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(quark or gluon) from a proton
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Measurable

quantity PQCD

Parton Distribution Functions (PDFs) are:

 Roughly speaking the probability of sampling a parton
(quark or gluon) from a proton

e 2 variables:
e Longitudinal momentum fraction of the parton

X = pparton/ Pproton
* Energy scale 0
» () scaling is known from perturbative QCD (DGLAP)
ML problem: find f,(x) at a fixed scale Q,
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> The NNPDF methodology
> Hyperoptimisation

> Validation of the methodology



The experimental dataset

~4500 datapoints across a wide range of kinematics and

processes
Uncertainties are approximated as Gaussian

For Gaussian data the likelihood estimator is
P(model | data) « exp[—y?/2]
Ndat

v = 2 (data — predic:tion)ic:()vi;1 (data — prediction)
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Kinematic coverage

Deep Inelastic Scattering
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PDF determination

Besides data a PDF fit requires theory calculations
and a methodology, this talk is about the latter

Different groups, make different choices for each

Theory calculation Methodology
partonic cross-sections, DGLAP, SM Data Parametrisation, error

parameters, ... propagation, minimisation

> Fit <

v
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A methodology consists of...
* ...a way to parametrise the PDFs -> neural network
* ...away to fit parameters to data -> gradient descent
* ...away to propagate uncertainties from data to functions?



Uncertainty propagation

Create a Monte Carlo samples of “synthetic data replicas”
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Uncertainty propagation

Compute mean and variance of PDF-dependent observables
(1 - = b N
Create a Monte Carlo samples of “synthetic data replicas 6 1 5 [£0
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Fitting PDFs

g at 1.651 GeV

3.5 1 Current Fit
Reference Fit
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Setting the methodology hyperparameters requires care

The wrong choice may lead to over- or under-fitting



Hyperparameter optimisation

NNPDF4.0 used k-folds cross-validation
1. Partition the dataset into 4 folds

2. Exclude one at a time, perform 4 fits

{Generate new hyperparameter conﬁguration}

3. Hyperoptimization metric: best average )(2 to non-fitted data {Fit to subset of folds}
[hype,aropt} 4 l N O l N l N l R
folds 1,2,3 folds 1,2,4 folds 1,3,4 folds 2,3,4
|deally include the PDF uncertainty in the hyperoptimization T e [ 2 N[ 2 [ e
4 3 2 1
 computationally heavy: . 14 )
4 cpu hours x 4 folds = 16 hours at 16 GB of memory L=%) xi
k=1

* This had to be reduced to use higher moments In
hyperoptimization

= solution: GPUs!



Hyperopt using GPUs

# Replicas 10 o0 100
Energy reduction 78% 87% 91%
Cost reduction —45% 47% 55%

NVIDIA H100 GPU vs 16 AMD EPYC Genoa CPU on SURF’s SNELLIUS cluster

Technical changes: Results:

 Single NN model for all samples * Memory usage scales only weakly with number of replicas,

e Share memory-heavy objects enabling a 100 replica fit in a single GPU

e Single hyperopt database shared by GPUs * 90% energy reduction: faster and more affordable fits!
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Model selection

How to define the figure of merit?

(ngf)
Difficult question: what metric should be used to @ Lhopt,min Selected Models
define a “good fit”?

This is actively worked on, but as a first attempt we
used the strategy:

1) look at configurations that describe data
equally well

2) Pick the ones with the largest uncertainty

In a fit: select not a single setup but randomly
sample over all acceptable configurations

@
0 20 40 60 80 100 120 140 160
trial
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gg luminosity dqq luminosity

VS =14 TeV Vs =14 TeV
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Large changes to the hyper parameter determination methodology,
but results still in good agreement with NNPDF4.0
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Uncertainty validation: closure tests

[Del Debio, Giani, Wilson, 2111.05787 ]

Basic idea: generate a global pseudo dataset from theory predictions
and extract the PDFs from this

Input PDFs ® Theory prediction grids ===  pseudodata ===  methodology === extracted PDF

Do they agree?*
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Uncertainty validation: closure tests

[Del Debio, Giani, Wilson, 2111.05787 ]

, Experimental data is sampled from a distribution, therefore |
, pseudodata = prediction + noise *

Basic idea: generate a global pseudo dataset from theory predictions
and extract the PDFs from this

Input PDFs ® Theory prediction grids ===  pseudodata ===  methodology === extracted PDF

Do they agree?*
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Uncertainty validation: closure tests

[Del Debio, Giani, Wilson, 2111.05787 ]
Look at PDF: this seems okay

g at 1.6 GeV

3.01 -0 Closure fit (68 c.l.+10)
Input PDF (68 c.l.+10)
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More quantitative: is the input data within 1 sigma of the

prediction 68% of the time?

Recently the impact of inconsistent

[Barontini et al., 2503.17447]
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Everything is open source!

The NNPDF code is developed in a public
repository

Everything to do your own PDF fit is open
source:

e Data

 Theory grids

e Fitting methodology
 Analysis

GitHub: github.com/NNPDF/nnpdf
Documentations: docs.nnpdf.science/

NINPDF

(S‘;dlf_’] docs

Getting started

Tutorials

Fitting code: n3fit

Code for data: validphys

Storage of data and theory predictions
Theory

Chi square figures of merit
Contributing guidelines and tools

Releases and compatibility policy

Continuous integration and deployment

Servers

External codes
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# / The NNPDF collaboration View page source

The NNPDF collaboration

The NNPDF collaboration performs research in the field of high-
energy physics. The NNPDF collaboration determines the structure
of the proton using contemporary methods of artificial intelligence.
A precise knowledge of the so-called Parton Distribution Functions
(PDFs) of the proton, which describe their structure in terms of their
guark and gluon constituents, is a crucial ingredient of the physics
program of the Large Hadron Collider of CERN.

The NNPDF code

The scientific output of the collaboration is freely available to the
public through the arXiv, journal repositories, and software
repositories. Along with this online documentation, we release the
NNPDF code. The code is made available as an open-source
package together with user-friendly examples and an extensive
documentation presented here.


https://github.com/NNPDF/nnpdf
https://docs.nnpdf.science/

Summary and Outlook

PDF determination is a Machine Learning challenge

Hyperparameter tuning is an important step in selecting good

ML models

GPU optimisation has led to 90% reduction in energy cost ...

... and enables us to do hyperoptimisation based on PDF
distributions rather than a single replica
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Summary and Outlook

PDF determination is a Machine Learning challenge

Hyperparameter tuning is an important step in selecting good

ML models

GPU optimisation has led to 90% reduction in energy cost ...

... and enables us to do hyperoptimisation based on PDF

distributions rather than a single replica

Thank you for your attention!

17

1.0 -

0.8 -

0.6 T

0.4 -

0.2 -

NNPDF40 nnlo as 01180 Q= 100.0 GeV

10 I
')

/10

Nn O, i 0 O C «Q
< <

0.0
1073

102

101

109



Backup slides




