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σ = ∑
ij

fi ⊗ fj ⊗ ̂σij

Measurable  
quantity pQCDPDFs

Parton Distribution Functions (PDFs) are:
• Roughly speaking the probability of sampling a parton 

(quark or gluon) from a proton

Factorization: the LHC master formula

Parton Distribution Functions
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σ = ∑
ij

fi ⊗ fj ⊗ ̂σij

Measurable  
quantity pQCDPDFs

Parton Distribution Functions (PDFs) are:
• Roughly speaking the probability of sampling a parton 

(quark or gluon) from a proton
• 2 variables: 

• Longitudinal momentum fraction of the parton 
x = pparton/pproton

• Energy scale Q
•  scaling is known from perturbative QCD (DGLAP)Q
• ML problem: find  at a fixed scale fi(x) Q0

Factorization: the LHC master formula

Parton Distribution Functions



‣ The NNPDF methodology 

‣ Hyperoptimisation 

‣ Validation of the methodology



• ~4500 datapoints across a wide range of kinematics and 
processes


• Uncertainties are approximated as Gaussian


• For Gaussian data the likelihood estimator is 
 P(model |data) ∝ exp[−χ2/2]

χ2 =
Ndat 

∑
i,j

(data − prediction)i
cov−1

ij (data − prediction)j
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The experimental dataset



A methodology consists of…

• …a way to parametrise the PDFs -> neural network

• …a way to fit parameters to data -> gradient descent

• …a way to propagate uncertainties from data to functions?

Data Methodology
Parametrisation, error

propagation, minimisation

Theory calculation
partonic cross-sections, DGLAP, SM

parameters, ...

Fit

PDF
LHAPDF
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PDF determination

Besides data a PDF fit requires theory calculations 
and a methodology, this talk is about the latter 
Different groups, make different choices for each
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Create a Monte Carlo samples of “synthetic data replicas” 
D(k) ∼ 𝒩(D, Covexp)

Uncertainty propagation



Compute mean and variance of PDF-dependent observables
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⟨𝒪[ f ]⟩ ≃
1
N

N

∑
k=1

𝒪 [f (k)]Create a Monte Carlo samples of “synthetic data replicas” 
D(k) ∼ 𝒩(D, Covexp)

Var[𝒪] ≃
1
N

N

∑
k=1

(𝒪 [f (k)] − ⟨𝒪⟩)2

Uncertainty propagation



‣ The NNPDF methodology 

‣ Hyperoptimisation 

‣ Validation of the methodology
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Fitting PDFs

Setting the methodology hyperparameters requires care

The wrong choice may lead to over- or under-fitting
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NNPDF4.0 used k-folds cross-validation 
1. Partition the dataset into 4 folds

2. Exclude one at a time, perform 4 fits

3. Hyperoptimization metric: best average  to non-fitted data


Ideally include the PDF uncertainty in the hyperoptimization


• computationally heavy:  
4 cpu hours x 4 folds = 16 hours at 16 GB of memory


• This had to be reduced to use higher moments in 
hyperoptimization


➡solution: GPUs!

χ2

Hyperparameter optimisation
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Hyperopt using GPUs

Technical changes:  
• Single NN model for all samples 

• Share memory-heavy objects

• Single hyperopt database shared by GPUs 

Results:  
• Memory usage scales only weakly with number of replicas, 

enabling a 100 replica fit in a single GPU

• 90% energy reduction: faster and more affordable fits!

NVIDIA H100 GPU vs 16 AMD EPYC Genoa CPU on SURF’s SNELLIUS cluster
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Model selection
How to define the figure of merit?


“model uncertainty"


Difficult question: what metric should be used to 
define a “good fit”? 


This is actively worked on, but as a first attempt we 
used the strategy:

1) look at configurations that describe data 

equally well 

2) Pick the ones with the largest uncertainty


In a fit: select not a single setup but randomly 
sample over all acceptable configurations




12

Results

Large changes to the hyper parameter determination methodology, 
but results still in good agreement with NNPDF4.0 



‣ The NNPDF methodology 

‣ Hyperoptimisation 

‣ Validation of the methodology



Uncertainty validation: closure tests
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Basic idea: generate a global pseudo dataset from theory predictions 
and extract the PDFs from this

Input PDFs Theory prediction grids pseudodata extracted PDF⊗ methodology

Do they agree?*

[Del Debio, Giani, Wilson, 2111.05787 ]

https://arxiv.org/pdf/2111.05787.pdf


Uncertainty validation: closure tests
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Basic idea: generate a global pseudo dataset from theory predictions 
and extract the PDFs from this

Input PDFs Theory prediction grids pseudodata extracted PDF⊗ methodology

Do they agree?*

Experimental data is sampled from a distribution, therefore 
                    pseudodata = prediction + noise

*

[Del Debio, Giani, Wilson, 2111.05787 ]

https://arxiv.org/pdf/2111.05787.pdf


Uncertainty validation: closure tests
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[Del Debio, Giani, Wilson, 2111.05787 ]

Look at PDF: this seems okay

More quantitative: is the input data within 1 sigma of the 
prediction 68% of the time? 


Use statistical measures to answer this
Recently the impact of inconsistent 
data was studied in a closure test

 [Barontini et al., 2503.17447]

https://arxiv.org/pdf/2111.05787.pdf
https://arxiv.org/pdf/2503.17447.pdf


Everything is open source!
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The NNPDF code is developed in a public 
repository


Everything to do your own PDF fit is open 
source:

• Data 

• Theory grids 

• Fitting methodology 

• Analysis 


GitHub: github.com/NNPDF/nnpdf

Documentations: docs.nnpdf.science/

https://github.com/NNPDF/nnpdf
https://docs.nnpdf.science/


Summary and Outlook
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• PDF determination is a Machine Learning challenge 


• Hyperparameter tuning is an important step in selecting good 
ML models


• GPU optimisation has led to 90% reduction in energy cost …


• … and enables us to do hyperoptimisation based on PDF 
distributions rather than a single replica

17



Summary and Outlook
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• PDF determination is a Machine Learning challenge 


• Hyperparameter tuning is an important step in selecting good 
ML models


• GPU optimisation has led to 90% reduction in energy cost …


• … and enables us to do hyperoptimisation based on PDF 
distributions rather than a single replica

Thank you for your attention!
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