HC

Deep learning techniques for high-precision neutral meson reconstruction in the LHCf experiment

Giuseppe Piparo¹ on behalf of LHCf collaboration ¹ INFN, section of Catania

Physics motivation

- UHECR origin and mass composition are still unknown.
- Hadronic interaction models \rightarrow key uncertainty in shower simulations.
- LHCf provides forward data to tune these models ($|\eta| > 8.4$).
- Forward K⁰_S:
 - probes strange-quark dynamics.
 - connected to high-energy atmospheric neutrinos.

Goal: identify K⁰_S candidates in complex multiphoton events using a multi-stage neural network approach.

Detector

- **Two calorimetric towers:** •
 - \circ Sizes: 25×25 mm² (short), 32×32 mm² (long)
 - Structure: 16 GSO scintillator 0
 - layers + 22 tungsten plates
 - Total depth: 44 X₀, 1.6 $\lambda_{\rm I}$ 0
- 4 XY silicon microstrip layers:

3TS+1TL

or

1TS+3TL

....

4TS

or

4TL

- Pitch: 160 µm \bigcirc
- Views: X and Y \bigcirc
- Granularity: 384 channels per view \bigcirc

Performance:

- <3% energy resolution for photons 0 (>200 GeV)
- < 40 µm spatial resolution for EM 0 showers (>200 GeV)

The Arm2 detector

Multi-Stage Neural Network Architecture

Events of interest

Overview

We developed a 3-step classification pipeline using dedicated neural networks:

Relevant Event

dE Calorimeters | 4 Photons Event CCD TL Channe

Neutron Filter

Topology Tagger

Network Input Structure (multi-input model)

Input Type Shape Calorimeter signals (16, 2)

Silicon planes

 $(384, 4) \times 2$

Tagging Network Results

Confusion Matrix:

- Excellent performance across all classes.
- Minor confusion between symmetric classes.

Classification Report Precision Recall F1-score Support 0.92 0.86 0.89 64

Global sums

Total energy collected for each calorimeter and each silicon

Each input is processed through separate dense blocks before concatenation.

3TS + 1TL	0.98	0.81	0.89	117
0TS + 4TL	0.93	0.97	0.95	107
4TS + 0T	0.90	0.99	0.94	176

Conclusion

• 3-step NN pipeline identifies $K_{S}^{0} \rightarrow 4 \gamma$ events.

(10,)

- Combination of calorimeter and silicon inputs improves classification of multi-hit events.
- Topology tagger achieves $\sim 92\%$ average F1-score over 4γ patterns.
- Work sets the stage for full photon reconstruction (energy & position).

Info

giuseppe.piparo@ct.infn.it

This work was partially supported by the ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data, and Quantum Computing, funded by the European Union – NextGenerationEU.

https://home.web.cern.ch/science/expe *riments/lhcf*

AI INFN Artificial Intelligence technologies for INFN research

PDF Version