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Confusion term

arXiv:0907.3577 

https://arxiv.org/abs/0907.3577
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≃ E1 + (0.58 ⋅ E2) + (0.15 ⋅ E3)

… then we can already estimate 
       the properties of the particles:

Learning the energy-based incidence matrix is an inductive bias 
that makes predictions more accurate and fully interpretable
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arXiv:2410.23236  (soon to appear in EPJC)

https://arxiv.org/abs/2410.23236


Datasets
COCOA (2023) MLST 4 035042 
• Similar to ATLAS 
• Relatively low granularity 
• Comes with basic particle flow algorithm

e+e− → tt

Source: arXiv:1208.1402 

pp → tt

CLICdet arXiv:812.07337 
• Publicly-available dataset: zenodo/8260741  
• High granularity 
• Sophisticated Pandora particle flow algo.
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https://iopscience.iop.org/article/10.1088/2632-2153/acf186/meta
https://arxiv.org/abs/1208.1402
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Summary
Particle reconstruction  is a set-to-set problem that is 
foundational for collider physics

Hypergraph learning  
• addresses the core problem of overlap 
• is fully interpretable in terms of energy flow 
• can be readily scaled to full  and events p+p+ e+e−

Next steps:  
• implement at LHC — work on pileup, isolated lepton perf. 
• further studies for future colliders, e.g. FCC
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Performance:  (COCOA)tt
Not encountered during training!



24

Performance: 
dijet, particle-level (COCOA)



25

Performance: 
dijet, 

particle-level 
(COCOA)



Dimensionality 
reduction

Calorimeter clustering

Event 426221175

26

Track reconstruction



Dimensionality 
reduction

Calorimeter clustering

Event 426221175

26

Track reconstruction



p+

ATLAS particle flow

27

We want to use tracks at low momentum (better resolution)…
… but we first need to remove their expected contribution

Subtract energy from cells 
in rings around the track



p+

ATLAS particle flow

27

We want to use tracks at low momentum (better resolution)…
… but we first need to remove their expected contribution

Subtract energy from cells 
in rings around the track



p+

ATLAS particle flow

27

We want to use tracks at low momentum (better resolution)…
… but we first need to remove their expected contribution

Subtract energy from cells 
in rings around the track



p+

ATLAS particle flow

27

We want to use tracks at low momentum (better resolution)…
… but we first need to remove their expected contribution

Subtract energy from cells 
in rings around the track



p+

ATLAS particle flow

27

We want to use tracks at low momentum (better resolution)…
… but we first need to remove their expected contribution

Subtract energy from cells 
in rings around the track



p+

ATLAS particle flow

27

We want to use tracks at low momentum (better resolution)…
… but we first need to remove their expected contribution

Subtract energy from cells 
in rings around the track



p+

ATLAS particle flow

27

We want to use tracks at low momentum (better resolution)…
… but we first need to remove their expected contribution

Subtract energy from cells 
in rings around the track



p+

ATLAS particle flow

27

We want to use tracks at low momentum (better resolution)…
… but we first need to remove their expected contribution

Subtract energy from cells 
in rings around the track



p+

ATLAS particle flow
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We want to use tracks at low momentum (better resolution)…
… but we first need to remove their expected contribution

Subtract energy from cells 
in rings around the track

N.B. Comparing calibrated and uncalibrated jets
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Pandora: particle flow for CLIC
• Multiple pattern recognition steps 
• Highly-granular calorimeter 
• Cleaner  collision environmente+e−
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• Multiple pattern recognition steps 
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