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THE EVOLUTION OF JET TAGGERS

2

ATLAS-FTAG-2023-01

Evolution of algorithms from Run 1 to Run 3

25

Figure 13: Evolution of the 
light- (udsg, yellow bars) 
and c-jet (red bars) 
rejection for a fixed b-jet 
identification efficiency of 
70% for taggers from Run 1 
to Run 3. The BvsAll 
discriminator is used to 
derive all numbers but the 
last one, where the 
weighted BvsAll 
discriminator with a factor 
of kc = 0.14 is used, yielding 
a good trade-off between 
light- and c-jet rejection.

CMS-DP-2024-066

Tremendous progress in jet tagging in the past few years 

more than an order of magnitude improvement in light jet rejection 

A driving force — advanced machine learning (ML) techniques

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
https://cds.cern.ch/record/2904702
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SCALING UP?

3

J. Brehmer, V. Bresó, P. Haan, T. Plehn, HQ, J. Spinner and J. Thaler, arXiv: 2411.00446

HEP models (jet tagging)

Source: informationisbeautiful.net
The rise and rise of AI-based Large Language Models (LLMs) like GPT4, LaMDA, LLaMa, PaLM
and Jurassic-2.

Click the company names to �lter the data.

» See the data

We’ll keep this graphic updated as new models emerge.

» Made with our visualisation tool VizSweet

Learn to Create Impactful Infographics

CHANGE LOG UPDATES
: 20th Mar – added 30 new notable LLMs including Anthropic Claude 3, Twitter’s Grok, all Mistral’s offerings, Google Gemini Pro,
Apple’s MM1 (�nally!) and Chinese LLMs like DeepSeek, GLM-4 and Xinghuo 3.5. The soon-to-be-released column includes
OpenAI’s rumoured open source LLM G3PO, Amazon’s mighty Olympus, Meta’s Llama 3 and of course GPT-5.
: 6th Dec – added 2024 column including Amazon’s Olympus, Anthropic’s Claude-Next and Twitter’s Grok. Also noted the release
of Google’s Gemini and Amazon’s Q business bot.
: 21st Nov – added Bichuan 2, Claude Instant, IDEFICS, Jais Chat, Japanese StableLM Alpha 7B, InternLM, Falcon 180B, Bolt
2.5B, DeciLM, Mistral-7B, Persimmon-8B, MoLM, Qwen, AceGPT, Retro48B, Ernie 4.0
: 2nd Nov – updated Amazon story with $1.25bn Anthropic investment
: 27th Jul – added Meta’s LLama2
: 12th Jun – added Claude 2.0, and ErnieBot 3.5
: 21st Jun – added Vicuna 13-B, Falcon LLM, Sail-7B, Web-LLM, OpenLLM
: 20th Jun – visualized all open-source LLMs as a diamond
: 11th Jun – added a ‘more info’ link for each LLM (click to spawn)
: 11th May – added Google’s latest LLM PaLM2 (source)
: 10th May – Uploaded �rst version

MADE WITH

Information is Beautiful Information is Beautiful LIVELIVE  gigs announced gigs announced FIND OUT MORE

    Search

 Menu

Natural language models
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https://arxiv.org/abs/2411.00446
https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
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FOUNDATION MODEL

4

Foundation Models
Deep
Learning

Machine Learning

Emergence of...

Homogenization of...

“how”

learning algorithms

features

architectures

functionalities

models

“A foundation model is any model that is trained on broad data 
(generally using self-supervision at scale) that can be adapted 

(e.g., fine-tuned) to a wide range of downstream tasks.”

On the Opportunities and Risks of Foundation Models
 [arXiv: 2108.07258]
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SELF-SUPERVISION: NEXT TOKEN PREDICTION
The LLM way: (autoregressive) language modeling 

i.e., next token prediction 

An attempt for jets: OmniJet-α [MLST 5 (2024) 035031] 

Probably not the most natural approach: 

requires (discrete) tokenization of high-dimensional numerical inputs 

needs to impose an ordering on jet constituent particles, which are intrinsically permutation invariant

5

Source: nvidia.com

https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2403.05618
https://developer.nvidia.com/blog/how-to-get-better-outputs-from-your-large-language-model/


To
w

ar
ds

 a
 F

ou
nd

at
io

n 
M

od
el

 fo
r J

et
 P

hy
sic

s 
- J

lu
. 1

0,
 2

02
5 

- H
ui

lin
 Q

u 
(C

ER
N

)

SELF-SUPERVISION: MASKED MODELING
The CV approach: “masked modeling” 

i.e., mask and reconstruct 

Adapted for particle physics: Masked Particle Modeling

6

Masked Autoencoders Are Scalable Vision Learners

Kaiming He⇤,† Xinlei Chen⇤ Saining Xie Yanghao Li Piotr Dollár Ross Girshick
⇤equal technical contribution †project lead

Facebook AI Research (FAIR)

Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[29, 25, 52]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [42, 43, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [53], is natural and applicable
in computer vision as well. Indeed, closely related research

encoder

....

....
decoder

input target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [54, 41] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [30] were dominant over the last
decade [29]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [52] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-
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[arXiv: 2111.06377]

Backbone
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MLP

mask
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TaskN...Task1

Backbone

Latent
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MPMv1 MPMv2

Task
Heads

Figure 1: A comparison of the original MPM encoder-decoder setup (left) and the new model
configuration (right). The new model includes multiple reconstruction tasks, swaps the MLP decoder
for a transformer, and only encodes the reduced set.

VQVAE-Tokenized Classification

We include the method used in the original MPM work. A VQVAE is first trained to embed the jet,
using only the continuous features, to a set of indices representing the elements in a learned codebook.
We used a codebook size of 1024 and a codebook vector dimension of 32 following Yu et al. [38].
We use a linear layer and the cross-entropy loss function for the task head.

Direct Regression

While Golling et al. [1] found direct regression to be insufficient for pre-training, we believe it is
worth revisiting owing to the much more powerful decoder. We use a linear layer and find the best
results by using the L1-loss to recover the particles’ continuous features.

K-Means Tokenized Classification

If the VQVAE does not provide a sufficiently semantically rich latent space, its benefit may be simply
that it creates a classification task. Regression is mean-seeking, while the tokenized classification
allows us to learn the full conditional posterior of the dropped features, albeit in a discretized form.
To test this, we trial a more trivial token reconstruction task using K-Means centroids. We fit the
K-Means using x

c and the first 1 million jets in JetClass. Based on preliminary tests, we found that
K = 16384 is the optimal number of centroids. Fitting the K-Means using the torchpq library [39]
took significantly less time than training the VQVAE. Like the other tasks, we used a single linear
layer to map to this space and cross-entropy loss function.

Conditional Normalizing Flow

If the strength of the tokenized form of reconstruction over regression is in learning the full posterior
distribution p(xc

i|di), it is possible that we can reproduce this using a generative model. This also
means we do not suffer from the information loss that comes with discretization. One choice of model
is a conditional normalizing flow (CNF) [40], which we implement using the normflows library [41].
The CNF contains 6 rational-quadratic-spline coupling blocks and a Gaussian base distribution. Each

5

- MPMv1 [arXiv: 2401.13537] 

- VQ-VAE for particle tokenization 

- predict discrete tokens for 
masked particles

- MPMv2 [arXiv: 2409.12589] 

- no need for discrete tokenization 

- multiple reconstruction tasks: 

- PID prediction 

- direct regression 

- conditional generative tasks 
(via CNF / CFM)
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JOINT-EMBEDDING PREDICTIVE ARCHITECTURE

7

E
nc

od
er

Predictor/World Model

Transformation, Action

Decoder/World Model

Transformation, Action Transformation, Action

JEPA world modelGenerative World model Joint Embedding

Unconditional

Conditional

BYOL, SimSiam

Latent world models, I-JEPA, 
Equivariant SSL, IWM (Ours)

Denoising Autoencoders
Variational Autoencoders

Generative World Models
Masked Image Modeling N/A

Siamese, SimCLR, VICReg, DINO

Figure 2 Multiple families of methods with related architectures can be distinguished, in which the conditioning or not of their
world model is a key distinction. Generative World Models are trained to invert a transformation in input space, leveraging
an autoencoder framework. Methods for world modeling and representation learning can be instantiated in this way. Joint
Embedding methods get rid of the world model but operate in latent space by encoding what is common between transformed
inputs. It is the main class of SSL methods. JEPAWorldModels can be seen as a more general framework where a world model is
trained in latent space. This family has been very successful both in reinforcement learning and in representation learning, and is
where Image World Models (IWM) falls.

y; in this case, the transformation parameters a (lo-
cations of masked image patches), are also fed to the
decoder network. Methods based on joint-embedding
predictive architectures (JEPAs), such as I-JEPA (As-
sran et al., 2023) or data2vec (Baevski et al., 2022),
operate similarly, but can be seen as learning a latent
image world model, which learns to infer the e!ect
of the masking action on the representation of an
image. If one does not condition the predictor on
the transformation parameters, then the best we can
hope for is learning representations that are invariant
to the data transformations, as in BYOL (Grill et al.,
2020) and SimSiam (Chen and He, 2020), wherein
the image transformations correspond to various pho-
tometric and geometric data augmentations.
However, despite some of the apparent similarities
between world modelling in reinforcement learn-
ing and self-supervised learning from images, the
learned world model in reinforcement learning is typ-
ically leveraged in downstream tasks, e.g., for plan-
ning (Hansen et al., 2022). In contrast, the learned
world model in self-supervised learning is typically
discarded after pretraining, as the main focus is often
on the representation quality of the learned encoder
network. This stems from the fact that most down-
stream tasks in computer vision are unrelated to the
world modeling task. Common tasks of interest focus
on discriminative aspects and as such, even when
the predictor learns useful information, it is simply
discarded. We postulate that discarding the world
model in representation learning is wasteful, and that
just like in RL, we can reuse this world model for
downstream tasks. This motivates us to study, in

more depth, learning world models as a paradigm for
representation learning. We thus introduce Image
World Models (IWM, illustrated to the right of fig-
ure 2) as a way to learn both good representations
and strong reusable world models. IWM is based on
JEPA and extends the usual latent inpainting to also
include photometric transformations, allowing us to
demonstrate the key aspects in learning a capable
world model, which include the choice of predictor
conditioning, the strength of the transformations,
and the capacity of the world model.
We then focus on leveraging the learned world model
for downstream tasks, and find that it can be lever-
aged through finetuning. Specifically, we find that
finetuning the world model on top of the frozen en-
coder for downstream tasks provides improved perfor-
mance over encoder finetuning; this is also achieved
at a fraction of the cost and number of finetuned
parameters. Moreover, only the world model learned
by IWM exhibits this behavior; finetuning a ran-
domly initialized network of the same architecture as
the predictor does not provide such a performance
improvement. This suggests that the world model
should be a key part of the inference process, in-
stead of being discarded. Inspired by instruction
tuning (Wei et al., 2022; Zhang et al., 2023), we fur-
ther show that the world model can be finetuned
to solve multiple tasks at once, further improving
e"ciency.

Our study reveals another key aspect of representa-
tion learning with world models: the capacity given
to the world model has a direct influence on the

2

Joint-Embedding  
Predictive Architecture (JEPA)

Learns to predict the embeddings 
in the latent space. 

A path towards “World Models”.

fq gf

gf

gf

fq̄

L2

context
encoder

predictor

target
encoder

target

context

I-JEPA [arXiv: 2301.08243]

… predicts the embeddings of masked image patches  
in a (learned) latent space.

arXiv: 2403.00504
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INTRODUCING P-JEPA

8

EMA*  
of weights

* Exponential Moving Average

Predictor
Context 
Encoder

×

×

×

Particle 
Representation

...

Context 
Aggregator

Mask Token

Aggregated 
Representation

Target 
Encoder

Loss

...

`
Particle Loss

Aggregated Loss

PID Loss

Smooth L1 LossTgt. 
Agg.

Cross Entropy

PID Li
ne

arPID

Pre
d.

Smooth L1 Loss

Tgt. 
Agg.

EMA*  
of weights

Work in progress with  
Qibin Liu, Shudong Wang 

and Congqiao Li

See also: “J-JEPA” [S. Katel, H. Li, Z. Zhao, F. Mokhtar, J. Duarte and R. Kansal, arXiv: 2412.05333],
“HEP-JEPA” [J. Bardhan, R. Agrawal, A. Tilak, C. Neeraj and S. Mitra, arXiv: 2502.03933]

https://arxiv.org/abs/2412.05333
https://arxiv.org/abs/2502.03933
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INTRODUCING P-JEPA

9
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For downstream tasks
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PARTICLE MASKING
The pre-training task in a nutshell: 

predict the masked particles from the remaining ones 

… but in the latent space 

Masking strategy: 

randomly mask 30–50% of the particles in a jet 

the remaining particles serve as the context for the prediction 

==> input to the context encoder & predictor 

the masked particles become the target to be predicted 

==> NOT seen by the context encoder & predictor 

==> the loss is computed only for the target particles

10
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CONTEXT ENCODER AND PREDICTOR
Context encoder 

a larger Particle Transformer (w/ pairwise features) 

Context aggregator 

aggregates all context particles into a single token 

Predictor 

plain Transformer, smaller than encoder 

predicts the masked particles from the aggregated  
representation + mask tokens w/ pos. emb.

11

Predictor
Context 
Encoder

×

×

×

Particle 
Representation

...

Context 
Aggregator

Mask Token

Aggregated 
Representation

Context Encoder + 
Aggregator Predictor

Embed Dims (512, 512, 512) 192
Pair Embed Dims (64, 64, 64) /

Num Heads 8 6
Num Blocks 16 4

Num Class Blocks 2 /
Num Params 76M 2.6M
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Smooth L1 Loss

Tgt. 
Agg.
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of weights

TARGET ENCODER
A target encoder is used to derive the particle embeddings in the latent space for loss computation 

processes the complete set of particles in a jet (i.e., context + target) 

then only the embeddings of the target particles are picked up for loss computation 

updated by “copying” the weights from the context encoder (via exponential moving average)

12
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PRE-TRAINING LOSS
Loss = Particle Loss + Aggregated Loss + PID loss 

Particle Loss: smooth L1 loss between the predicted embeddings and those from target encoder 

Aggregated Loss: computed on the aggregated representations of target particles using the target aggregator 

PID Loss: auxiliary task to predict the reconstructed PID of each masked particle from the predicted embeddings

13
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PRE-TRAINING AND TRANSFER LEARNING

14
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The pre-training of the P-JEPA model can be performed on large-scale real data 

we demonstrate this by pre-training P-JEPA on the JetClass dataset (100M jets) without using any truth labels 

Once pre-trained, the target encoder can be viewed as a foundation model  

transfer learning to specific downstream tasks

Pre-training Transfer learning

Task-specific  
dataset
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TRANSFER LEARNING: JET TAGGING
Benchmark: 10-class jet classification on JetClass

15

 FineTune: 
 Encoder allowed to be slightly updated 

when trained with labelled jets for tagging

 Freeze: 
 Encoder fixed when trained with labelled 

jets for tagging

 FromScratch: 
 Same network architecture, but trained with 

labelled jets starting from randomly initialized 
weights



To
w

ar
ds

 a
 F

ou
nd

at
io

n 
M

od
el

 fo
r J

et
 P

hy
sic

s 
- J

lu
. 1

0,
 2

02
5 

- H
ui

lin
 Q

u 
(C

ER
N

)

TRANSFER LEARNING: JET TAGGING
Benchmark: 10-class jet classification on JetClass

16

Pre-training + transfer learning shows a 
significant performance boost when labelled 
samples are limited.
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TRANSFER LEARNING: JET TAGGING
Benchmark: 10-class jet classification on JetClass

17

As training dataset increases, training 
from scratch reaches similar performance 
to pre-training + fine-tuning.
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TRANSFER LEARNING: ANOMALY DETECTION
Anomaly Detection (AD): model-agnostic search for new physics signals 

A classic paradigm for AD: CWoLa (classification without labels) 

trains a classifier to distinguish two mixed samples  

e.g., mass window (signal enriched) vs mass sideband (background enriched) 

the classifier is effectively a signal vs background discriminator, thus can be used to enhance signal purity 

allows to detect unknown signals purely from data

18

Figure Credit

https://link.springer.com/article/10.1007/JHEP10(2017)174
https://arxiv.org/abs/1708.02949
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TRANSFER LEARNING: ANOMALY DETECTION
Traditionally AD was performed using only high-level features (e.g., jet mass, substructures) as inputs 

Machine-learned representations captures richer information of a jet, thus can improve the performance of AD 

see e.g., the “Sophon” approach [arXiv: 2405.12972] 

We benchmark the P-JEPA extracted features using the IAD [arXiv:2210.14924] framework 

idealized setup for the mixed samples: background only vs background + signal 

background in the two mixed samples are drawn from the same distribution, no need to worry about e.g., mass 
dependency and interpolation into the mass window etc. 

performance evaluated by the significance improvement metric 

i.e., ratio of the maximal significance (at an optimal classifier cut) 
over the initial significance (i.e., inclusive w/o classifier cut)

19

https://arxiv.org/abs/2210.14924
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TRANSFER LEARNING: ANOMALY DETECTION
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How much improvement 
is required to achieve a 
5σ discovery?

Classifier using high-level observables
PRL, 121 (2018) 24, 241803

Significance 
improvement 
 
 
 (better)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.241803
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TRANSFER LEARNING: ANOMALY DETECTION
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How much improvement 
is required to achieve a 
5σ discovery?

Classifier using high-level observables
PRL, 121 (2018) 24, 241803

Significance 
improvement 
 
 
 (better)

2.4x reduction in data 
to mark a discovery!

Sophon: learned jet representations 
from fully-supervised training on 

O(100) types of jets
arXiv: 2405.12972

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.241803
https://arxiv.org/abs/2405.12972
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TRANSFER LEARNING: ANOMALY DETECTION
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How much improvement 
is required to achieve a 
5σ discovery?

Classifier using high-level observables
PRL, 121 (2018) 24, 241803

Significance 
improvement 
 
 
 (better)

Similar improvements to Sophon, 
but can be trained with only data.

P-JEPA: representations from 
self-supervised learning

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.241803
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SUMMARY & OUTLOOK
Tremendous progress in machine learning for jet physics in recent years 

P-JEPA: Towards a foundation model for jet physics 

pre-training via self-supervised learning on unlabelled dataset 

powerful learned representations for tagging, anomaly detection, and more 

Outlook: a foundation model for all of the LHC?

23
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• We find both proof-of-concepts as well as  
established use cases (→ MadNIS)

Take-home message

Summary and Outlook

• ML beneficial in every step in the simulation chain

• Interesting interplay between HEP and ML

ℒ
Theory Shower EventsHard process Hadronization Detectors

    → HEP simulations provide ~infinite data for ML
  → HEP requirements (precision, symmertries,…) 
       different than industry applications

Future tasks

• Make everything run on the GPU and 
differentiable (MadJax - Heinrich et al. [2203.00057])

• Full integration of ML-based simulations into 
standard tools → MadGraph,….

• Further foster collaboration between  
theory, experiment, and ML community

Generation, Simulation, …

Reconstruction, Unfolding, …

Forward

Inverse

Credits: R. Winterhalder

https://indico.cern.ch/event/1253794/contributions/5640861/attachments/2746361/4778845/lhc_sim_rw.pdf


EXTRAS

24



To
w

ar
ds

 a
 F

ou
nd

at
io

n 
M

od
el

 fo
r J

et
 P

hy
sic

s 
- J

lu
. 1

0,
 2

02
5 

- H
ui

lin
 Q

u 
(C

ER
N

)

SCALING LAW
How far can we push the performance with bigger models, larger datasets, and more computing power? 

For language models — neural scaling law [arXiv: 2001.08361, 2203.15556] 

empirical power law scaling of the loss as a function of the compute (C), dataset size (D) and model parameters (N) 

once established, can be extrapolated to determine the best dataset size & parameter combination under a fixed 
compute budget 

Would be interesting to see the scaling law for jets — but very computation intensive…

25

Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.

For each FLOP budget, we plot the final loss (after smoothing) against the parameter count in
Figure 3 (left). In all cases, we ensure that we have trained a diverse enough set of model sizes to see
a clear minimum in the loss. We fit a parabola to each IsoFLOPs curve to directly estimate at what
model size the minimum loss is achieved (Figure 3 (left)). As with the previous approach, we then fit
a power law between FLOPs and loss-optimal model size and number of training tokens, shown in
Figure 3 (center, right). Again, we fit exponents of the form #=>B / ⇠0 and ⇡=>B / ⇠1 and we find that
0 = 0.49 and 1 = 0.51—as summarized in Table 2.

3.3. Approach 3: Fitting a parametric loss function

Lastly, we model all final losses from experiments in Approach 1 & 2 as a parametric function of
model parameter count and the number of seen tokens. Following a classical risk decomposition (see
Section D.2), we propose the following functional form

!̂(#, ⇡) , ⇢ +
�

#U +
⌫

⇡V
. (2)

The first term captures the loss for an ideal generative process on the data distribution, and should
correspond to the entropy of natural text. The second term captures the fact that a perfectly trained
transformer with # parameters underperforms the ideal generative process. The final term captures
the fact that the transformer is not trained to convergence, as we only make a finite number of
optimisation steps, on a sample of the dataset distribution.

Model fitting. To estimate (�, ⌫, ⇢, U, V), we minimize the Huber loss (Huber, 1964) between the
predicted and observed log loss using the L-BFGS algorithm (Nocedal, 1980):

min
�,⌫,⇢,U,V

’
Runs 7

HuberX
⇣
log !̂(#7, ⇡7) � log !7

⌘
(3)

We account for possible local minima by selecting the best fit from a grid of initialisations. The Huber
loss (X = 10�3) is robust to outliers, which we find important for good predictive performance over
held-out data points. Section D.2 details the fitting procedure and the loss decomposition.
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