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Introduction

» Jet reconstruction and identification are important for physics studies.
How to improve?

» Use quickly developing techniques of machine learning and quantum
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1. A novel quantum realization of jet clustering
In high-energy physics experiments

Science Bulletin 70 (2025) 460
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A novel quantum realization of jet clustering

Exploring the application of quantum technologies to fundamental sciences
holds the key to fostering innovation for both sides

Accurate jet clustering is crucial as it retains the information of the originating
quark or gluon and forms the basis for many physics studies

Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum-
classical algorithm for addressing classical combinatorial optimization
problems with available quantum resources

For the first time, by mapping collision events into graphs—with particles as

nodes and their angular separations as edges—we realize jet clustering
using QAOA
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The collision of ¢™ and ¢~ can generate The quarks and gluons would With jet clustering and other
quarks, gluons, and leptons. immediately transform into techniques, the related physics

collimated particle sprays known analyses can be performed.
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A novel quantum realization of jet clustering

* Qur results, derived from 30 qubits on quantum computer simulator and 6
qgubits on quantum computer hardware, demonstrate that jet clustering
performance with QAOA is comparable with classical algorithms for a small-
sized problem

* This study highlights the feasibility of quantum computing to revolutionize jet
clustering, bringing the practical application of quantum computing in high-
energy physics experiments one step closer

Science Bulletin 70 (2025) 460



https://doi.org/10.1016/j.scib.2024.12.020

2. Machine learning-based jet-origin identification
and its application at an e-e* Higgs factory

Phys. Rev. Lett. 132 (2024) 221802
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Machine learning-based jet-origin identification

Table 3 The input variables used in ParticleNet for jet flavor tagging

 \We propose and
realize the concept of
jet-origin identification
using state-of-the-art
machine learning
algorithms, such as
ParticleNet
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at the CEPC

Variable Definition

An Difference in pseudorapidity between the
particle and the jet axis

A ¢ Difference in azimuthal angle between the
particle and the jet axis

logP, Logarithm of the particle’s P;

logE Logarithm of the particle’s energy

log 7 5 > ) Logarithm of the particle’s P; relative to
the jet P,

log (f n Logarithm of the particle’s energy relative
to the jet energy

AR Angular separation between the particle
and the jet axis

do Transverse impact parameter of the track

dperr Uncertainty associated with the
measurement of the d

20 Longitudinal impact parameter of the
track

Zperr Uncertainty associated with the
measurement of the zo

Charge Electric charge of the particle

isElectron Whether the particle is an electron

isMuon Whether the particle is a muon

1sChargedKaon Whether the particle is a charged Kaon

1sChargedPion Whether the particle is a charged Pion

isProton Whether the particle is a proton

isNeutralHadron Whether the particle is a neutral hadron

isPhoton Whether the particle is a photon




Machine learning-based jet-origin identification
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e Our jet-origin identification categorizes jets into five quark species (b, c, s, u,
d), five antiquarks, and the gluon
* |t reaches jet flavor tagging efficiencies ranging from 67% to 92% for b, ¢, and s
quarks and jet charge flip rates of 7%—-24% for all quark species
Phys. Rev. Lett. 132 (2024) 221802 10
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Machine learning-based jet-origin identification

* \We perform a series of comparison studies to understand the systematic
uncertainties for jet-origin identification

* \We found the performance are consistent between different physics processes
(left) and comparable between different hadronization models (right)
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JOI’s application at an electron-positron Higgs factory

* We apply the jet-origin identification to Higgs rare and exotic decay
measurements at CEPC
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JOI’s application at an electron-positron Higgs factory

* The upper limits at 95% confidence level on the branching ratios of H — ss,

uu, dd and H — sb, db, uc, ds can be determined to 2 x 10-4.to 1 x 10-3,
which are greatly improved upon previous studies

TABLEI Summary of background yields from H — bb/c¢/qg,
Z, and W prior to the flavor-based event selection, along with the
expected upper limits on Higgs decay branching ratios at 95% CL
under the background-only hypothesis.

Bkg (10%) Upper limits on Br (1072)
H Z W s5 uin dd sb db uc ds

vH 151 20 2.1 0.81 0.95 0.99 0.26 0.27 0.46 0.93
uwwH 50 25 0 26 30 32 05 06 1.0 30
eteH 26 16 0 41 46 48 07 09 16 43
Comb. -+ - ... 0.75 0.91 095 0.22 0.23 0.39 0.86

Phys. Rev. Lett. 132 (2024) 221802
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3. Holistic approach and Advanced Color Singlet
ldentification based on Machine Learning

arxiv:2506.11783
In collaboration with Mangi Ruan (IHEP), Huilin Qu (CERN), and others 14
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Holistic approach and Advanced Color Singlet Identification
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* \We propose a holistic approach and Advanced Color Singlet Identification (ACSI),
both of which utilize inclusive reconstructed information and ML techniques

e Holistic approach is designed to simultaneously classify physics events
» ACSI focuses on associating final-state particles with their parent massive bosons

arxiv:2506.11783 15
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Holistic approach and Advanced Color Singlet Identification

TABLE II: When the CEPC operates as a Higgs factory and collects an integrated luminosity of 20 ab—1!, the signal
strength precisions for the decay channels H — bb/c¢/gg/s5 and qgH(j7) are evaluated under five different
scenarios. The bottom four rows present results assuming only irreducible backgrounds—specifically, Higgs decays
themselves in the vH channel, and fully hadronic WW and ZZ events in the qqgH channel. For comparison, the
conventional approach refers to cut-flow followed by BDT for event classification.

vvH e qqH
H—-sb H-—>cc H-—gg H—ss 99H(j7) H-—-sbb H-—-scc H-—qgg H-—ss
cut + BDT 0.26%(21] 3.04%[21] 0.96%[21] 190.00%[19]| 0.27% |0.19%(21] 4.10%(21] 2.10%][21] -
holistic 0.14% 0.72% 0.46% 29.34% 0.097% | 0.11% 1.96% 1.05% 279%
holistic with CSI - - - - 0.087% | 0.09% 1.03% 0.73% 114%
holistic with ideal CSI - - - - 0.072% | 0.08% 0.41% 0.24% 14.32%
statistical limit 0.14% 0.61% 0.36% 6.91% 0.072% | 0.08% 0.35% 0.21%  4.02%

* Applied to the physics benchmarks of vvH and qgH processes with H — bb, cc, ss, and

gg decays
* these concepts improve the expected precisions by factors of two to six

e enable the potential observation of the rare H — ss decay at future electron-positron
Higgs factories

arxiv:2506.11783 16
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Summary

Machine learning and quantum computing
are becoming important tools for high

energy physics

We show some applications in jet
reconstruction, which can boost different

physics studies (Higgs, QCD, BSM...)

And there will probably be much more than
what we know today
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