Several applications of machine learning and quantum computing in jet reconstruction and identification

Chen Zhou Peking University

EPS-HEP conference Marseille, France, 2025.07.07

Introduction

- \bullet How to improve?
- computing

Jet reconstruction and identification are important for physics studies.

Use quickly developing techniques of machine learning and quantum

2

1. A novel quantum realization of jet clustering in high-energy physics experiments

Science Bulletin 70 (2025) 460

In collaboration with Dong Liu (Tsinghua/BAQIS), Manqi Ruan (IHEP), and others

A novel quantum realization of jet clustering

- Exploring the application of quantum technologies to fundamental sciences holds the key to fostering innovation for both sides
- Accurate jet clustering is crucial as it retains the information of the originating quark or gluon and forms the basis for many physics studies
- Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantumclassical algorithm for addressing classical combinatorial optimization problems with available quantum resources
- For the first time, by mapping collision events into graphs—with particles as nodes and their angular separations as edges—we realize jet clustering using QAOA

$$\widehat{H}_C = \frac{1}{2} \sum_{(i,j) \in E} W_{ij} \left(I - \frac{1}{2} \sum_{i \in E} W_{ij} \right)$$

 $\widehat{H}_M = \sum_{j=1}^n \sigma_j^x$

$$C(\mathbf{x}) = \sum_{i,j=1}^{|\mathbf{v}|} \mathbf{w}_{ij} \mathbf{x}_i (1)$$

(a)

Science Bulletin 70 (2025) 460

(b)

(c)

Quafu quantum hardware

0.14 -

QAOA simulation $e^+e^-k_t$ angle [rad]: jet and quark k-Means • Avg ^{0.02} 0.00 (e)

(d)

_	
_	
_	

A novel quantum realization of jet clustering

- Our results, derived from 30 qubits on quantum computer simulator and 6 qubits on quantum computer hardware, demonstrate that jet clustering performance with QAOA is comparable with classical algorithms for a smallsized problem
- This study highlights the feasibility of quantum computing to revolutionize jet clustering, bringing the practical application of quantum computing in highenergy physics experiments one step closer

2. Machine learning-based jet-origin identification and its application at an e⁻e⁺ Higgs factory

Phys. Rev. Lett. 132 (2024) 221802

In collaboration with Manqi Ruan (IHEP), Huilin Qu (CERN), and others

Machine learning-based jet-origin identification

 We propose and realize the concept of jet-origin identification using state-of-the-art machine learning algorithms, such as ParticleNet

Table 3 The input variables used in ParticleNet for jet flavor taggingat the CEPC

Variable	Definition					
$\Delta \eta$	Difference in pseudorapidity between the particle and the jet axis					
$\Delta \phi$	Difference in azimuthal angle between the particle and the jet axis					
$\log P_t$	Logarithm of the particle's P_t					
logE	Logarithm of the particle's energy					
$\log \frac{P_t}{P_t(jet)}$	Logarithm of the particle's P_t relative to the jet P_t					
$\log \frac{E}{E(jet)}$	Logarithm of the particle's energy relative to the jet energy					
ΔR	Angular separation between the particle and the jet axis					
d_0	Transverse impact parameter of the track					
d_0 err	Uncertainty associated with the measurement of the d_0					
z_0	Longitudinal impact parameter of the track					
z ₀ err	Uncertainty associated with the measurement of the z_0					
Charge	Electric charge of the particle					
isElectron	Whether the particle is an electron					
isMuon	Whether the particle is a muon					
isChargedKaon	Whether the particle is a charged Kaon					
isChargedPion	Whether the particle is a charged Pion					
isProton	Whether the particle is a proton					
isNeutralHadron	Whether the particle is a neutral hadron					
isPhoton	Whether the particle is a photon					

Machine learning-based jet-origin identification

- d), five antiquarks, and the gluon
- quarks and jet charge flip rates of 7%–24% for all quark species

Phys. Rev. Lett. 132 (2024) 221802

• Our jet-origin identification categorizes jets into five quark species (b, c, s, u,

It reaches jet flavor tagging efficiencies ranging from 67% to 92% for b, c, and s

Machine learning-based jet-origin identification

- We perform a series of comparison studies to understand the systematic uncertainties for jet-origin identification
- We found the performance are consistent between different physics processes (left) and comparable between different hadronization models (right)

Phys. Rev. Lett. 132 (2024) 221802

11

JOI's application at an electron-positron Higgs factory

measurements at CEPC

We apply the jet-origin identification to Higgs rare and exotic decay

Phys. Rev. Lett. 132 (2024) 221802

JOI's application at an electron-positron Higgs factory

which are greatly improved upon previous studies

under the background-only hypothesis.

	Bkg (10 ³)				Upper limits on Br (10 ⁻³)							
	Η	Ζ	W	sīs	นนิ	$d\bar{d}$	sb	db	ис	ds		
$ u ar{ u} H$	151	20	2.1	0.81	0.95	0.99	0.26	0.27	0.46	0.93		
$\mu^+\mu^-H$	50	25	0	2.6	3.0	3.2	0.5	0.6	1.0	3.0		
e^+e^-H	26	16	0	4.1	4.6	4.8	0.7	0.9	1.6	4.3		
Comb.	•••	•••	•••	0.75	0.91	0.95	0.22	0.23	0.39	0.86		

• The upper limits at 95% confidence level on the branching ratios of $H \rightarrow ss$, uu, dd and H \rightarrow sb, db, uc, ds can be determined to 2 × 10⁻⁴ to 1 × 10⁻³,

> TABLE I. Summary of background yields from $H \rightarrow b\bar{b}/c\bar{c}/gg$, Z, and W prior to the flavor-based event selection, along with the expected upper limits on Higgs decay branching ratios at 95% CL

Phys. Rev. Lett. 132 (2024) 221802

3. Holistic approach and Advanced Color Singlet Identification based on Machine Learning

arxiv:2506.11783

In collaboration with Mangi Ruan (IHEP), Huilin Qu (CERN), and others

Holistic approach and Advanced Color Singlet Identification

- both of which utilize inclusive reconstructed information and ML techniques
 - Holistic approach is designed to simultaneously classify physics events

arxiv:2506.11783

 We propose a holistic approach and Advanced Color Singlet Identification (ACSI), ACSI focuses on associating final-state particles with their parent massive bosons

15

Holistic approach and Advanced Color Singlet Identification

TABLE II: When the CEPC operates as a Higgs factory and collects an integrated luminosity of 20 ab^{-1} , the signal strength precisions for the decay channels $H \to b\bar{b}/c\bar{c}/gg/s\bar{s}$ and $q\bar{q}H(j\bar{j})$ are evaluated under five different scenarios. The bottom four rows present results assuming only irreducible backgrounds—specifically, Higgs decays themselves in the $\nu \bar{\nu} H$ channel, and fully hadronic WW and ZZ events in the $q\bar{q}H$ channel. For comparison, the conventional approach refers to cut-flow followed by BDT for event classification.

	$ u \overline{\nu} H $				$q \bar{q} H(j \bar{j})$	$q\bar{q}H$			
	$H \rightarrow b \bar{b}$	$H \to c \bar c$	$H \to gg$	$H\to s\bar{s}$	<i>qq11(JJ)</i>	$H \to b \bar{b}$	$H \to c \bar c$	$H \to gg$	$H\to s\bar{s}$
$\operatorname{cut} + \operatorname{BDT}$	0.26%[21]	3.04%[21]	0.96%[21]	190.00%[<mark>19</mark>]	0.27%	0.19%[21]	4.10%[21]	2.10%[21]	-
holistic	0.14%	0.72%	0.46%	29.34%	0.097%	0.11%	1.96%	1.05%	279%
holistic with CSI	-	-	-	-	0.087%	0.09%	1.03%	0.73%	114%
holistic with ideal CSI	-	-	-	-	0.072%	0.08%	0.41%	0.24%	14.32%
statistical limit	0.14%	0.61%	0.36%	6.91%	0.072%	0.08%	0.35%	0.21%	4.02%

- gg decays
 - these concepts improve the expected precisions by factors of two to six
 - **Higgs factories**

• Applied to the physics benchmarks of vvH and qqH processes with $H \rightarrow bb$, cc, ss, and

• enable the potential observation of the rare $H \rightarrow ss$ decay at future electron-positron

arxiv:2506.11783

16

- Machine learning and quantum computing ulletare becoming important tools for high energy physics
- We show some applications in jet ulletreconstruction, which can boost different physics studies (Higgs, QCD, BSM...)
- And there will probably be much more than ulletwhat we know today

Summary

