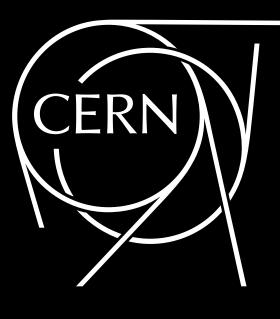
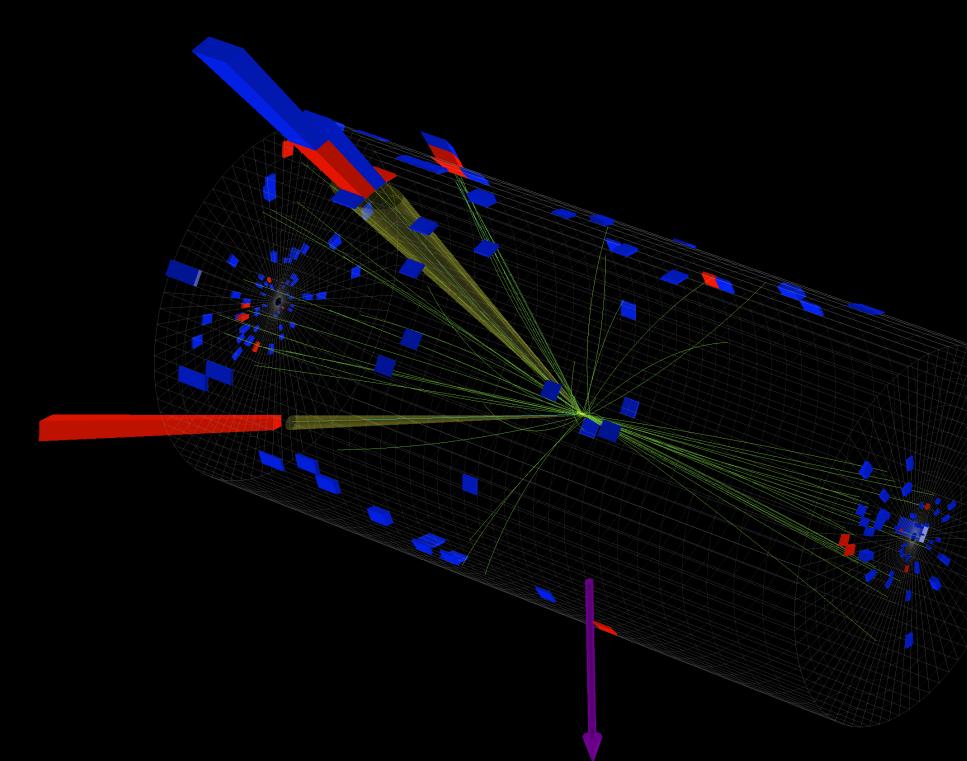
# Towards a Foundation Model for Jet Physics

Huilin Qu

EPS-HEP July 10, 2025

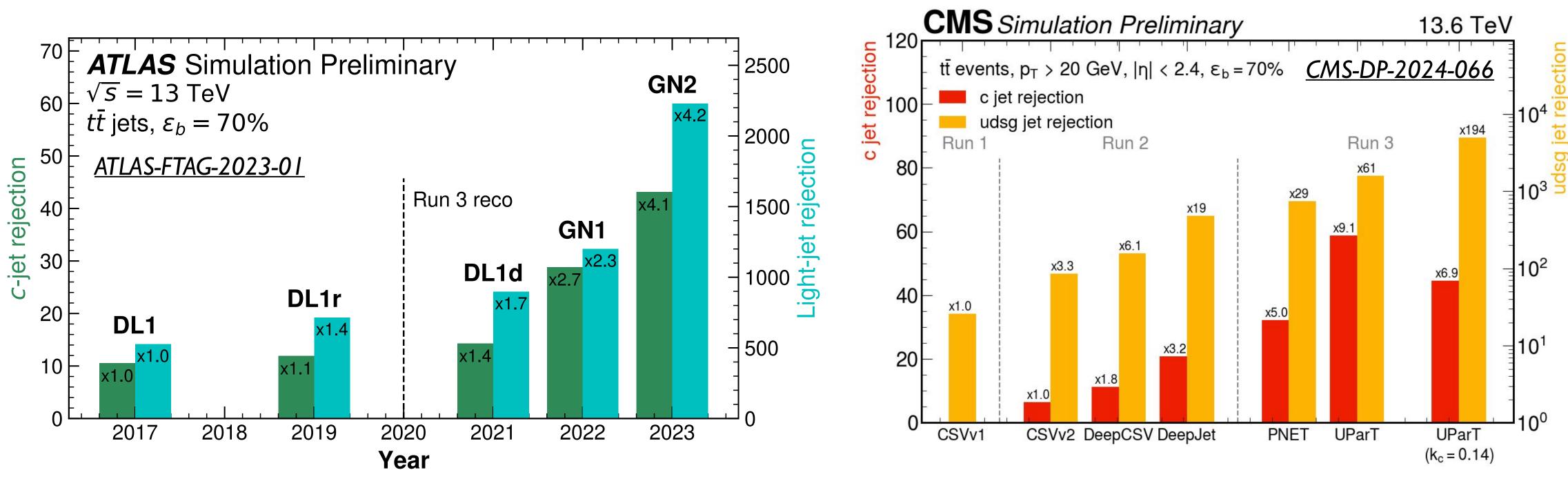




## THE EVOLUTION OF JET TAGGERS

#### **Tremendous progress in jet tagging in the past few years**

more than an order of magnitude improvement in light jet rejection



A driving force – advanced machine learning (ML) techniques

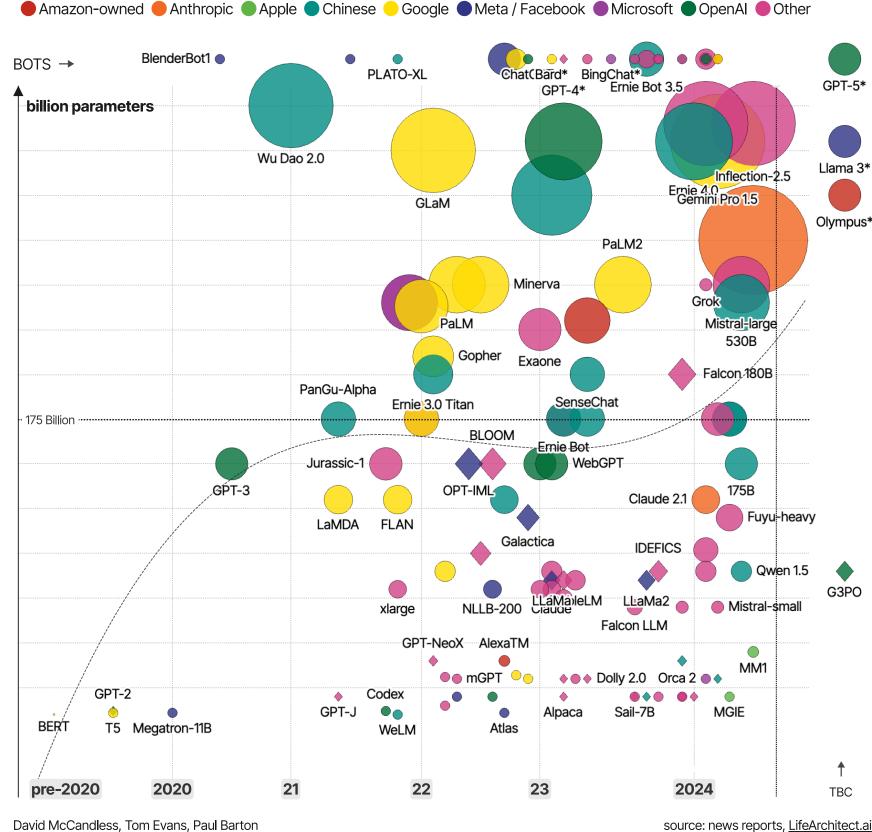








#### Natural language models



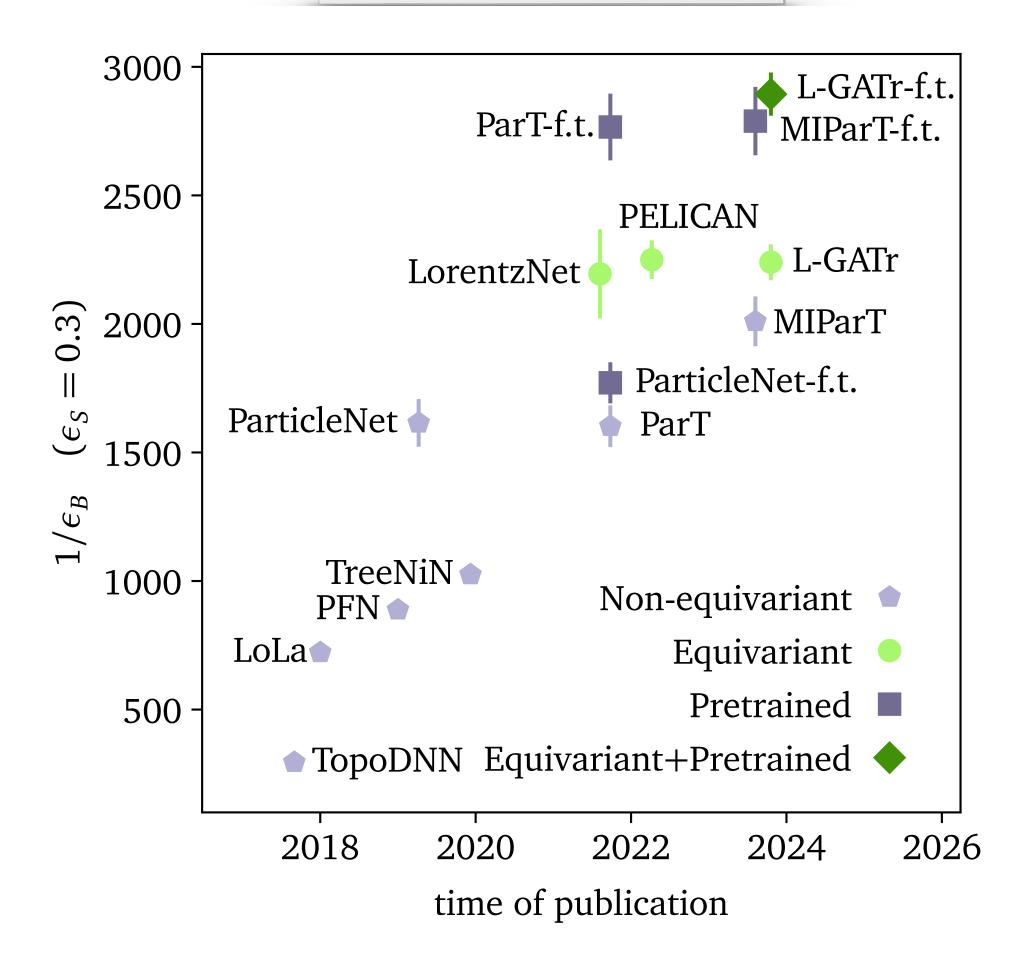
Information is Beautiful // UPDATED 20th Mar 24

source: news reports, LifeArchi \* = parameters undisclosed // see the data

MADE WITH VIZ**SWEET** 

Source: informationisbeautiful.net

#### HEP models (jet tagging)

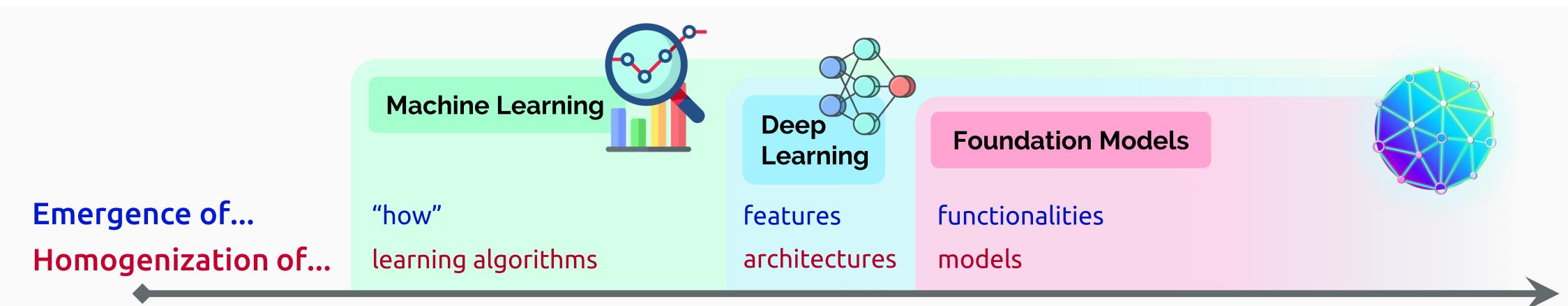


J. Brehmer, V. Bresó, P. Haan, T. Plehn, HQ, J. Spinner and J. Thaler, arXiv: 2411.00446



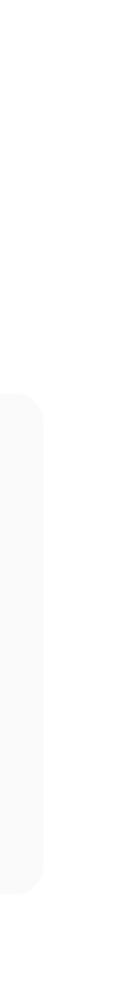


#### FOUNDATION MODEL



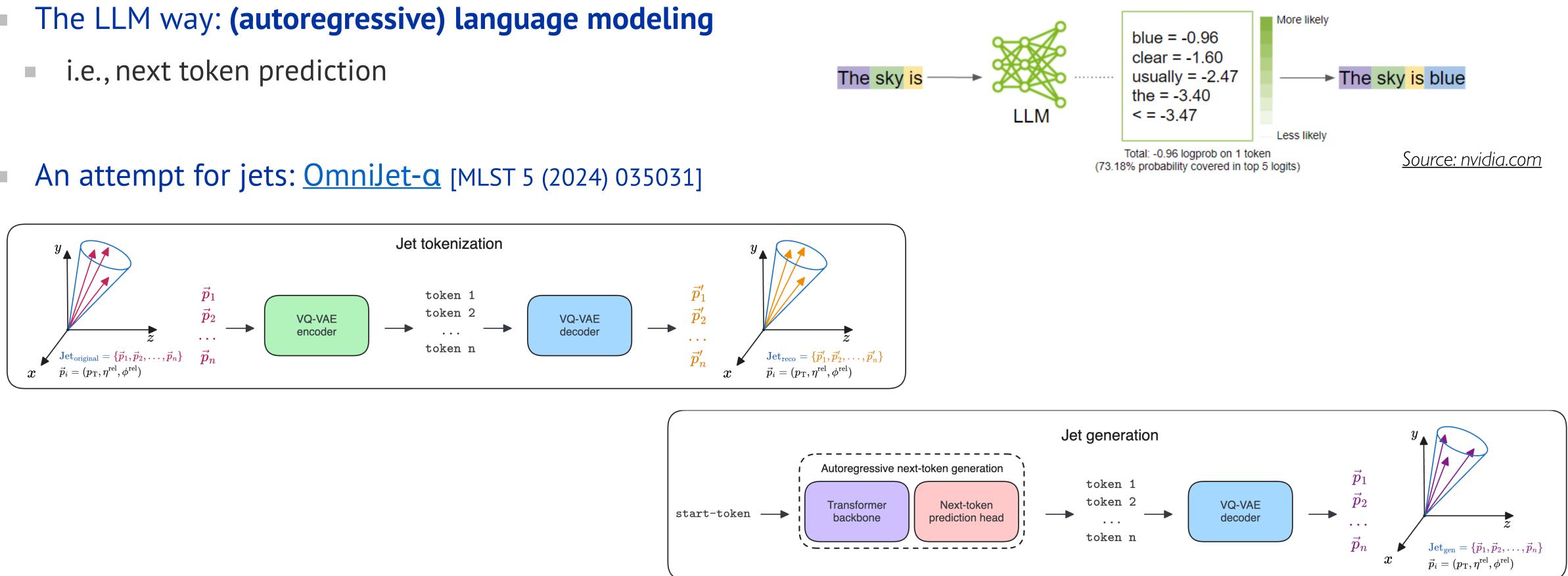
#### "A foundation model is any model that is trained on broad data (generally using self-supervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks."

On the Opportunities and Risks of Foundation Models [arXiv: 2108.07258]



4

#### SELF-SUPERVISION: NEXT TOKEN PREDICTION



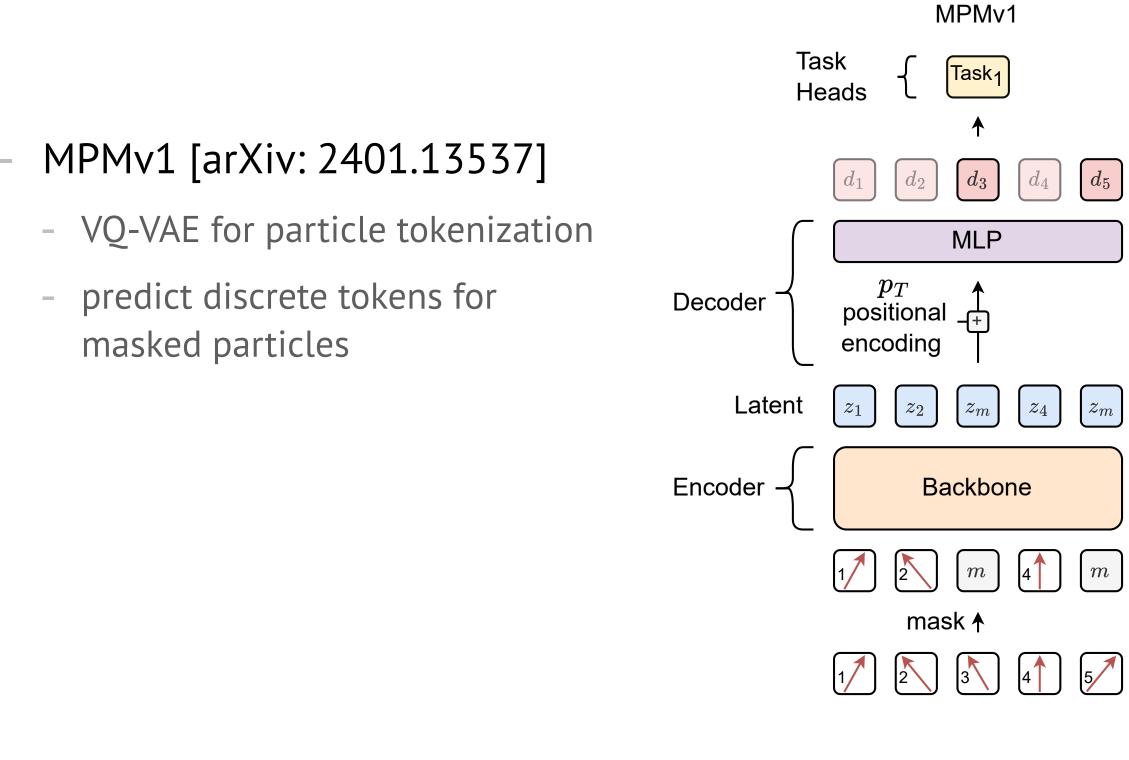
- Probably not the most natural approach:
  - requires (discrete) tokenization of high-dimensional numerical inputs

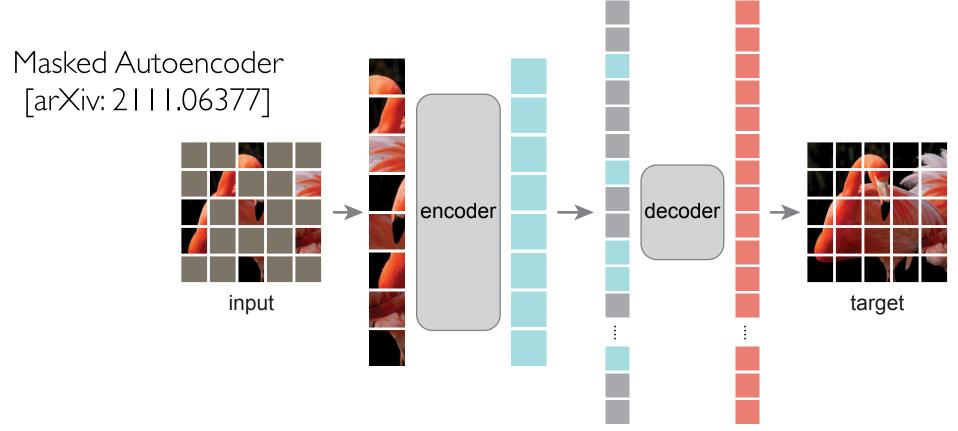
needs to impose an ordering on jet constituent particles, which are intrinsically permutation invariant



#### SELF-SUPERVISION: MASKED MODELING

- The CV approach: "masked modeling"
  - i.e., mask and reconstruct
- Adapted for particle physics: <u>Masked Particle Modeling</u>





| $\boxed{z_4}$ | $z_m$ |
|---------------|-------|
| e             |       |
| 4             | m     |
| 4             | 5     |

| MPMv2                                                                                                                                                                       |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Task <sub>1</sub> Task <sub>N</sub>                                                                                                                                         |  |  |  |  |
| $d_1$ $d_2$ $d_3$ $d_4$ $d_5$                                                                                                                                               |  |  |  |  |
| Transformer                                                                                                                                                                 |  |  |  |  |
| $\begin{bmatrix} z_1 \end{bmatrix} \begin{bmatrix} z_2 \end{bmatrix} \begin{bmatrix} m_1 \end{bmatrix} \begin{bmatrix} z_4 \end{bmatrix} \begin{bmatrix} m_2 \end{bmatrix}$ |  |  |  |  |
| pad 🕇                                                                                                                                                                       |  |  |  |  |
| $egin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                          |  |  |  |  |
| Backbone                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                             |  |  |  |  |
| drop 🛧                                                                                                                                                                      |  |  |  |  |
|                                                                                                                                                                             |  |  |  |  |

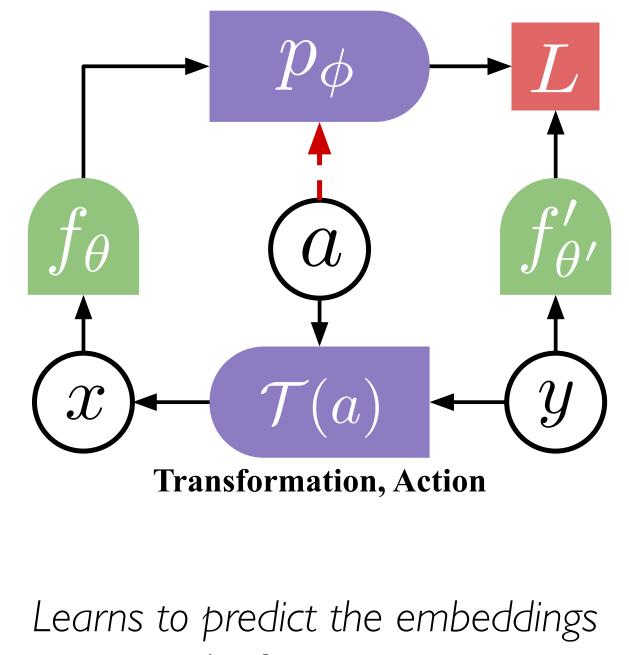
- MPMv2 [arXiv: 2409.12589]
  - no need for discrete tokenization
  - multiple reconstruction tasks:
    - PID prediction
    - direct regression
    - conditional generative tasks (via CNF / CFM)

6

#### **JOINT-EMBEDDING PREDICTIVE ARCHITECTURE**



**Predictor/World Model** 



in the **latent** space. A path towards "World Models".

arXiv: 2403.00504

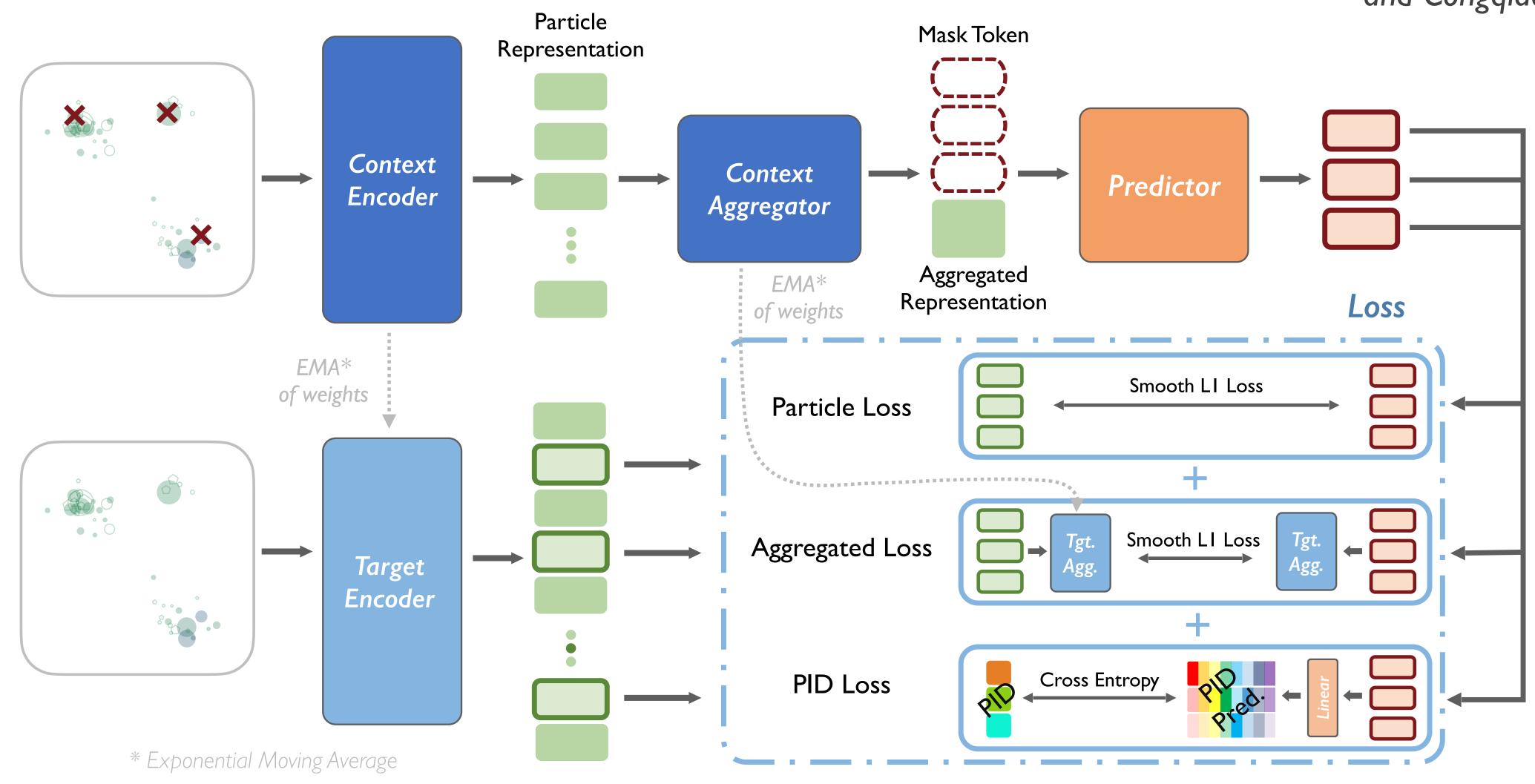


... predicts the embeddings of masked image patches in a (learned) latent space.





## INTRODUCING P-JEPA



Work in progress with Qibin Liu, Shudong Wang and Congqiao Li

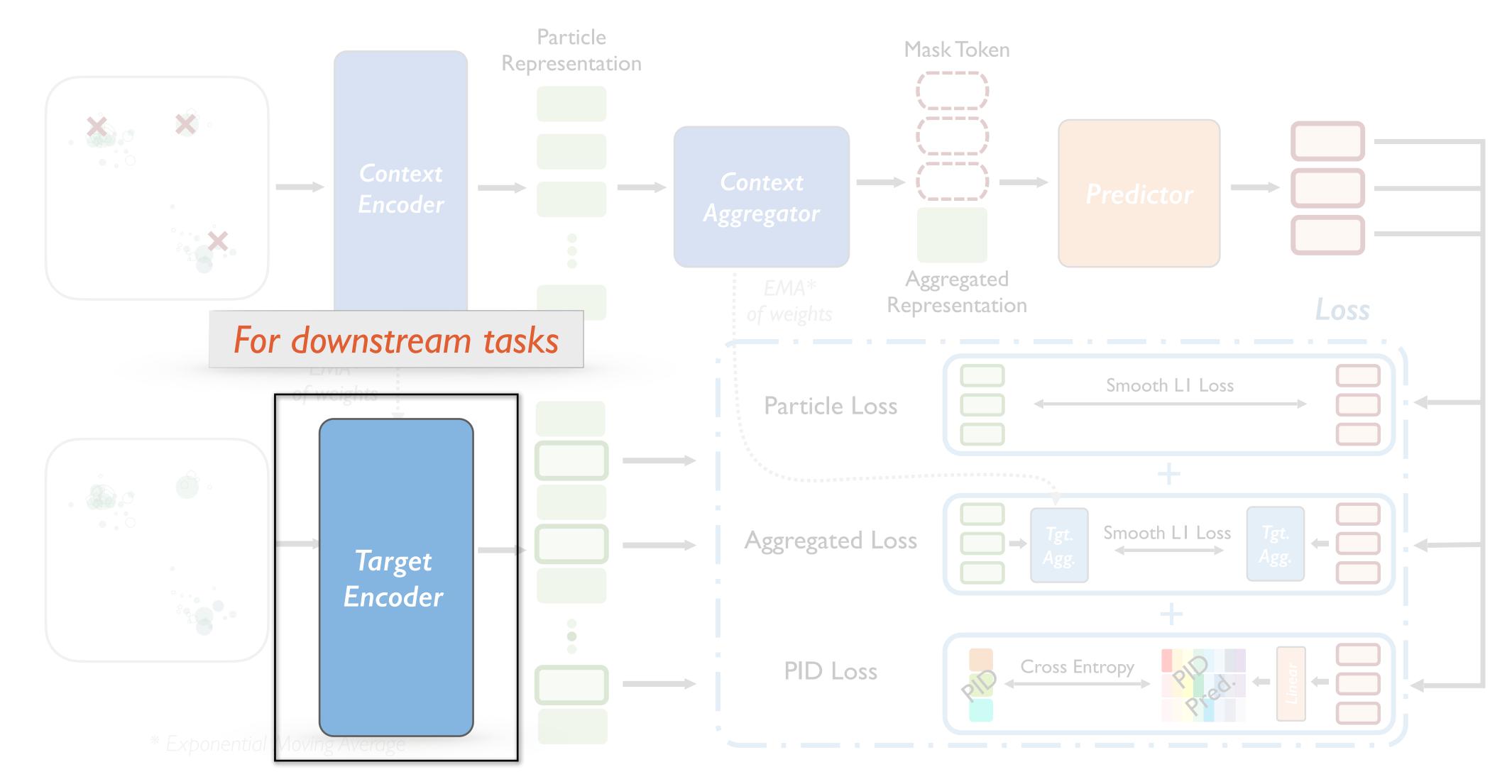
See also: "J-JEPA" [S. Katel, H. Li, Z. Zhao, F. Mokhtar, J. Duarte and R. Kansal, arXiv: 2412.05333], "HEP-JEPA" []. Bardhan, R. Agrawal, A. Tilak, C. Neeraj and S. Mitra, <u>arXiv: 2502.03933</u>]







## INTRODUCING P-JEPA



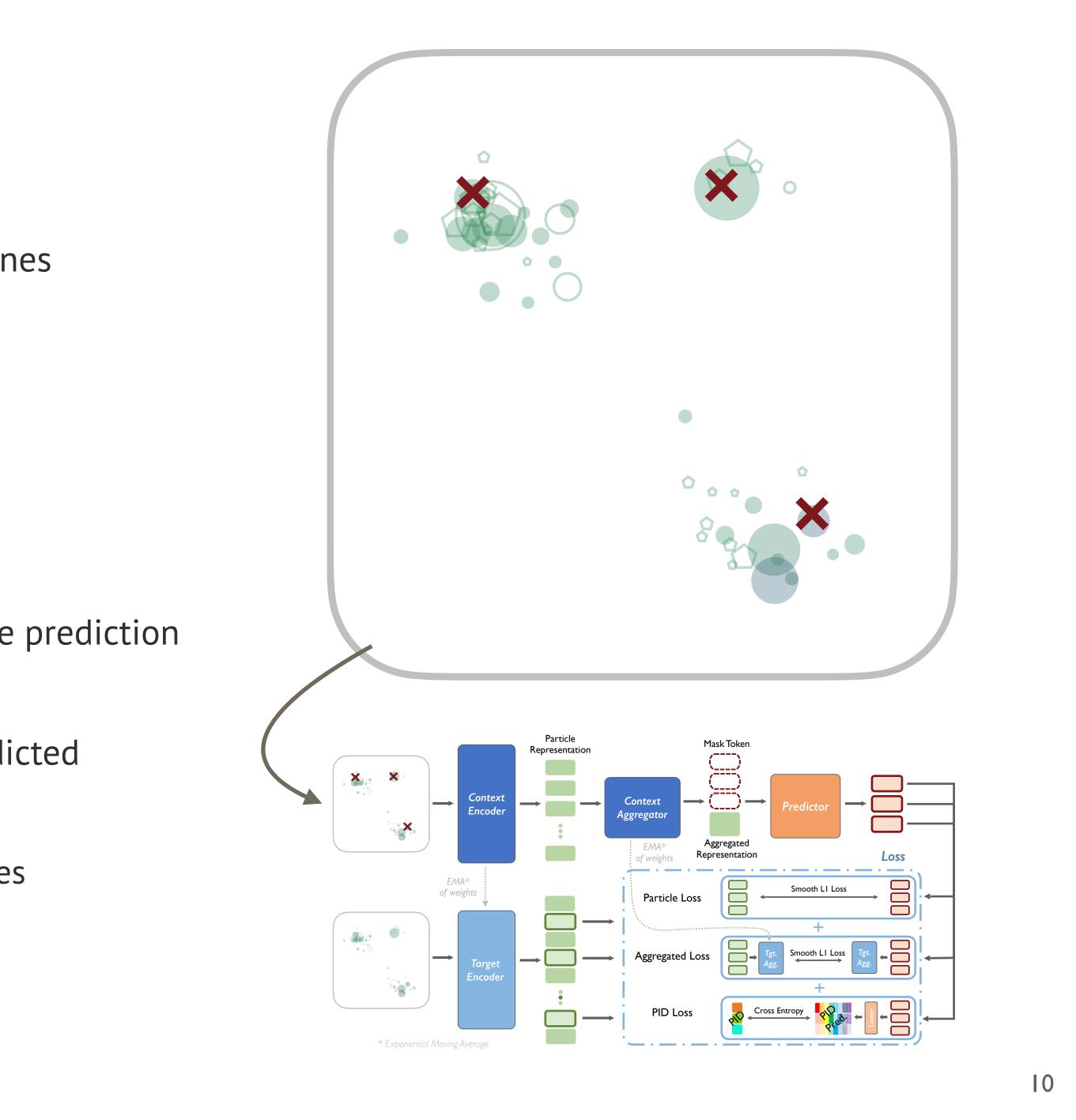




#### PARTICLE MASKING

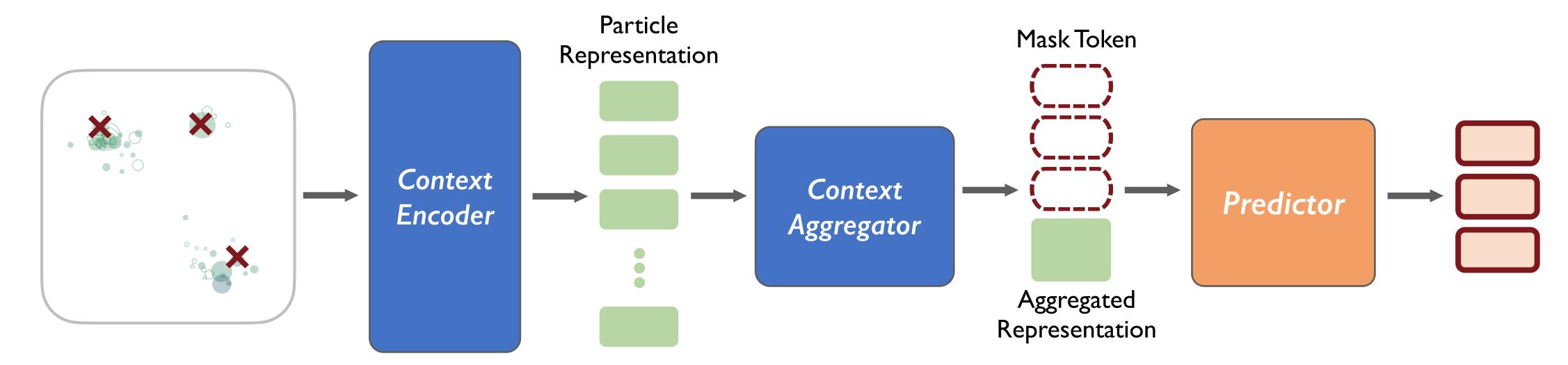
- The pre-training task in a nutshell:
  - predict the masked particles from the remaining ones
  - ... but in the latent space

- Masking strategy:
  - randomly mask 30–50% of the particles in a jet
  - the remaining particles serve as the context for the prediction
    - ==> input to the context encoder & predictor
  - the masked particles become the target to be predicted
    - ==> NOT seen by the context encoder & predictor
    - ==> the loss is computed only for the target particles



### CONTEXT ENCODER AND PREDICTOR

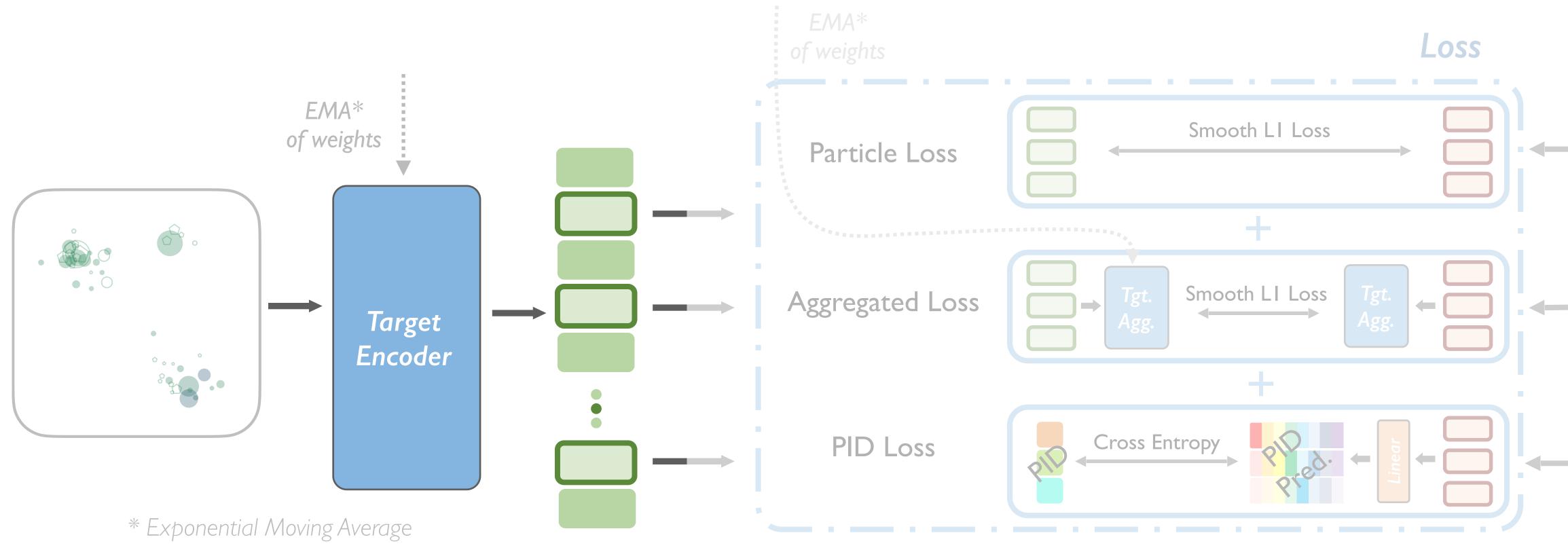
- Context encoder
  - a larger Particle Transformer (w/ pairwise features)
- Context aggregator
  - aggregates all context particles into a single token
- Predictor
  - plain Transformer, smaller than encoder
  - predicts the masked particles from the aggregated representation + mask tokens w/ pos. emb.



|                  | Context Encoder +<br>Aggregator | Predictor |
|------------------|---------------------------------|-----------|
| Embed Dims       | (5 2,5 2,5 2)                   | 192       |
| Pair Embed Dims  | (64, 64, 64)                    | /         |
| Num Heads        | 8                               | 6         |
| Num Blocks       | 16                              | 4         |
| Num Class Blocks | 2                               | /         |
| Num Params       | 76M                             | 2.6M      |

### TARGET ENCODER

- A target encoder is used to derive the particle embeddings in the latent space for loss computation
  - processes the complete set of particles in a jet (i.e., context + target)
    - then only the embeddings of the target particles are picked up for loss computation
  - updated by "copying" the weights from the context encoder (via exponential moving average)



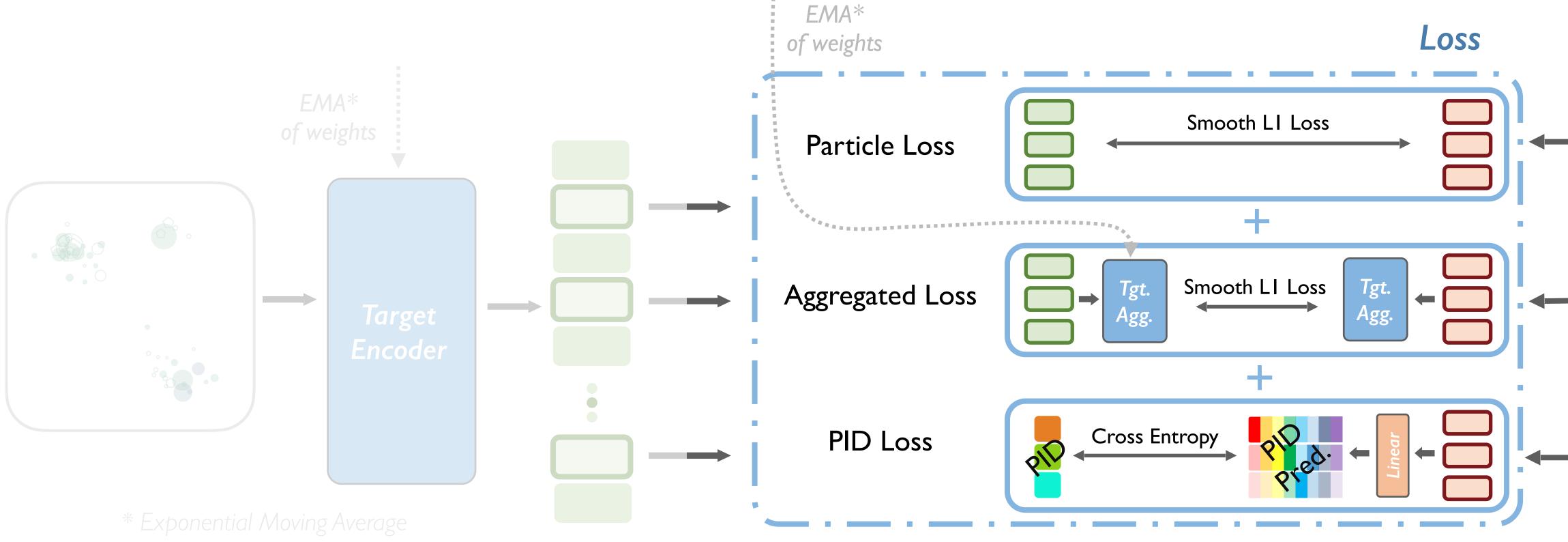




#### PRE-TRAINING LOSS

Loss = Particle Loss + Aggregated Loss + PID loss 

- Particle Loss: smooth L1 loss between the predicted embeddings and those from target encoder

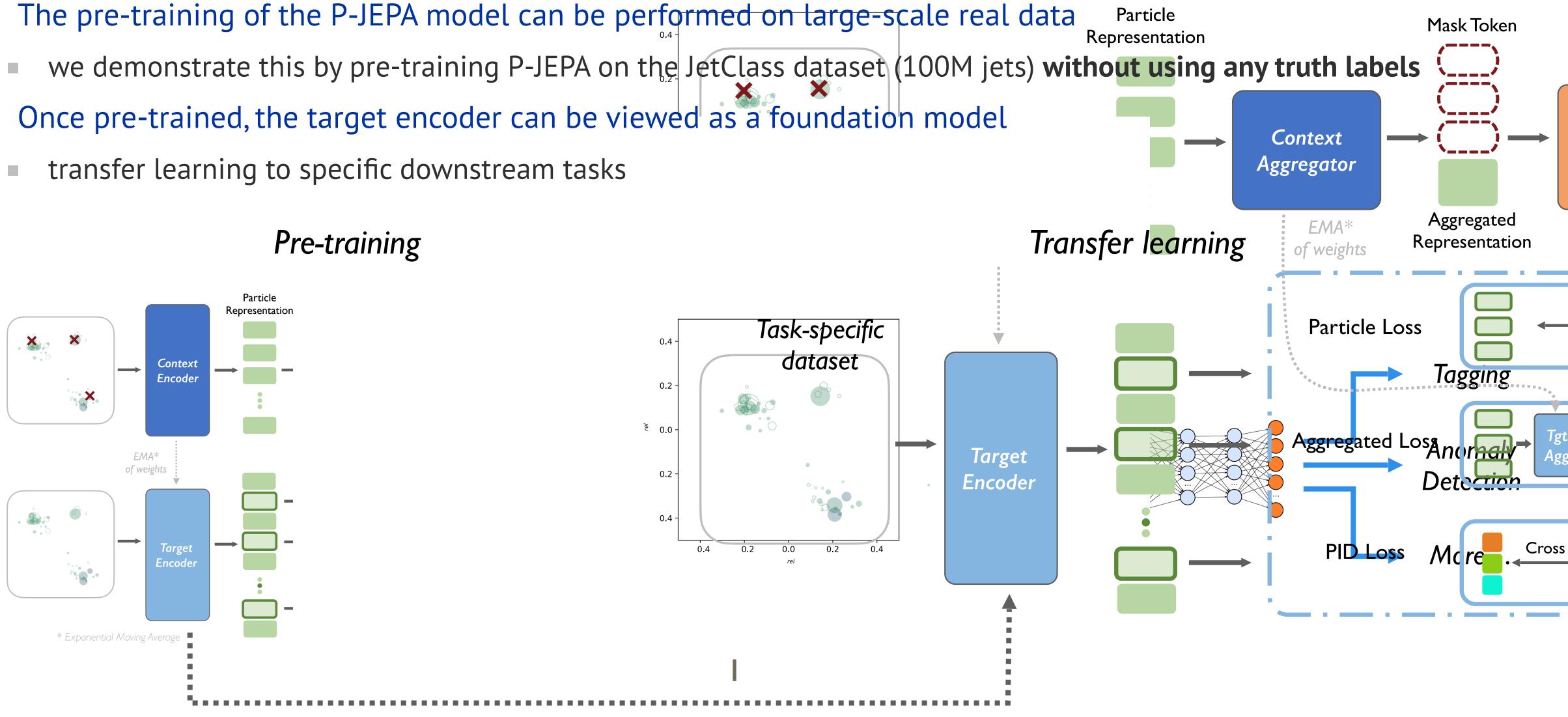


Aggregated Loss: computed on the aggregated representations of target particles using the target aggregator PID Loss: auxiliary task to predict the reconstructed PID of each masked particle from the predicted embeddings





#### **PRE-TRAIN**

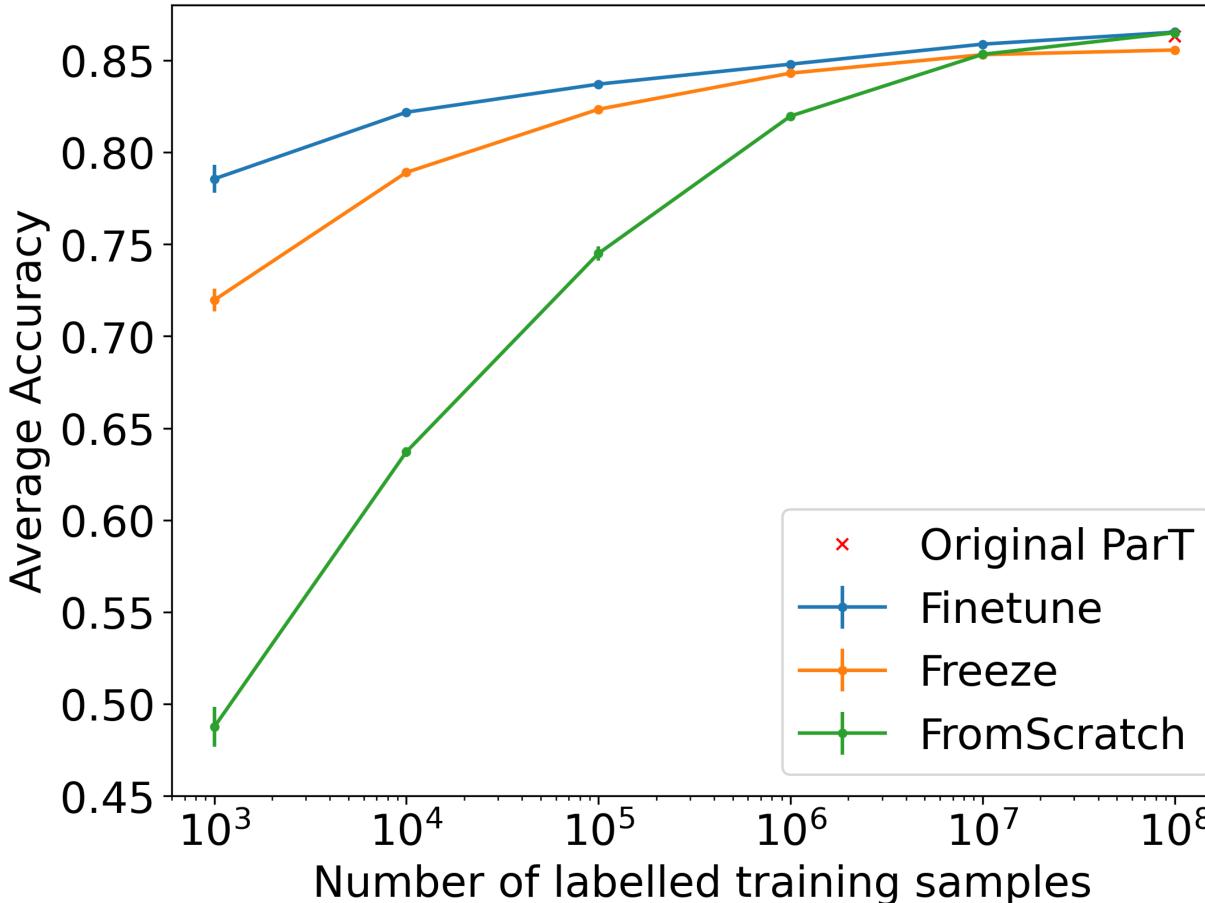


#### NING

14

## TRANSFER LEARNING: JET TAGGING

Benchmark: 10-class jet classification on JetClass





Encoder allowed to be slightly updated when trained with labelled jets for tagging

Freeze:

Encoder fixed when trained with labelled jets for tagging

108

FromScratch:

Same network architecture, but trained with labelled jets starting from randomly initialized weights





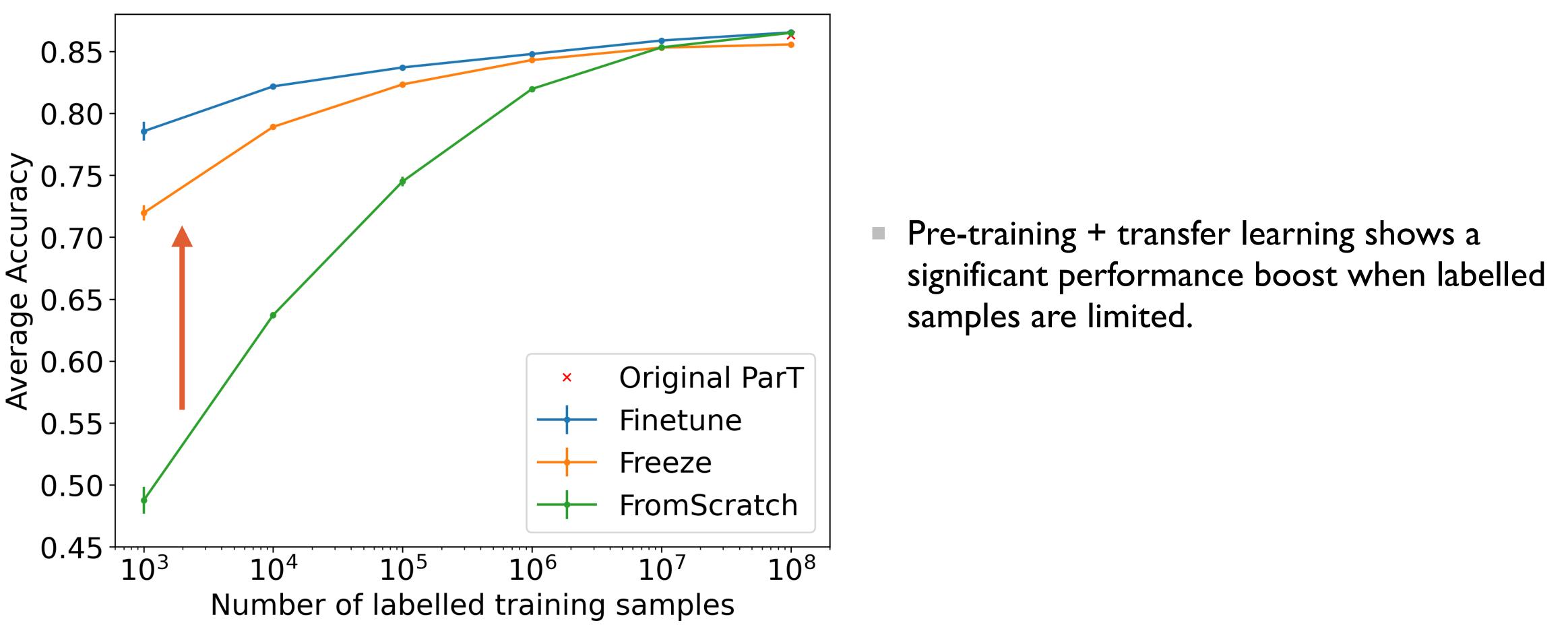






### TRANSFER LEARNING: JET TAGGING

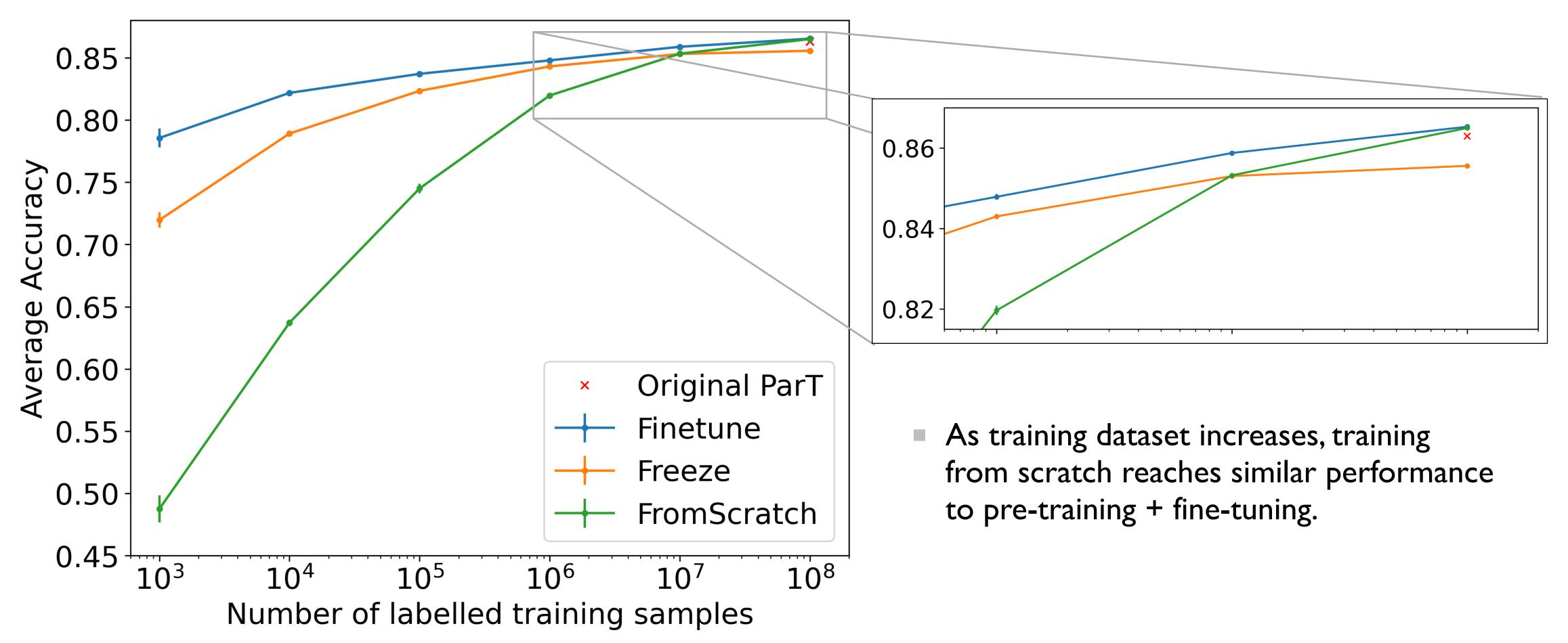
Benchmark: 10-class jet classification on JetClass 





### TRANSFER LEARNING: JET TAGGING

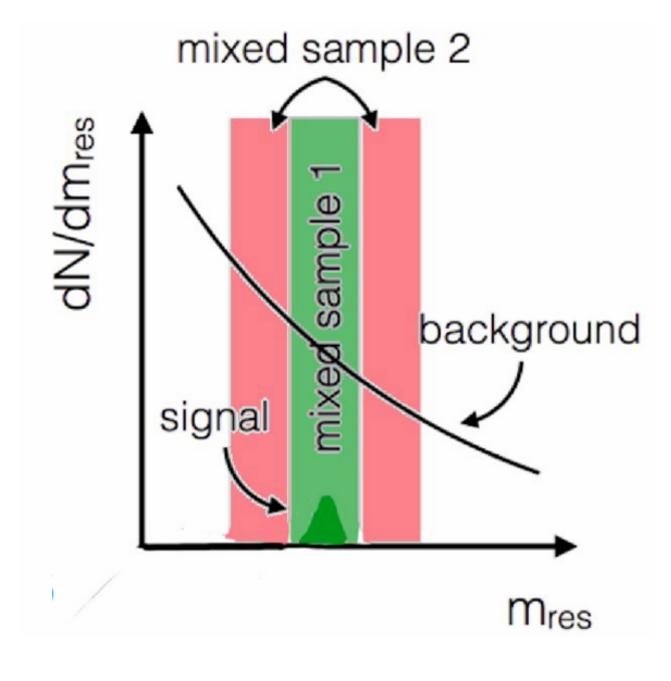
Benchmark: 10-class jet classification on JetClass

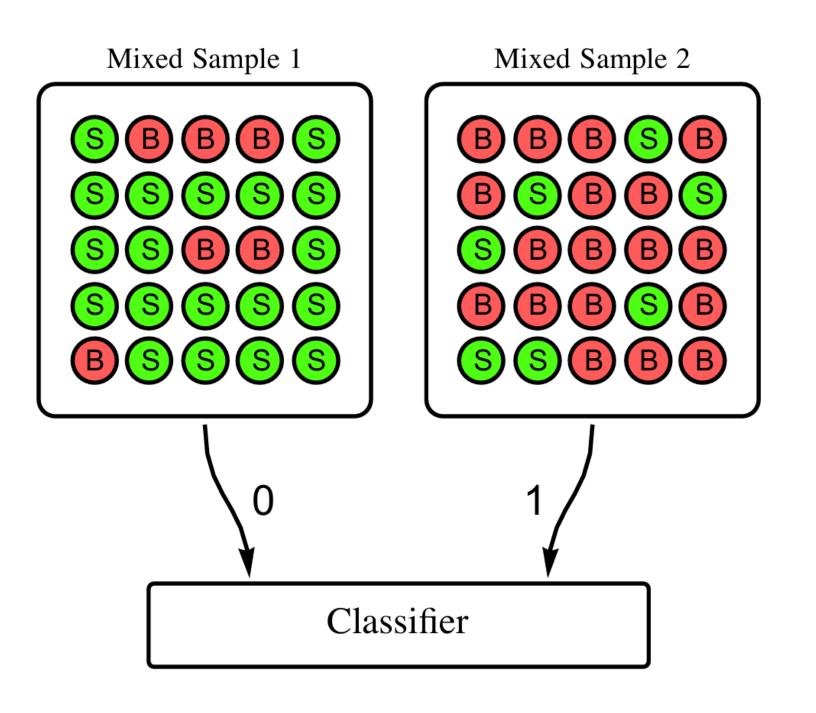






- Anomaly Detection (AD): model-agnostic search for new physics signals
- A classic paradigm for AD: <u>CWoLa</u> (classification without labels)
  - trains a classifier to distinguish two mixed samples
    - e.g., mass window (signal enriched) vs mass sideband (background enriched)
    - the classifier is effectively a signal vs background discriminator, thus can be used to enhance signal purity
  - allows to detect unknown signals purely from data

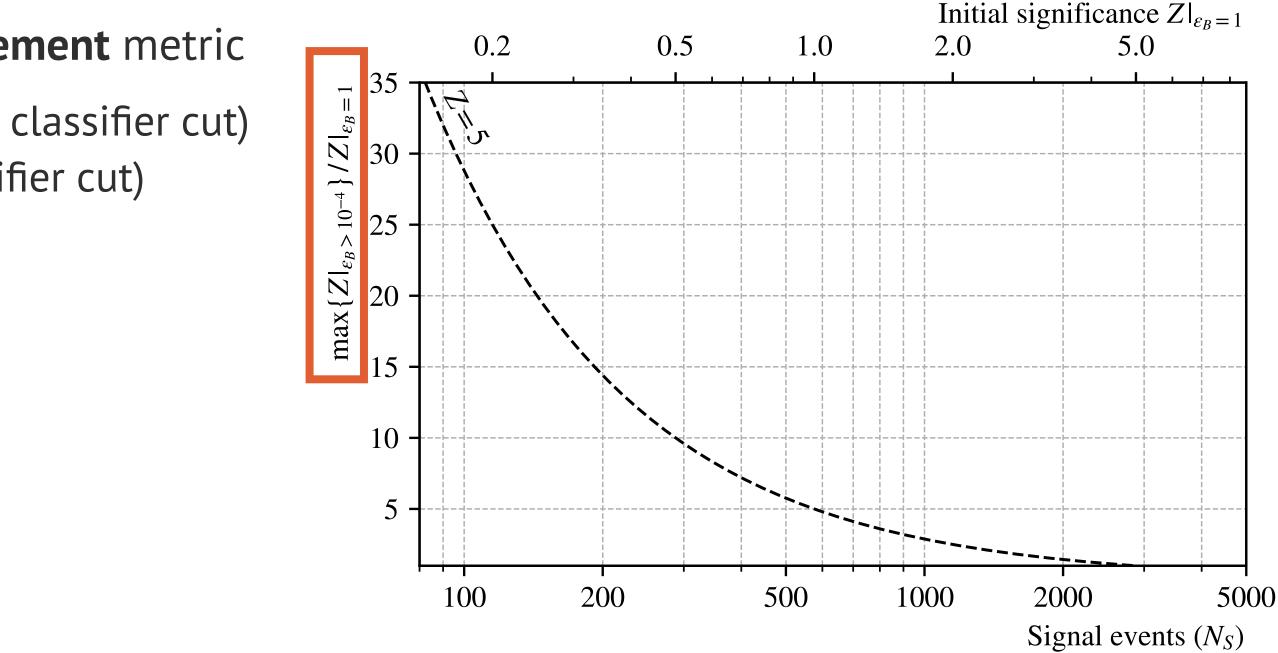






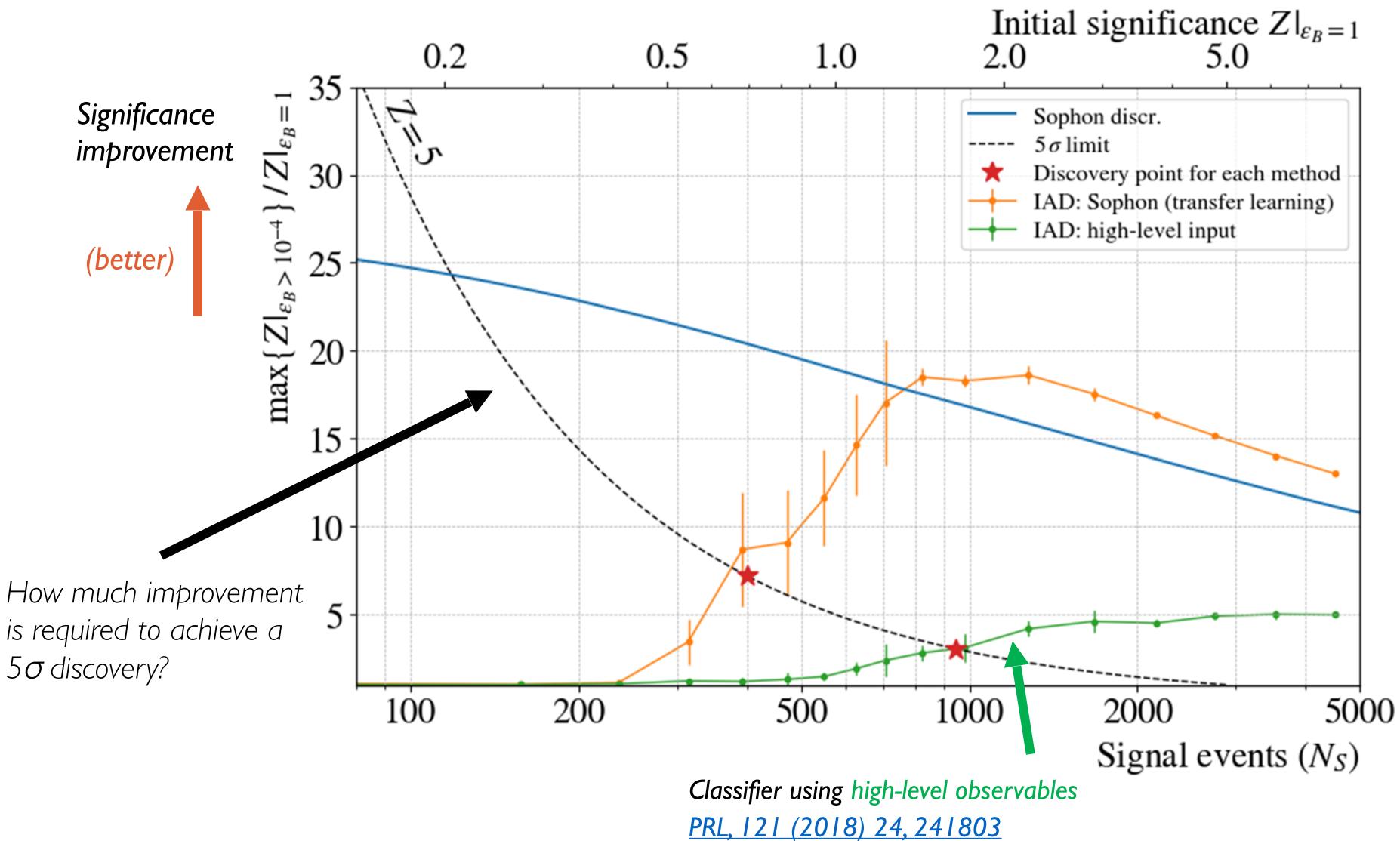
**Figure Credit** 

- Traditionally AD was performed using only high-level features (e.g., jet mass, substructures) as inputs
- Machine-learned representations captures richer information of a jet, thus can improve the performance of AD see e.g., the "Sophon" approach [arXiv: 2405.12972]
- We benchmark the P-JEPA extracted features using the IAD [arXiv:2210.14924] framework
  - idealized setup for the mixed samples: **background only** vs **background + signal** 
    - background in the two mixed samples are drawn from the same distribution, no need to worry about e.g., mass dependency and interpolation into the mass window etc.
  - performance evaluated by the **significance improvement** metric
    - i.e., **ratio** of the *maximal* significance (at an optimal classifier cut) over the *initial* significance (i.e., inclusive w/o classifier cut)

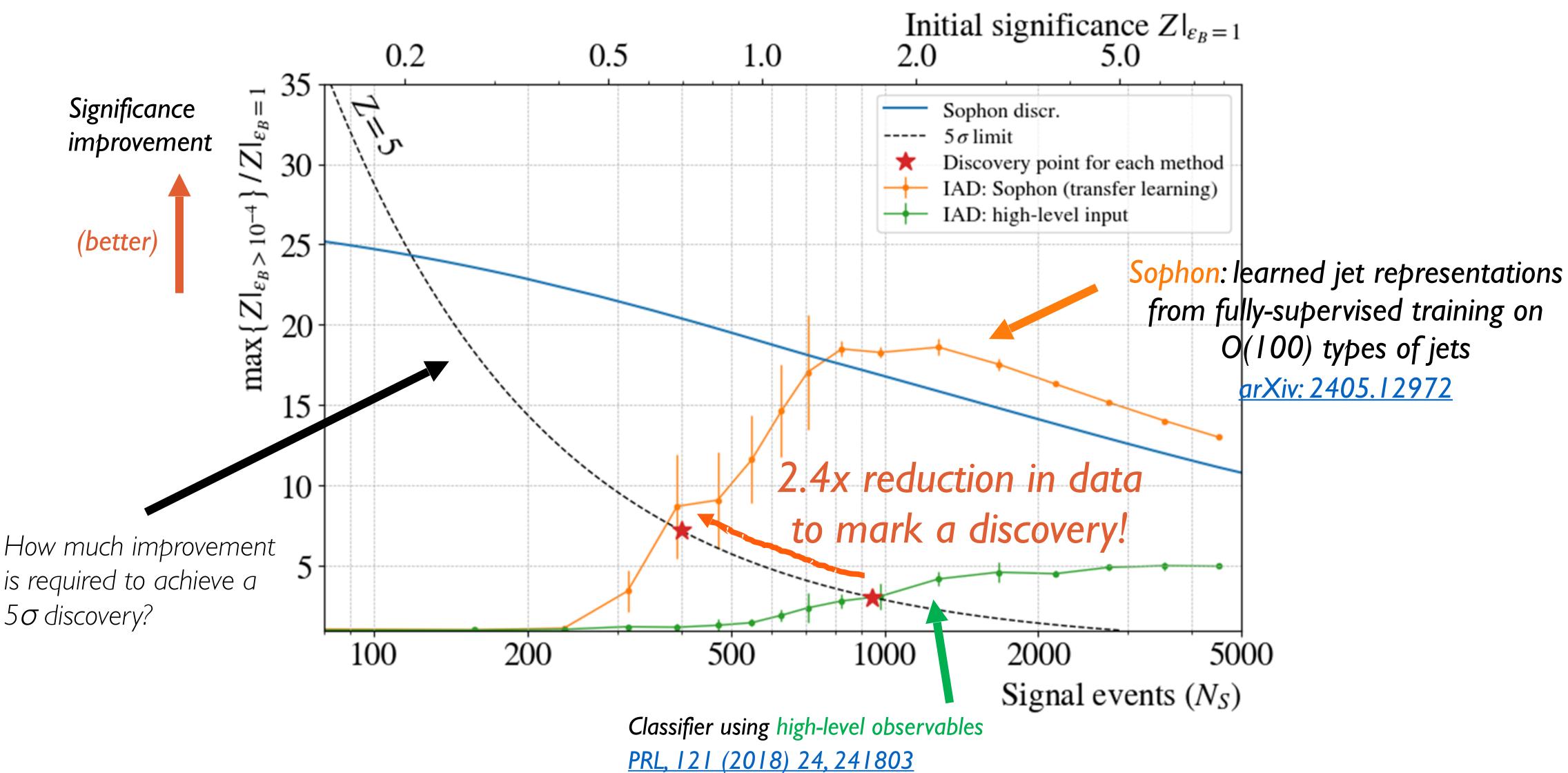




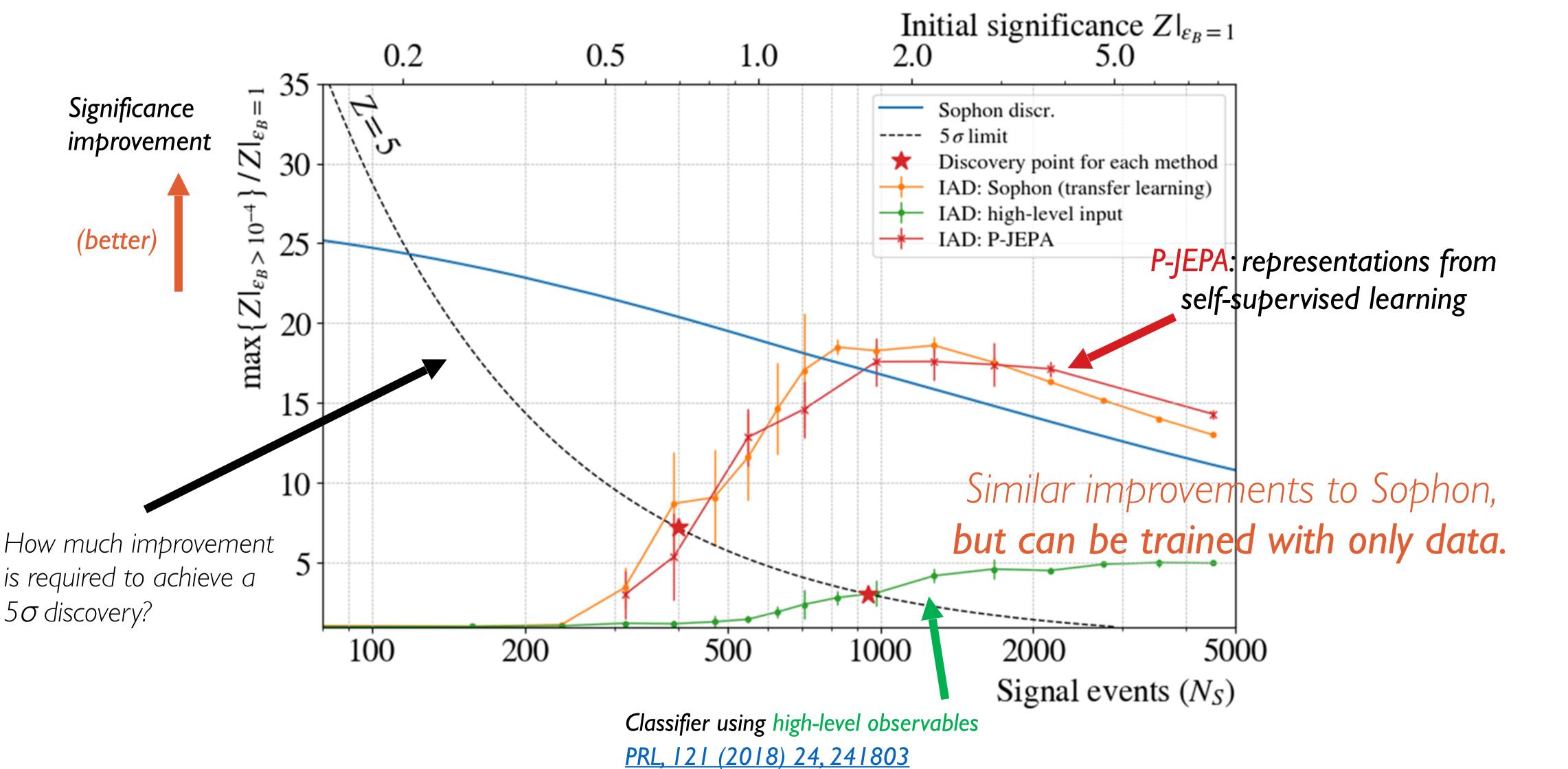










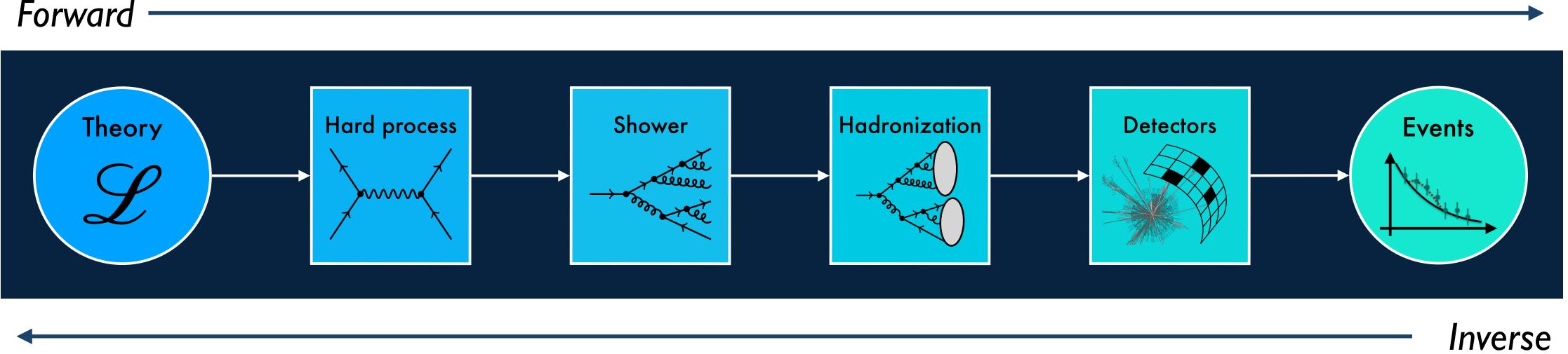




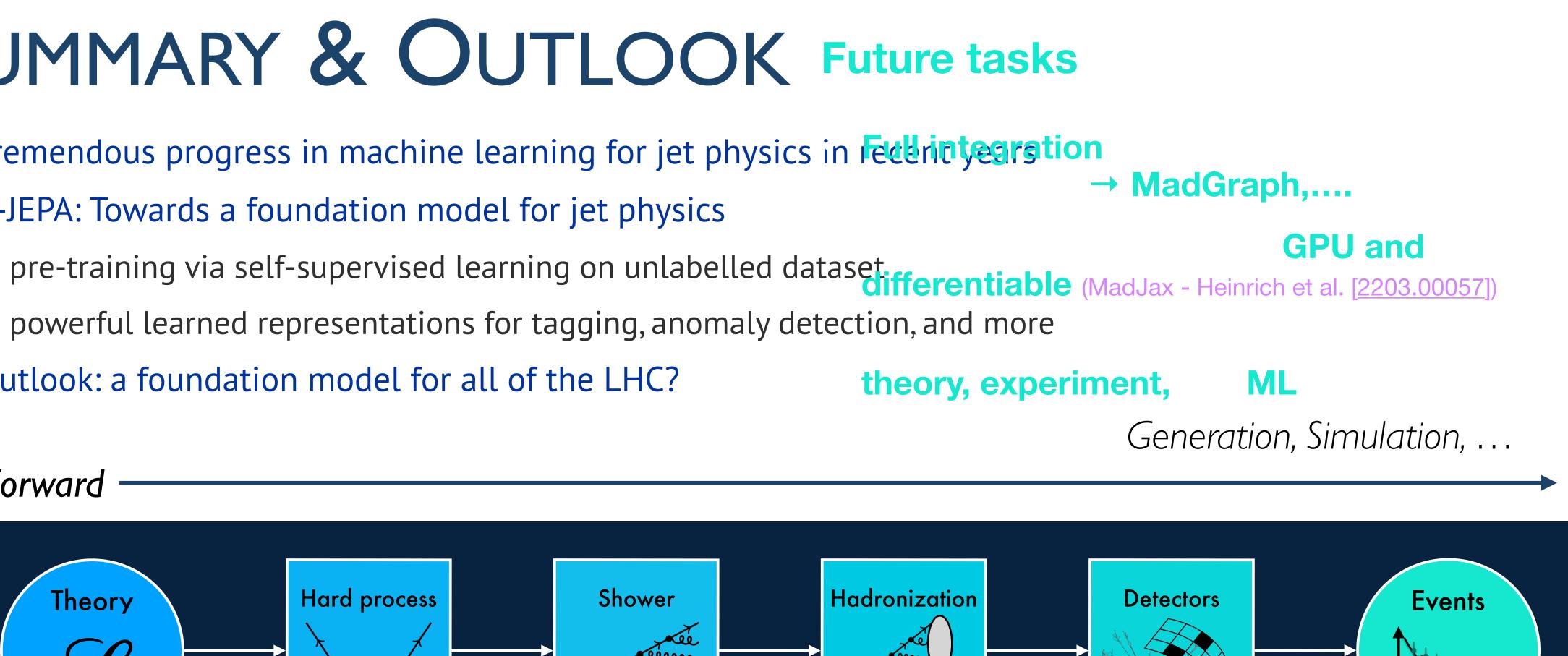
## SUMMARY & OUTLOOK Future tasks

- Tremendous progress in machine learning for jet physics in rederingeration
- P-JEPA: Towards a foundation model for jet physics

  - powerful learned representations for tagging, anomaly detection, and more
- Outlook: a foundation model for all of the LHC?



Reconstruction, Unfolding, ...



Credits: <u>R.Winterhalder</u>

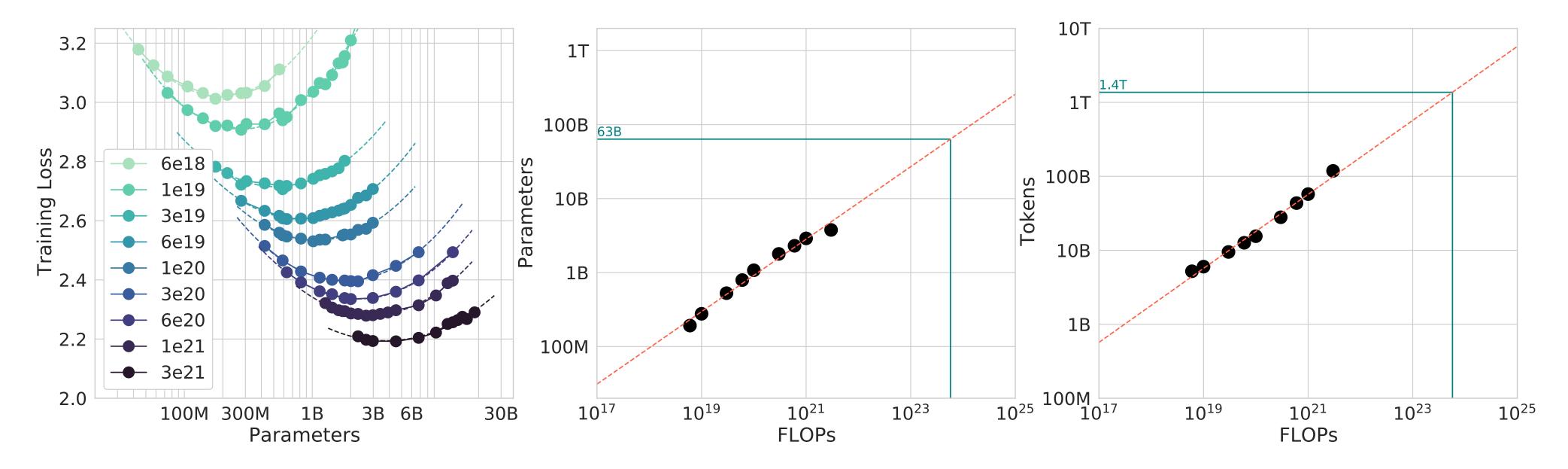






#### SCALING LAW

- For language models neural scaling law [arXiv: 2001.08361, 2203.15556]



- compute budget
- Would be interesting to see the scaling law for jets but very computation intensive...

#### How far can we push the performance with bigger models, larger datasets, and more computing power?

empirical power law scaling of the loss as a function of the compute (C), dataset size (D) and model parameters (N) once established, can be extrapolated to determine the best dataset size & parameter combination under a fixed



