda_c^+ \rightarrow pK^-\pi^+)$ = (6.24 ± 0.28)%, i.e. 4.5%
 - limited MC statistics, 1.2%
- Knowledge of the integrated luminosity, 0.6%
- Systematic uncertainties on the background level incorporated as nuisance parameter in limit setting procedure
 - i.e. absorbed into statistical uncertainty

