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Traditional LHC searches follow a supervised script: test a known signal against Testing on simulated BSM samples (SUSY, exotic resonances, rare Higgs/top
background. This model-dependent approach scored big wins, like the Higgs, decays) treated as anomalies.

but has yet to uncover new physics. d SM backgrounds reconstructed with high fidelity (low loss).

The challenge? The BSM landscape is vast, and fixed triggers or cuts can bias d BSM events show systematically higher reconstruction loss.

what gets seen. A Novel approach: unsupervised, model-agnostic strategies. Q Examples: leptonic SUSY cascades and heavy resonance decays produce
Powered by generative deep learning, these methods learn the patterns from clear high-loss tails, well-separated from SM validation samples.

data and flag the outliers. We aim to catch the rare, the BSM event.
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We developed a Masked Tab-Transformer [1] that handles high-dimensional, AL |
sparse tfabular detector data, aiming to reconsfruct events with large fractions 10 g [ 10~ 3 ot
of missing inputs. Our model reconstructs all detector-level features: jefts, |— i\-‘ HH -
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leptons, photons, missing energy, calorimeter deposits, and event topology. 107 T m 20 20 oo 105 b 30140
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d Performed clustering analysis to identity the most important variables driving

Model Development Workflow the separation. | S
d Based on the Cohen's d value plotted important variable in clusters.

Distributions by Cluster
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We analyze the ATLAS Run-2 open dataset (13 TeV, 2015) [2] a with ~5 million Mass [GeV] Mass [GeV]
proton—proton collisions and full deftector readouts. From each event, we Nphotons UMAP + HDBSCAN Clustering
extract low-level feature jets, leptons, photons, MET, calorimeter deposits, and 50 Clluster ; ° Cluster
event shape density. o Lt s o o 0
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A Preprocessing and scaling using ROOT RDataFrame on CERN's SWAN £ 30 £ 6 0%
interfaced with Dask and HTCondor. . -Es
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d Streaming output .root files directly as TensorFlow via TMVA TF batch Q E o "
generator [5]. 10 ) -
d SHAP-based feature selection to reduce redundancy and remove noisy | 3120 e
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p ) COUNT ) 2 MET (GeV) -12.8 Fully unsupervised pipeline trained on raw detector-level data, with no
- ' assumptions on final states.
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n-®E ) a | Q Transformer autoencoder learns the Standard Model features from training
MET EVENT SHAPE |  MUufs) (Gev) -4-2. events, flags outliers via reconstruction loss acting as a data-driven trigger
B DENSITY ) i) GoV) “I for rare or unknown phenomena.
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| | | | | | | d UMAP + HDBSCAN cluster anomalies, revealing strucfured event classes.
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SHAP Value d Scalable & interpretable, expanding discovery reach in underexplored
phase space corners.
Tab-Transformer autoencoder with masked self-aftention and custom masked Q Future: larger datasets, Improve network architecture, calibration, richer

loss (weighted loss).

ad Outliers are organized with UMAP[3] + HDBSCANI[4], revealing sfructured
patterns (e.g., high-pT leptons, jet-rich events).

d Cohen’s d quantifies statistical significance, highlighting clusters that fruly
deviate from SM pafttern

inputs (tfracking, timing), real-time trigger-level deployment for truly model-
iIndependent new physics searches
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