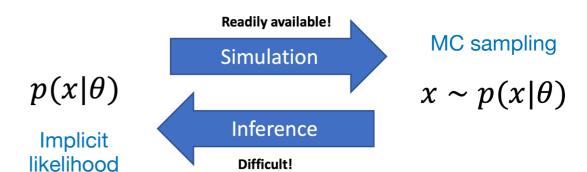
Parameter Estimation with Neural Simulation-Based Inference in ATLAS

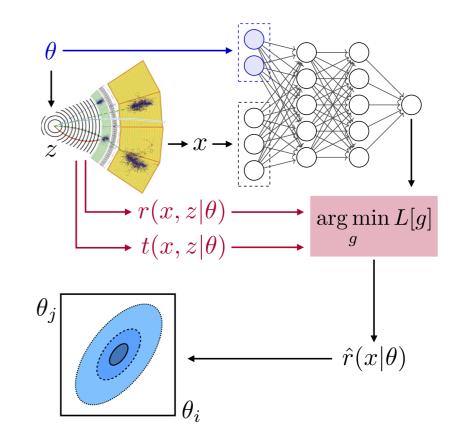
Jay Sandesara on behalf of the ATLAS collaboration

Introduction

 Neural Simulation-Based Inference (NSBI) covers a broad range of statistical techniques.



- Idea: build ML surrogates for powerful statistical inference in the presence of
 - Intractable likelihoods (e.g. LHC analysis), or
 - when likelihoods are slow to compute analytically (e.g. gravitational wave analysis).



Overview of typical NSBI workflow

NSBI at the LHC

 The focus of this talk is on a practical application of these methods to LHC analysis. The talk will cover:

 Efficiently modelling likelihoods as a function of complex high-dimensional parameter space.

 Rigorously testing the quality of the surrogate models and their reliability using MC and real data.

Building robust frequentist confidence intervals using Neyman Construction.

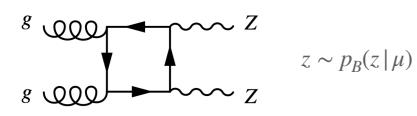
• This will be explained with an example of the off-shell Higgs boson measurement at the ATLAS experiment [Rep. Prog. Phys. 88 067801, Rep. Prog. Phys. 88 057803]

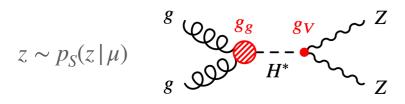
NSBI at the LHC

MC events sampled from implicit likelihoods

$$x \sim p_S(x \mid \mu), p_B(x \mid \mu)$$

Parton-level events sampled from analytical model



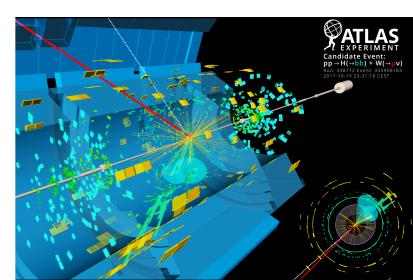


Parton Shower

Hadronization

Detector Reconstruction

Simulation (forward pass)

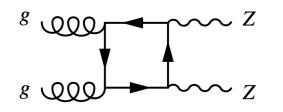


NSBI at the LHC

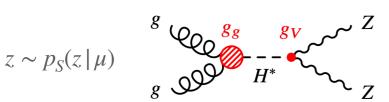
MC events sampled from implicit likelihoods

$$x \sim p_S(x \mid \mu), p_B(x \mid \mu)$$

Parton-level events sampled from analytical model

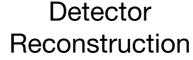


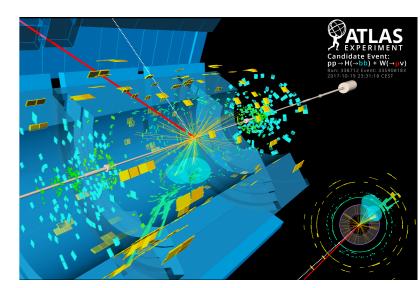
$$z \sim p_B(z \mid \mu)$$



Parton Shower

Hadronization

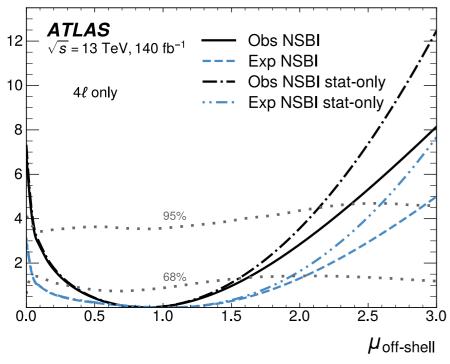




Reconstructed

events x_i

Inference (reverse pass)

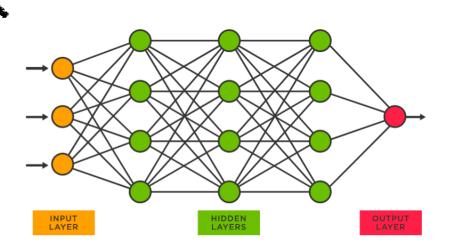


Profile Negative Log-Likelihood Fit

 $-2 \cdot \sum_{i \in events} \log \frac{p(x_i | \mu, \hat{\alpha})}{p(x_i | \hat{\mu}, \hat{\alpha})}$

Event-by-event parameterized likelhood ratios

 $\mu \rightarrow$ parameter of interest $\alpha \rightarrow$ nuisance parameters



Surrogate Model for likelihood ratios

The off-shell Higgs boson

The probability model of the off-shell Higgs boson:

$$p(x \mid \mu) = \frac{1}{\nu(\mu)} \left[\mu \cdot \nu_S \cdot p_S(x) + \sqrt{\mu} \cdot \nu_I \cdot p_I(x) + \nu_B \cdot p_B(x) + \nu_{NI} \cdot p_{NI}(x) \right]$$

 $\nu \rightarrow \text{Exp events}$

Parameter dependence

$$\mu = \frac{\sigma_{obs}^{H \to ZZ}}{\sigma_{exp}^{H \to ZZ}}$$

NI → Non-Interfering backgrounds

Signal probability

Interference probability

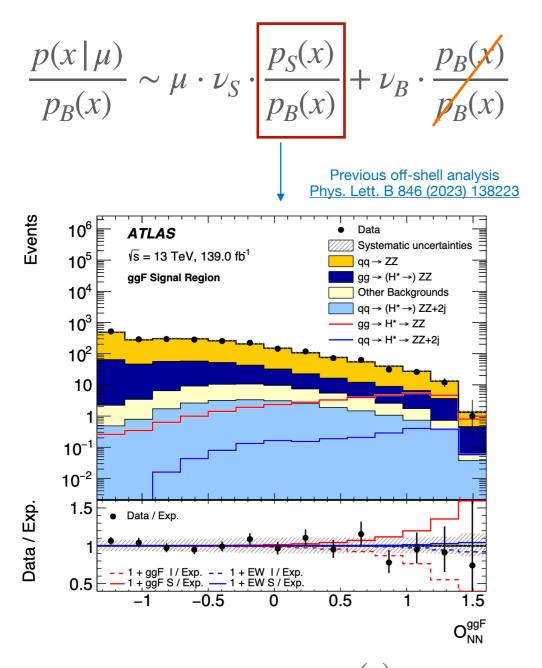
ggF Higgs Signal

Bkg probability

$$g$$
 QQQ Z Z Z

ggF Interfering Background

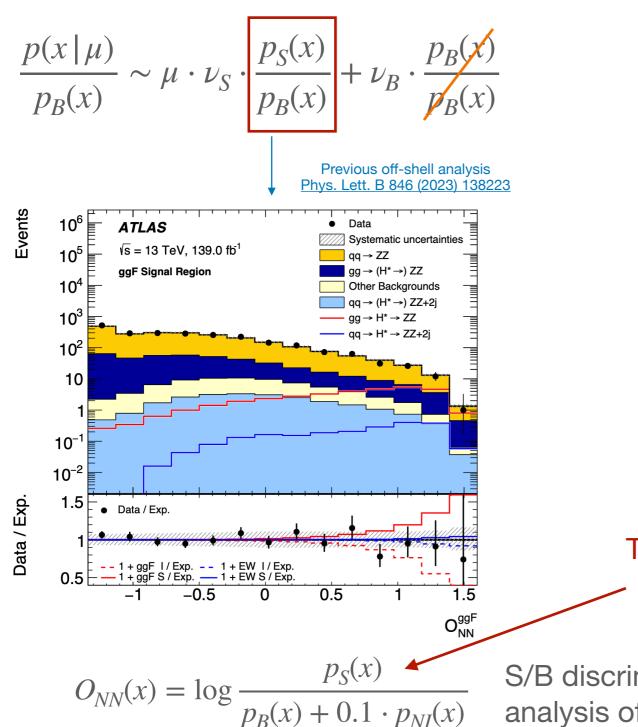
Fixed S/B discriminant is often the optimal choice for hypothesis testing at the LHC



$$O_{NN}(x) = \log \frac{p_S(x)}{p_B(x) + 0.1 \cdot p_{NI}(x)}$$

S/B discriminant used in previous Run-2 analysis of off-shell Higgs boson

Fixed S/B discriminant is often the optimal choice for hypothesis testing at the LHC



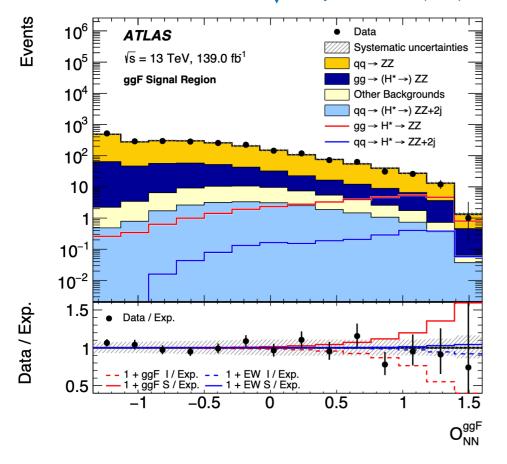
Trained using multi-dimensional input feature space

S/B discriminant used in previous Run-2 analysis of off-shell Higgs boson

Fixed S/B discriminant is often the optimal choice for hypothesis testing at the LHC

$$\frac{p(x \mid \mu)}{p_B(x)} \sim \mu \cdot \nu_S \cdot \frac{p_S(x)}{p_B(x)} + \nu_B \cdot \frac{p_B(x)}{p_B(x)}$$

Previous off-shell analysis Phys. Lett. B 846 (2023) 138223



$$O_{NN}(x) = \log \frac{p_S(x)}{p_B(x) + 0.1 \cdot p_{NI}(x)}$$

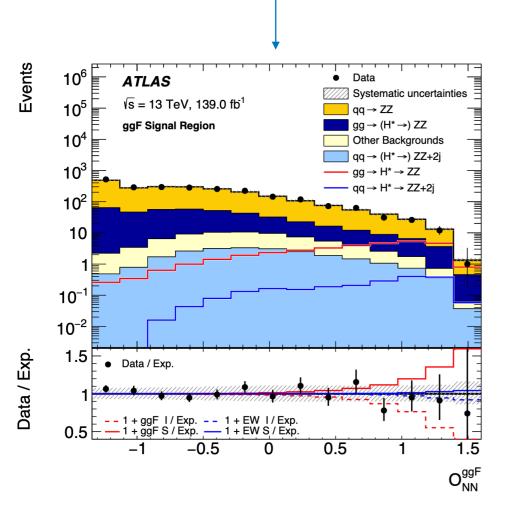
But what if the parameterization is non-linear?

$$\frac{p(x \mid \mu)}{p_B(x)} \sim \mu \cdot \nu_S \cdot \frac{p_S(x)}{p_B(x)} + \sqrt{\mu} \cdot \nu_I \cdot \frac{p_I(x)}{p_B(x)} + \nu_B \cdot \frac{p_B(x)}{p_B(x)}$$

E.g.: interference effects of off-shell Higgs boson production. Single observable no longer describes the full parameter space!

Fixed S/B discriminant is often the optimal choice for hypothesis testing at the LHC

$$\frac{p(x \mid \mu)}{p_B(x)} \sim \mu \cdot \nu_S \cdot \frac{p_S(x)}{p_B(x)} + \nu_B \cdot \frac{p_B(x)}{p_B(x)}$$

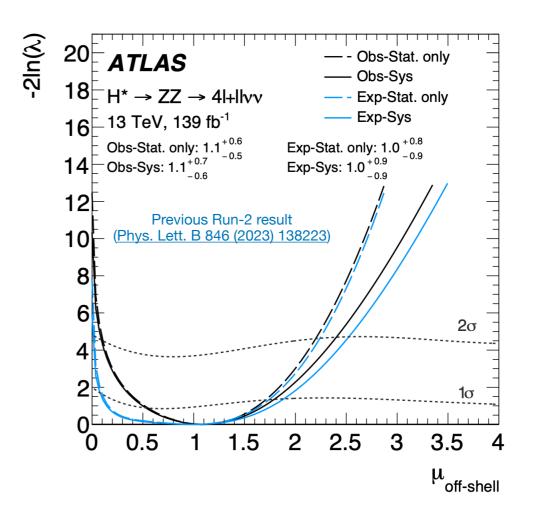


$$O_{NN}(x) = \log \frac{p_S(x)}{p_B(x) + 0.1 \cdot p_{NI}(x)}$$

But what if the parameterization is non-linear?

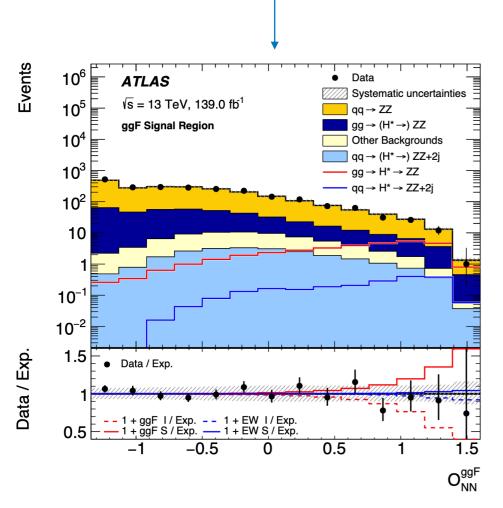
$$\frac{p(x \mid \mu)}{p_B(x)} \sim \mu \cdot \nu_S \cdot \frac{p_S(x)}{p_B(x)} + \sqrt{\mu} \cdot \nu_I \cdot \frac{p_I(x)}{p_B(x)} + \nu_B \cdot \frac{p_B(x)}{p_B(x)}$$

E.g.: interference effects of off-shell Higgs boson production. Single observable no longer describes the full parameter space!



Fixed S/B discriminant is often the optimal choice for hypothesis testing at the LHC

$$\frac{p(x \mid \mu)}{p_B(x)} \sim \mu \cdot \nu_S \cdot \frac{p_S(x)}{p_B(x)} + \nu_B \cdot \frac{p_B(x)}{p_B(x)}$$

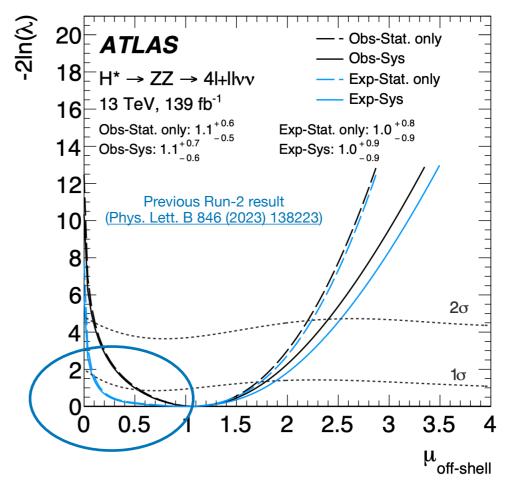


$$O_{NN}(x) = \log \frac{p_S(x)}{p_B(x) + 0.1 \cdot p_{NI}(x)}$$

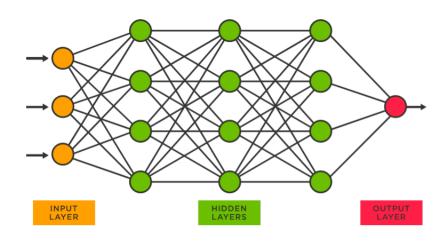
But what if the parameterization is non-linear?

$$\frac{p(x \mid \mu)}{p_B(x)} \sim \mu \cdot \nu_S \cdot \frac{p_S(x)}{p_B(x)} + \sqrt{\mu} \cdot \nu_I \cdot \frac{p_I(x)}{p_B(x)} + \nu_B \cdot \frac{p_B(x)}{p_B(x)}$$

E.g.: interference effects of off-shell Higgs boson production. Single observable no longer describes the full parameter space!



Flat NLL region implies sub-optimality in regions with $\sqrt{\mu} \cdot \nu_I \cdot p_I \gg \mu \cdot \nu_S \cdot p_S$



Surrogate Model for likelihood ratios

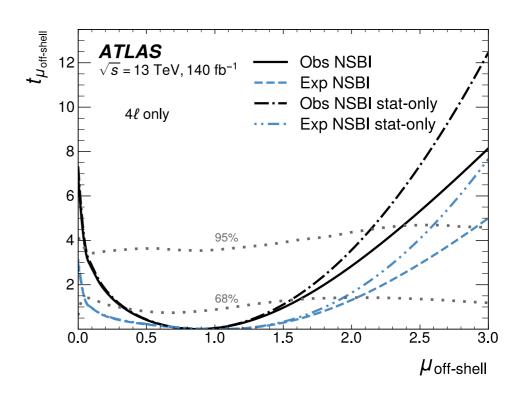
MC events sampled from implicit likelihoods

$$x \sim p_S(x \mid \mu), p_B(x \mid \mu)$$

Frequentist test using NSBI

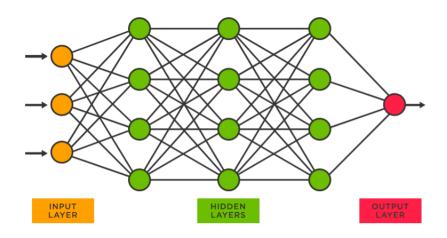
Profile Negative Log-Likelihood Test Statistic

$$-2 \cdot \sum_{i \in events} \log \frac{p(x_i | \mu, \hat{\alpha})}{p(x_i | \hat{\mu}, \hat{\alpha})}$$



Off-shell Higgs measurement using NSBI Rep. Prog. Phys. 88 057803

How do we train this model?



Surrogate Model for likelihood ratios

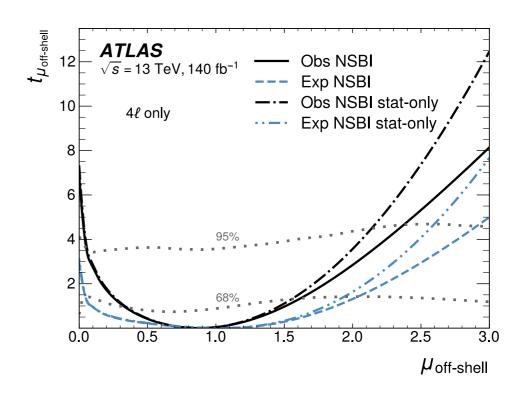
MC events sampled from implicit likelihoods

$$x \sim p_S(x \mid \mu), p_B(x \mid \mu)$$

Frequentist test using NSBI

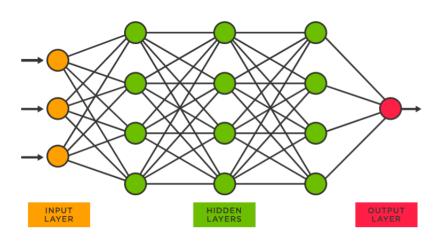
Profile Negative Log-Likelihood Test Statistic

$$-2 \cdot \sum_{i \in events} \log \frac{p(x_i | \mu, \hat{\alpha})}{p(x_i | \hat{\mu}, \hat{\alpha})}$$



Off-shell Higgs measurement using NSBI Rep. Prog. Phys. 88 057803

How do we train this model?



Surrogate Model for likelihood ratios

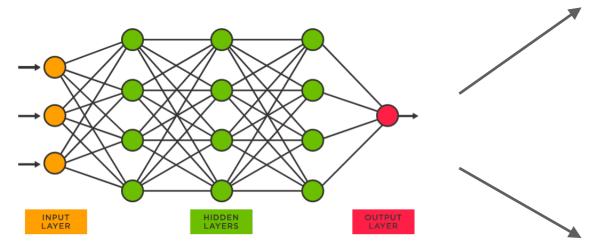
MC events sampled from implicit likelihoods

$$x \sim p_S(x \mid \mu), p_B(x \mid \mu)$$

Proposal 1: estimate paramaterized PDFs $p(x | \mu, \alpha)$

train generative models with tractable probability densities (e.g. Normalizing Flows)

How do we train this model?



Surrogate Model for likelihood ratios

MC events sampled from implicit likelihoods

$$x \sim p_S(x \mid \mu), p_B(x \mid \mu)$$

Proposal 1: estimate paramaterized PDFs $p(x | \mu, \alpha)$

train generative models with tractable probability densities (e.g. Normalizing Flows)

Proposal 2: Estimate parameterized density ratios

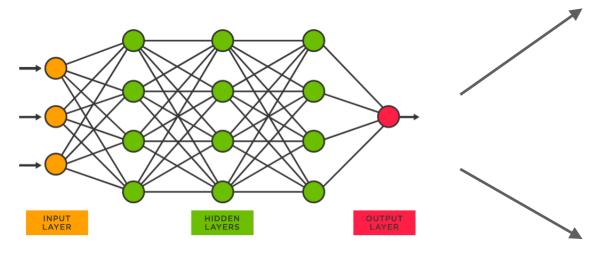
$$\frac{p(x_i | \mu, \alpha)}{p_{ref}(x)}$$

by training well-calibrated and unbiased NN classifiers and use in the profile likelihood ratio:

$$\frac{p(x_i|\mu,\alpha)}{p_{ref}(x)} \to \frac{p(x_i|\mu,\hat{\alpha})/p_{ref}(x)}{p(x_i|\hat{\mu},\hat{\alpha})/p_{ref}(x)} \to \frac{p(x_i|\mu,\hat{\alpha})}{p(x_i|\hat{\mu},\hat{\alpha})}$$

 $p_{ref}(x)$ can be any chosen **parameter**-independent hypothesis

How do we train this model?



Surrogate Model for likelihood ratios

MC events sampled from implicit likelihoods

$$x \sim p_S(x \mid \mu), p_B(x \mid \mu)$$

Proposal 1: estimate paramaterized PDFs $p(x | \mu, \alpha)$

train generative models with tractable probability densities (e.g. Normalizing Flows)

Proposal 2: Estimate parameterized density ratios

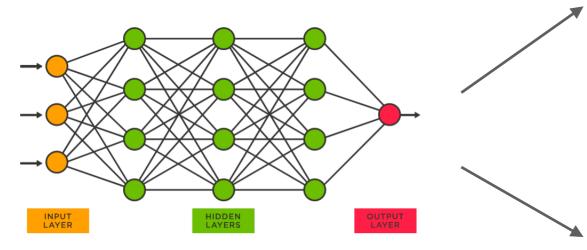
$$\frac{p(x_i | \mu, \alpha)}{p_{ref}(x)}$$

by training well-calibrated and unbiased NN classifiers and use in the profile likelihood ratio:

$$\frac{p(x_i|\mu,\alpha)}{p_{ref}(x)} \to \frac{p(x_i|\mu,\hat{\alpha})/p_{ref}(x)}{p(x_i|\hat{\mu},\hat{\alpha})/p_{ref}(x)} \to \frac{p(x_i|\mu,\hat{\alpha})}{p(x_i|\hat{\mu},\hat{\alpha})}$$

 $p_{ref}(x)$ can be any chosen **parameter**-independent hypothesis

How do we train this model?



Surrogate Model for likelihood ratios

MC events sampled from implicit likelihoods

$$x \sim p_S(x \mid \mu), p_B(x \mid \mu)$$

Proposal 1: estimate paramaterized PDFs

$$p(x | \mu, \alpha)$$

train generative models with tractable probability densities (e.g. Normalizing Flows)

Easier to train and validate for large-dimensional inputs

Proposal 2: Estimate parameterized density ratios

$$\frac{p(x_i | \mu, \alpha)}{p_{ref}(x)}$$

by training well-calibrated and unbiased NN classifiers and use in the profile likelihood ratio:

$$\frac{p(x_i|\mu,\alpha)}{p_{ref}(x)} \to \frac{p(x_i|\mu,\hat{\alpha})/p_{ref}(x)}{p(x_i|\hat{\mu},\hat{\alpha})/p_{ref}(x)} \to \frac{p(x_i|\mu,\hat{\alpha})}{p(x_i|\hat{\mu},\hat{\alpha})}$$

 $p_{ref}(x)$ can be any chosen **parameter**independent hypothesis

Full test statistic function for frequentist parameter estimation on parameter μ

$$t(\mu) = -2 \cdot \log \frac{\mathsf{Pois}(N_{obs} \mid \mu, \hat{\alpha})}{\mathsf{Pois}(N_{obs} \mid \hat{\mu}, \hat{\alpha})} - 2 \cdot \sum_{i=1}^{N_{obs}} \log \frac{p(x_i \mid \mu, \hat{\alpha})/p_{ref}(x_i)}{p(x_i \mid \hat{\mu}, \hat{\alpha})/p_{ref}(x_i)} - 2 \cdot \sum_{k}^{N_{syst}} \log \frac{p_{subs}(\hat{\alpha})}{p_{subs}(\hat{\alpha})}$$

Extended
Poisson term

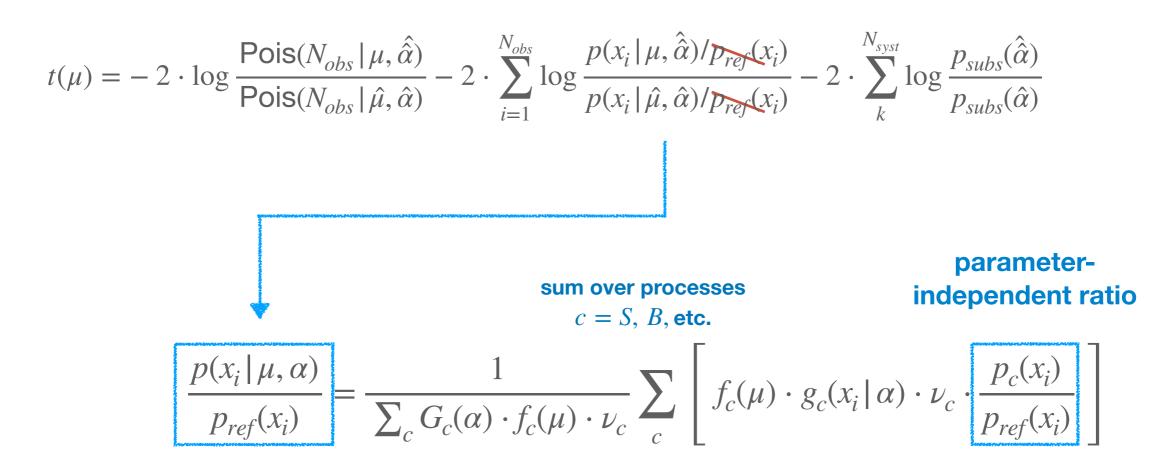
Sum of event-by-event log-likelihood ratios

Constraint terms

 $N_{obs}
ightarrow$ total observed events

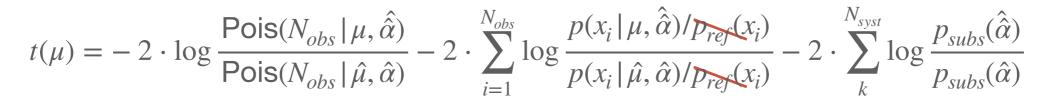
 $p_{subs}
ightarrow ext{likelihood from}$ subsidiary measurements of the nuisance parameters

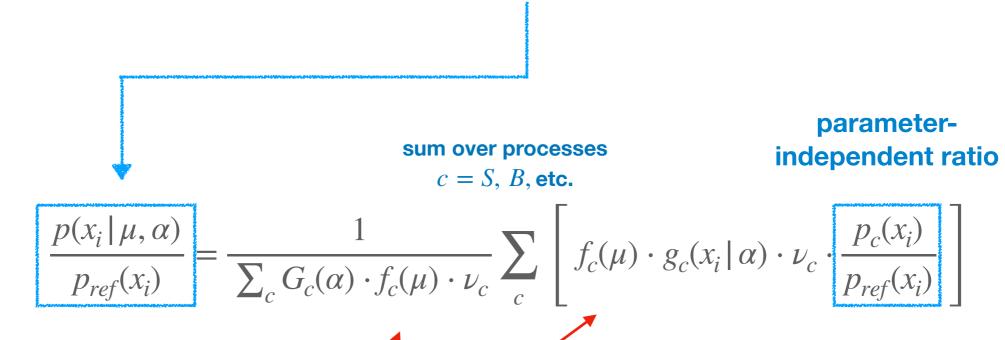
Full test statistic function for frequentist parameter estimation on parameter μ



Parameterized per-event ratios

Full test statistic function for frequentist parameter estimation on parameter μ





Parameterized per-event ratios

Parameter dependancies are factorized out

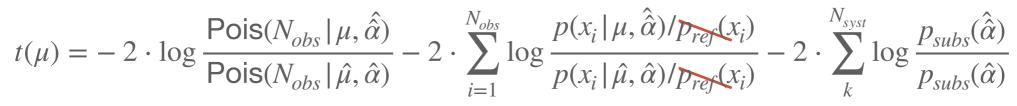
E.g. in stat-only off-shell Higgs model:

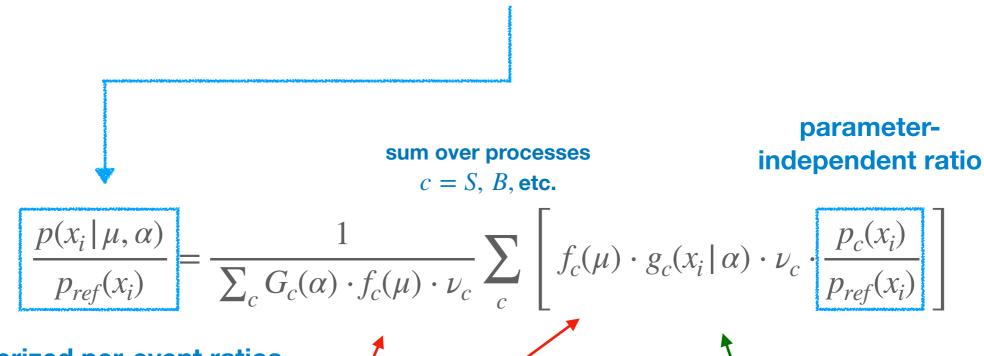
$$p(x \mid \mu) = \frac{1}{\nu(\mu)} \left[\mu \cdot \nu_S \cdot p_S(x) + \sqrt{\mu} \cdot \nu_I \cdot p_I(x) + \nu_B \cdot p_B(x) + \nu_{NI} \cdot p_{NI}(x) \right]$$

$$f_S(\mu) \qquad f_I(\mu)$$

"Mixture models"

Full test statistic function for frequentist parameter estimation on parameter μ





Parameterized per-event ratios

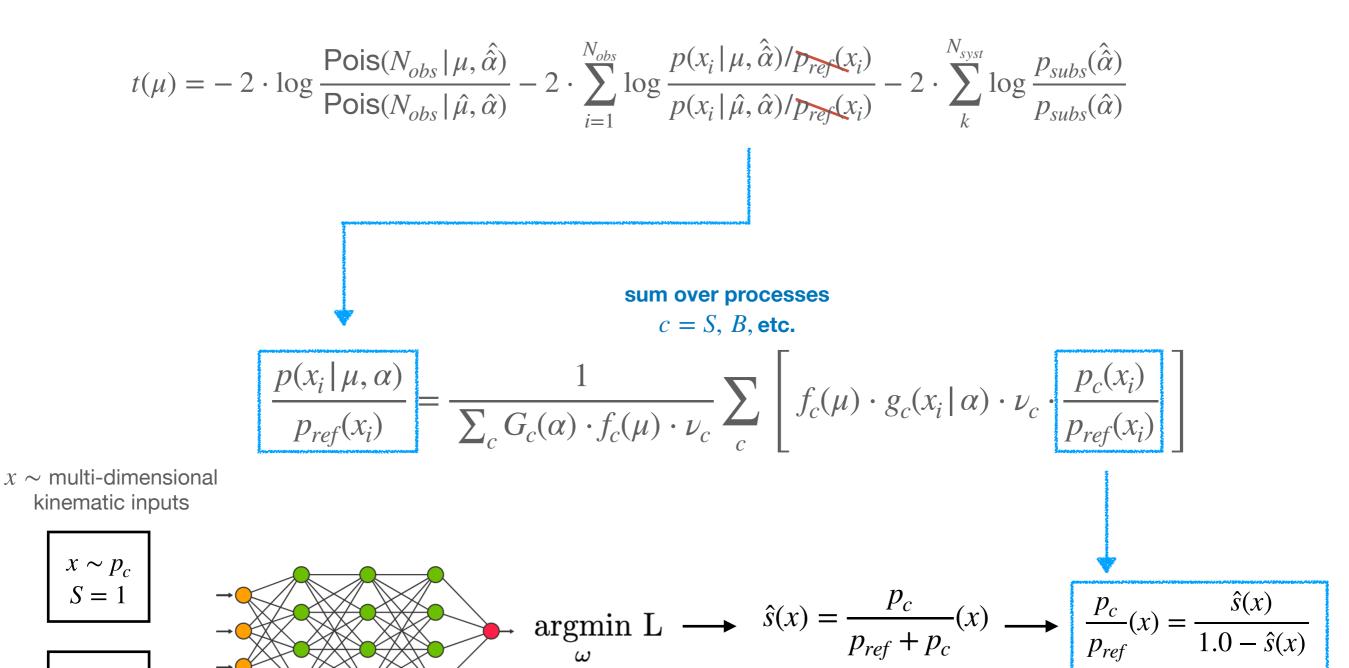
Factorized **nuisance parameter** α -dependence:

Parameter dependancies are factorized out

$$g_c(x \mid \alpha) = \frac{p_c(x \mid \alpha)}{p_c(x)}$$

"Mixture models"

Full test statistic function for frequentist parameter estimation on parameter μ



 $x \sim p_{ref}$ S = 0

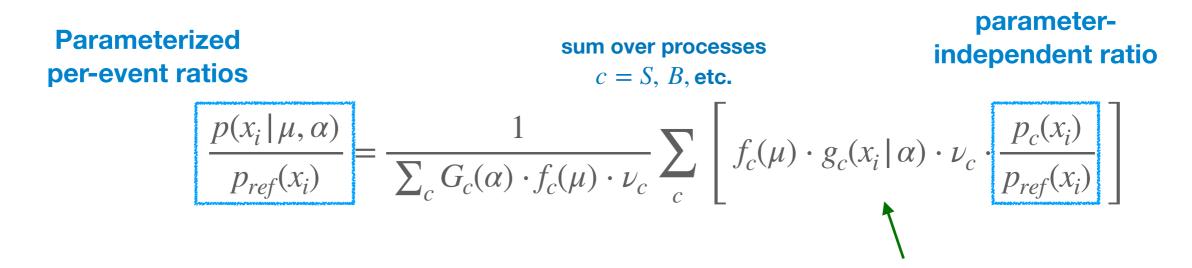
Classification NN

"Likelihood ratio trick" or CARL approach [1506.02169]

Many examples in ATLAS - HH4b background estimation, Omnifold, etc.

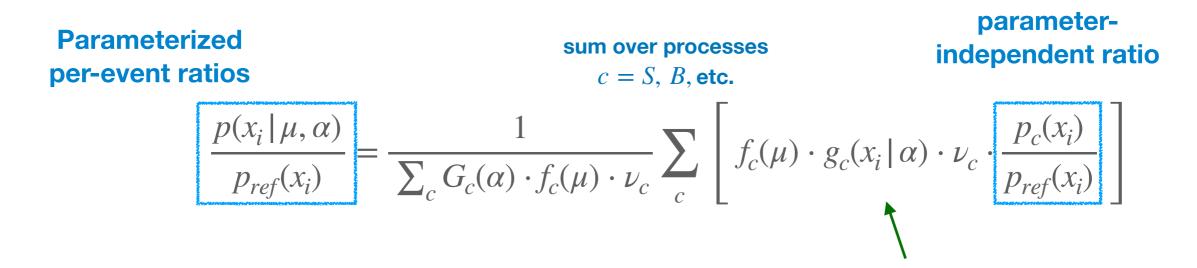
Two hypothesis: p_c and p_{ref}

Binary Cross-Entropy loss



Factorized **nuisance parameter** α -dependence:

$$g_c(x \mid \alpha) = \frac{p_c(x \mid \alpha)}{p_c(x)}$$



Factorized **nuisance parameter** α -dependence:

$$g_c(x \mid \alpha) = \frac{p_c(x \mid \alpha)}{p_c(x)}$$

Challenging due to the high-dimensionality of $\alpha = (\alpha_m)$

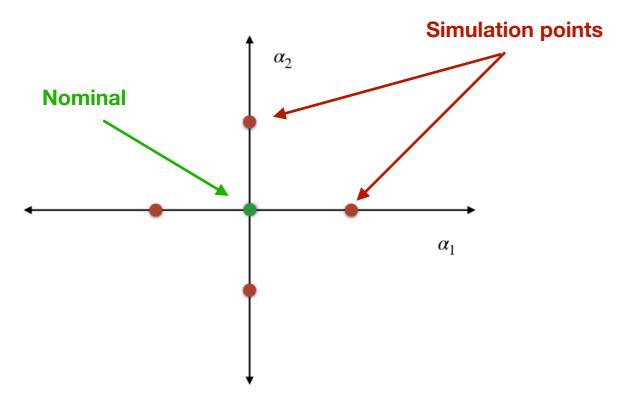
Parameterized per-event ratios

sum over processes c = S, B, etc.

parameterindependent ratio

$$\frac{p(x_i | \mu, \alpha)}{p_{ref}(x_i)} = \frac{1}{\sum_c G_c(\alpha) \cdot f_c(\mu) \cdot \nu_c} \sum_c \left[f_c(\mu) \cdot g_c(x_i | \alpha) \cdot \nu_c \cdot \frac{p_c(x_i)}{p_{ref}(x_i)} \right]$$

Assumption 1:



Factorized **nuisance parameter** α -dependence:

$$g_c(x \mid \alpha) = \frac{p_c(x \mid \alpha)}{p_c(x)}$$

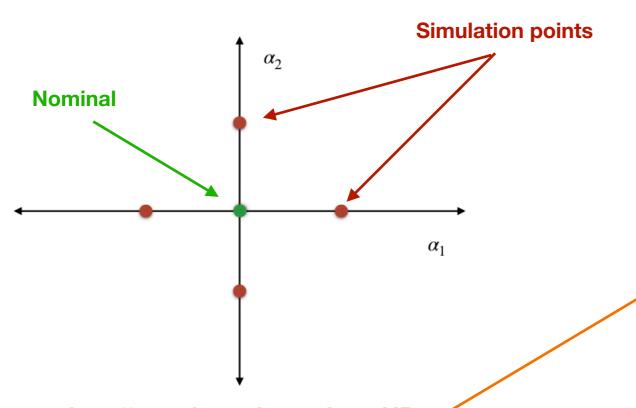
Challenging due to the highdimensionality of $\alpha = (\alpha_m)$

sum over processes c = S, B, etc.

parameterindependent ratio

$$\frac{p(x_i | \mu, \alpha)}{p_{ref}(x_i)} = \frac{1}{\sum_c G_c(\alpha) \cdot f_c(\mu) \cdot \nu_c} \sum_c \left[f_c(\mu) \cdot g_c(x_i | \alpha) \cdot \nu_c \cdot \frac{p_c(x_i)}{p_{ref}(x_i)} \right]$$

Assumption 1:



Factorized **nuisance parameter** α -dependence:

$$g_c(x \mid \alpha) = \frac{p_c(x \mid \alpha)}{p_c(x)} = \prod_m \frac{p_c(x \mid \alpha_m)}{p_c(x)}$$

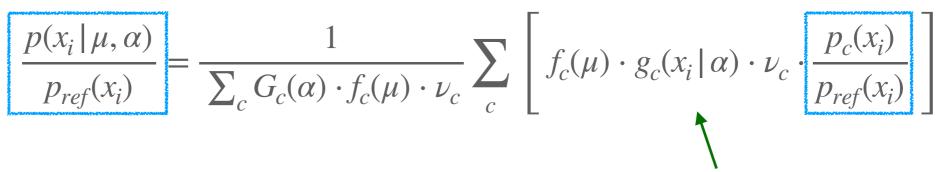
Often a fair assumption for the systematics model at the LHC

The effects from the various NPs α_m are orthogonal to each other

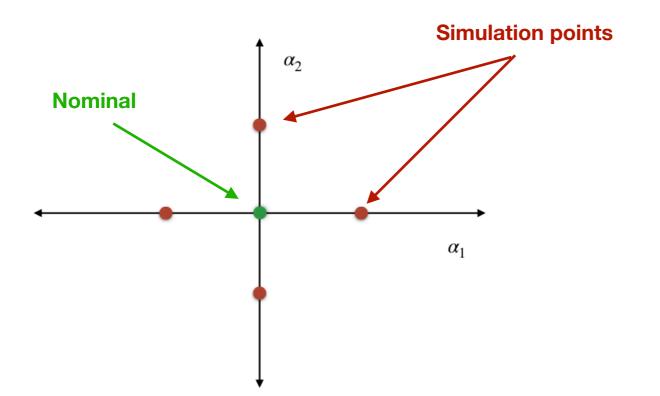
Parameterized per-event ratios

sum over processes c = S, B, etc.

parameterindependent ratio



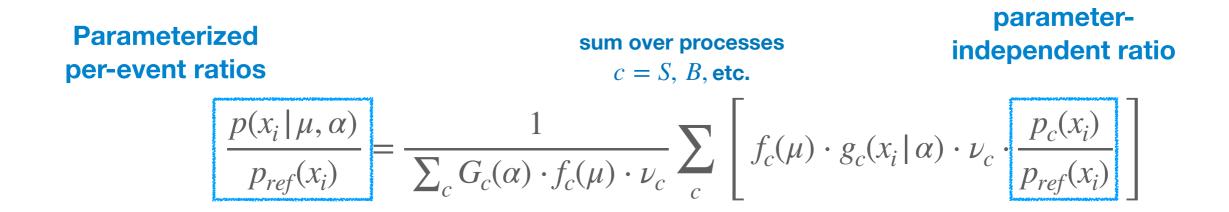
Assumption 1:



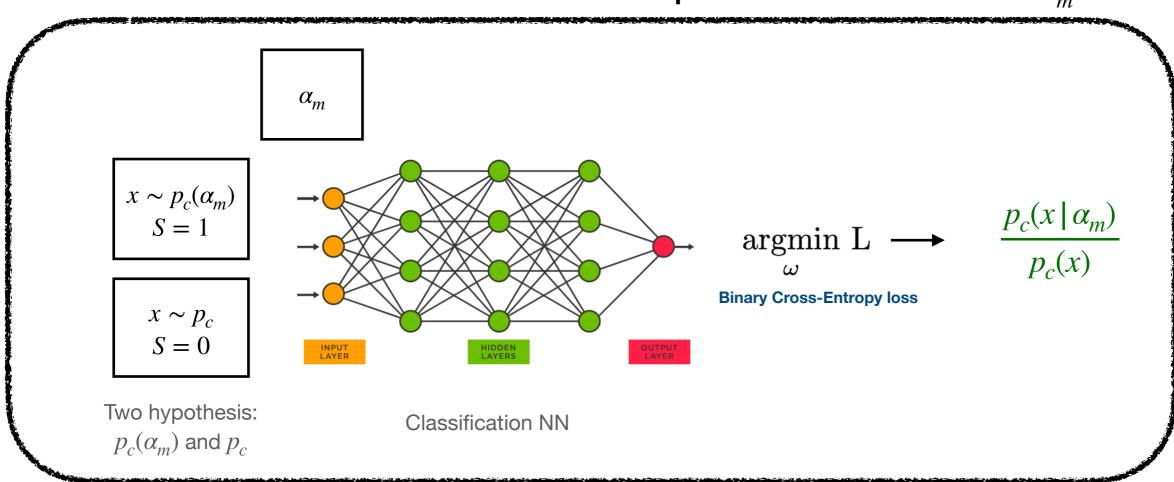
Factorized **nuisance parameter** α -dependence:

$$g_c(x \mid \alpha) = \frac{p_c(x \mid \alpha)}{p_c(x)} = \prod_m \frac{p_c(x \mid \alpha_m)}{p_c(x)}$$

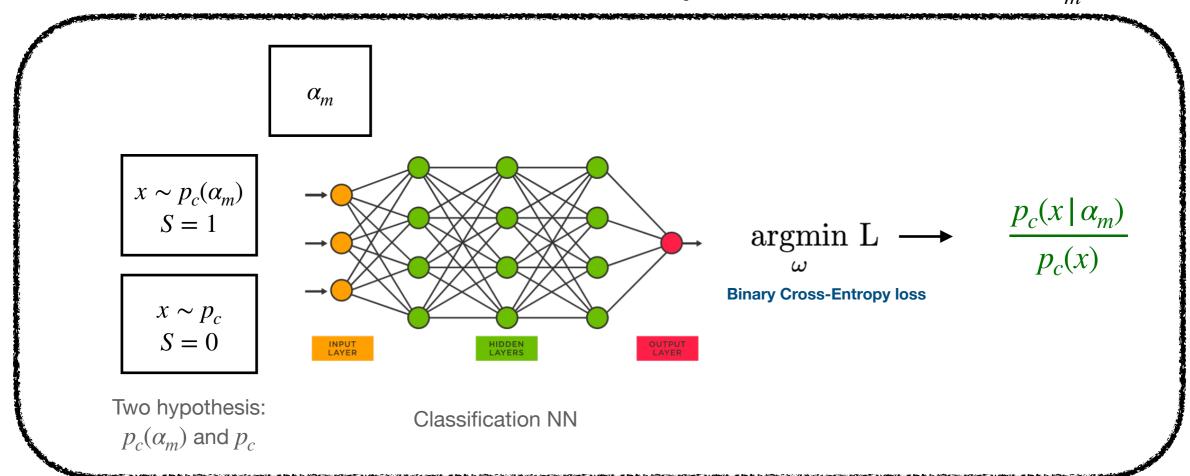
But we also need to estimate these parameterized density ratios



Train parameterized NNs for each α_m

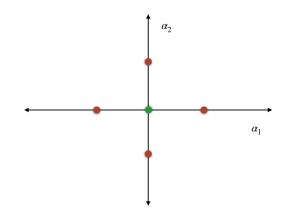


Train parameterized NNs for each α_m

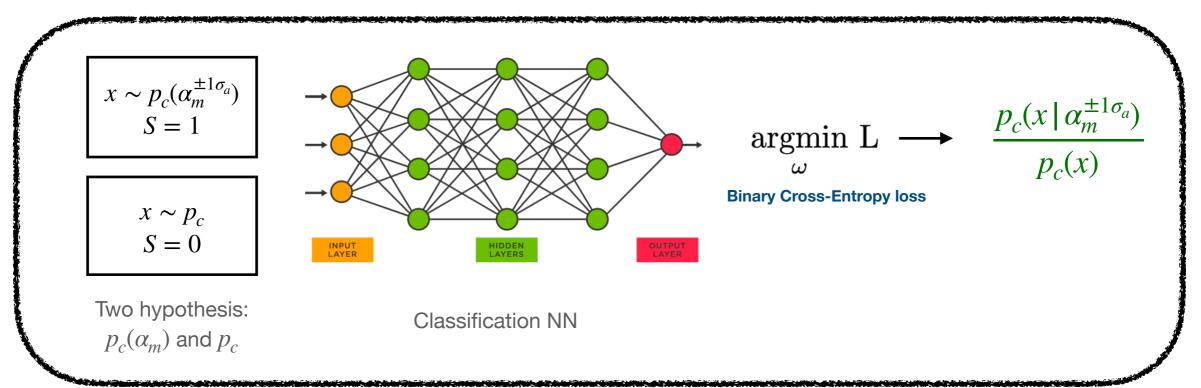


Challenges:

- Simulations only available at 3 parameter points $\alpha_m^0, \alpha_m^{\pm 1\sigma_a}$
- Difficult to validate the NN interpolation into phase space with no simulations for testing.



Solution: train single unparameterized NNs for each $\alpha_m^{\pm 1\sigma_a}$



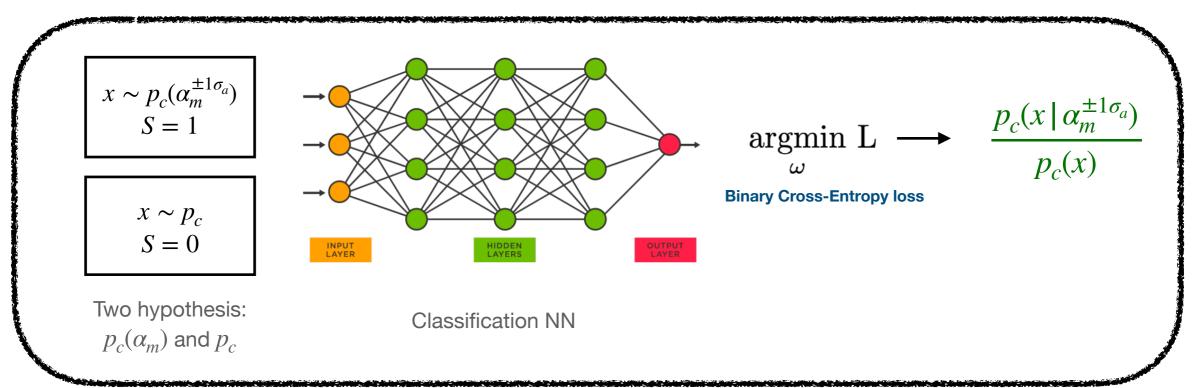
Assumption 2:

Semi-analytic approximation

$$\frac{p_c(x|\alpha_m)}{p_c(x)} = \begin{cases}
\left(\frac{p_c(x|\alpha_m^{+1\sigma_a})}{p_c(x)}\right)^{\alpha_m} & \alpha_m > 1 \\
1 + \sum_{i=1}^{6} a_i \boldsymbol{\alpha}_m^i & -1 \le \alpha_m \le 1 \\
\left(\frac{p_c(x|\alpha_m^{-1\sigma_a})}{p_c(x)}\right)^{-\alpha_m} & \alpha_m < -1
\end{cases}$$

The α -dependent negative log-likelihood ratio is a smooth parabolic function

Solution: train single unparameterized NNs for each $\alpha_m^{\pm 1\sigma_a}$



Assumption 2:

Semi-analytic approximation

$$\frac{p_c(x|\alpha_m)}{p_c(x)} = \begin{cases} \left(\frac{p_c(x|\alpha_m^{+1\sigma_a})}{p_c(x)}\right)^{\alpha_m} & \alpha_m > 1 \\ 1 + \sum_{i=1}^6 a_i \alpha_m^i & -1 \leq \alpha_m \leq 1 \\ \left(\frac{p_c(x|\alpha_m^{-1\sigma_a})}{p_c(x)}\right)^{-\alpha_m} & \alpha_m < -1 \end{cases}$$
Combine with
$$g_c(x|\alpha) = \prod_m \frac{p_c(x|\alpha_m)}{p_c(x|\alpha_m^0)}$$
Assumption 1

The α -dependent negative log-likelihood ratio is a smooth parabolic function

Parameterized per-event ratios

sum over processes c = S, B, etc.

parameterindependent ratio

Repeat for each

$$\frac{p(x_i \mid \mu, \alpha)}{p_{ref}(x_i)} = \frac{1}{\sum_c G_c(\alpha) \cdot f_c(\mu) \cdot \nu_c} \sum_c \left[f_c(\mu) \cdot g_c(x_i \mid \alpha) \cdot \nu_c \cdot \frac{p_c(x_i)}{p_{ref}(x_i)} \right]$$

systematic, for each process

Assumption 2:

Semi-analytic approximation

$$\frac{p_c(x|\alpha_m)}{p_c(x)} = \begin{cases} \left(\frac{p_c(x|\alpha_m^{+1\sigma_a})}{p_c(x)}\right)^{\alpha_m} & \alpha_m > 1\\ 1 + \sum_{i=1}^6 a_i \alpha_m^i & -1 \leq \alpha_m \leq 1\\ \left(\frac{p_c(x|\alpha_m^{-1\sigma_a})}{p_c(x)}\right)^{-\alpha_m} & \alpha_m < -1 \end{cases}$$
Combine with
$$g_c(x|\alpha) = \prod_m \frac{p_c(x|\alpha_m)}{p_c(x|\alpha_m^0 = 0)}$$
Assumption 1

The α -dependent negative log-likelihood ratio is a smooth parabolic function

Same ideas as proposed <u>HistFactory</u>, extrapolated to NSBI (see backup slides)

The NSBI approach learns everything, including the parameter scaling and thus the full interference effects

$$\frac{p(x \mid \mu)}{p_B(x)} \sim \mu \cdot \nu_S \cdot \frac{p_S(x)}{p_{ref}(x)} + \sqrt{\mu} \cdot \nu_I \cdot \frac{p_I(x)}{p_{ref}(x)} + \nu_B \cdot \frac{p_B(x)}{p_{ref}(x)} + \nu_{NI} \cdot \frac{p_{NI}(x)}{p_{ref}(x)}$$

Four parameter-independent ratios are trained (suppressing the α -terms for brevity)

The NSBI approach learns everything, including the parameter scaling and thus the full interference effects

$$\frac{p(x \mid \mu)}{p_B(x)} \sim \mu \cdot \nu_S \cdot \frac{p_S(x)}{p_{ref}(x)} + \sqrt{\mu} \cdot \nu_I \cdot \frac{p_I(x)}{p_{ref}(x)} + \nu_B \cdot \frac{p_B(x)}{p_{ref}(x)} + \nu_{NI} \cdot \frac{p_{NI}(x)}{p_{ref}(x)}$$
Four parameter-independent ratios are trained
$$t_{\mu} \sim -2 \cdot \sum_{i=1}^{N_{obs}} \log \frac{p(x_i \mid \mu)}{p(x_i \mid \hat{\mu})}$$

No "fixed" S/B discriminant - asymptotic optimality throughout μ space.

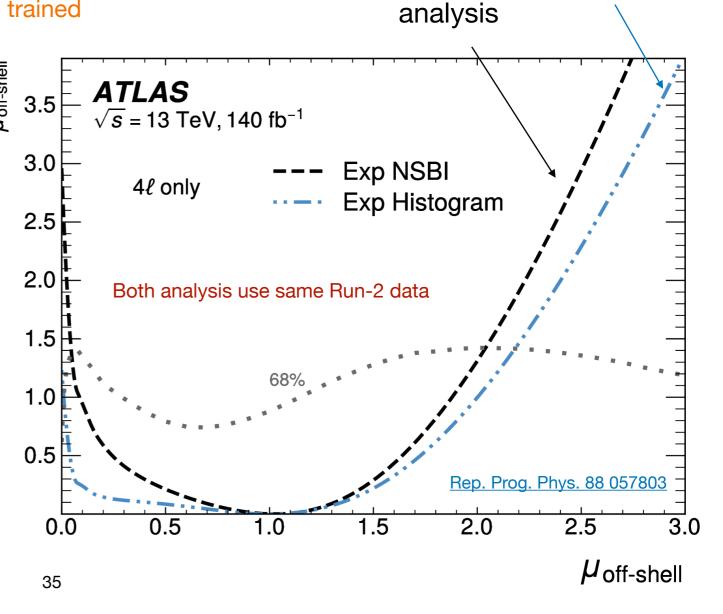
Additional sensitivity from unbinned nature

The NSBI approach learns everything, including the parameter scaling and thus the full interference effects

$$\frac{p(x|\mu)}{p_B(x)} \sim \mu \cdot \nu_S \cdot \frac{p_S(x)}{p_{ref}(x)} + \sqrt{\mu} \cdot \nu_I \cdot \frac{p_I(x)}{p_{ref}(x)} + \nu_B \cdot \frac{p_B(x)}{p_{ref}(x)} + \nu_{NI} \cdot \frac{p_{NI}(x)}{p_{ref}(x)}$$
Four parameter-independent ratios are trained
$$t_{\mu} \sim -2 \cdot \sum_{i=1}^{N_{obs}} \log \frac{p(x_i|\mu)}{p(x_i|\hat{\mu})}$$
3.0
2.5

No "fixed" S/B discriminant - asymptotic optimality throughout μ space.

Additional sensitivity from unbinned nature

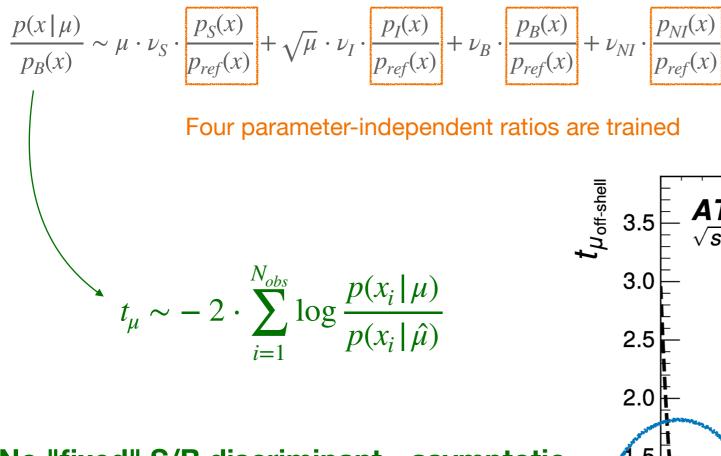


NSBI

Previous

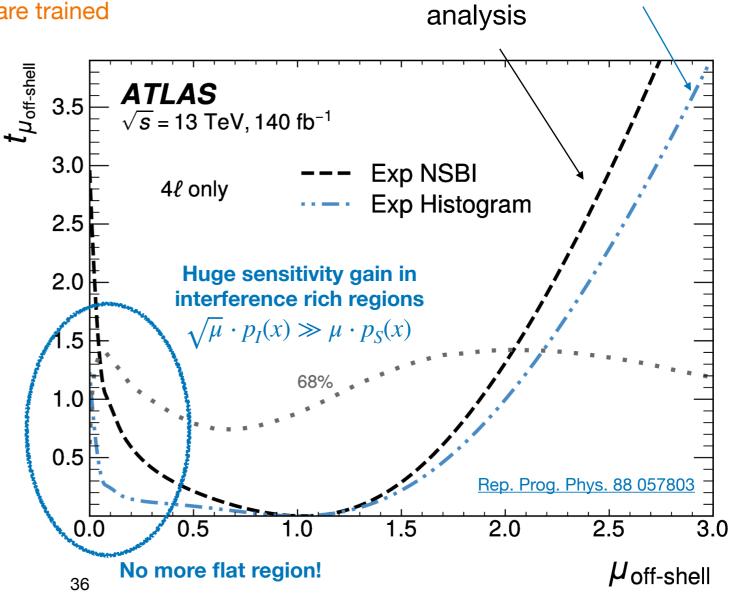
analysis

The NSBI approach learns everything, including the parameter scaling and thus the full interference effects



No "fixed" S/B discriminant - asymptotic optimality throughout μ space.

Additional sensitivity from unbinned nature



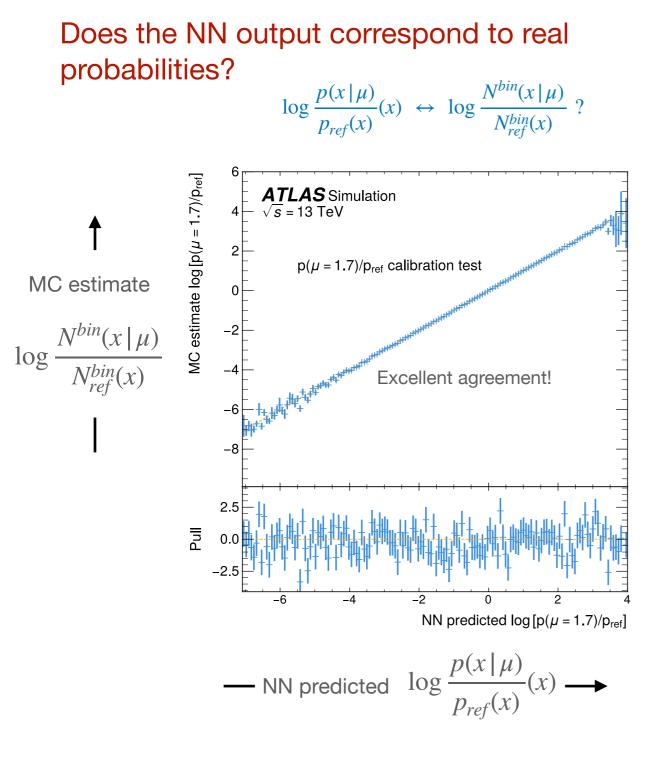
NSBI

Previous

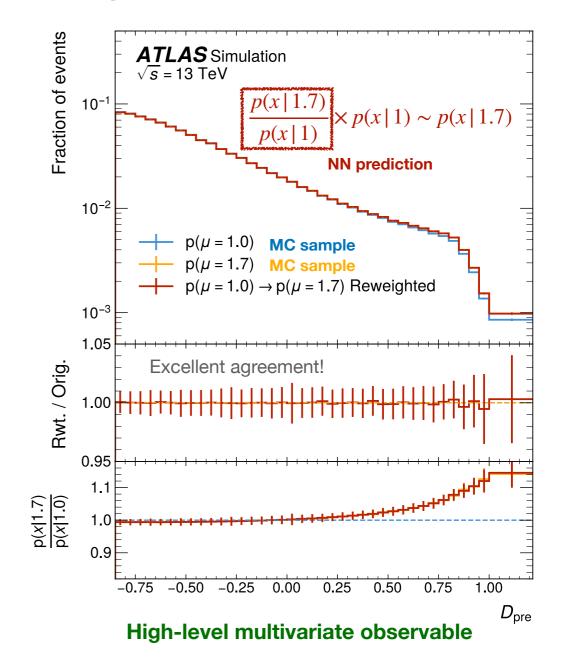
analysis

Monte Carlo Diagnostics

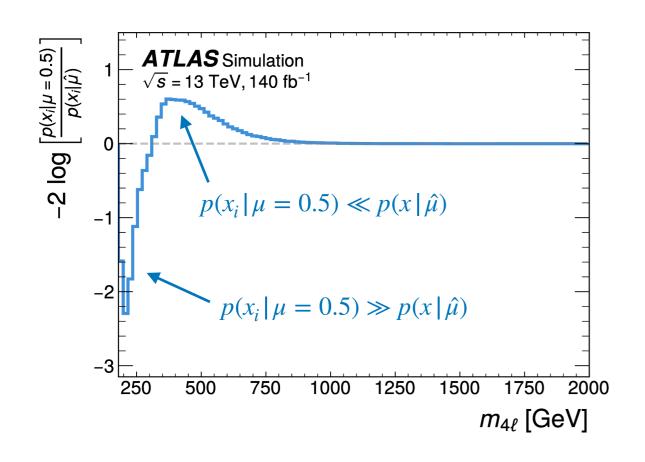
The NN ratios are meticulously trained to be true representations of the density ratios

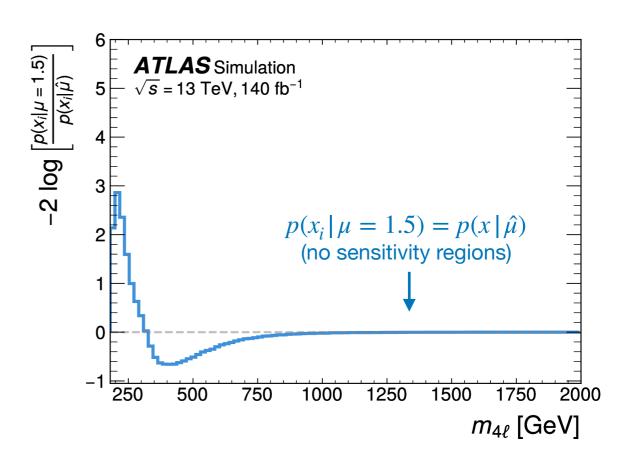


Do the ratios capture the full un-biased dependence of the multi-dimensional feature space *x* ?



Where does the sensitivity come from?



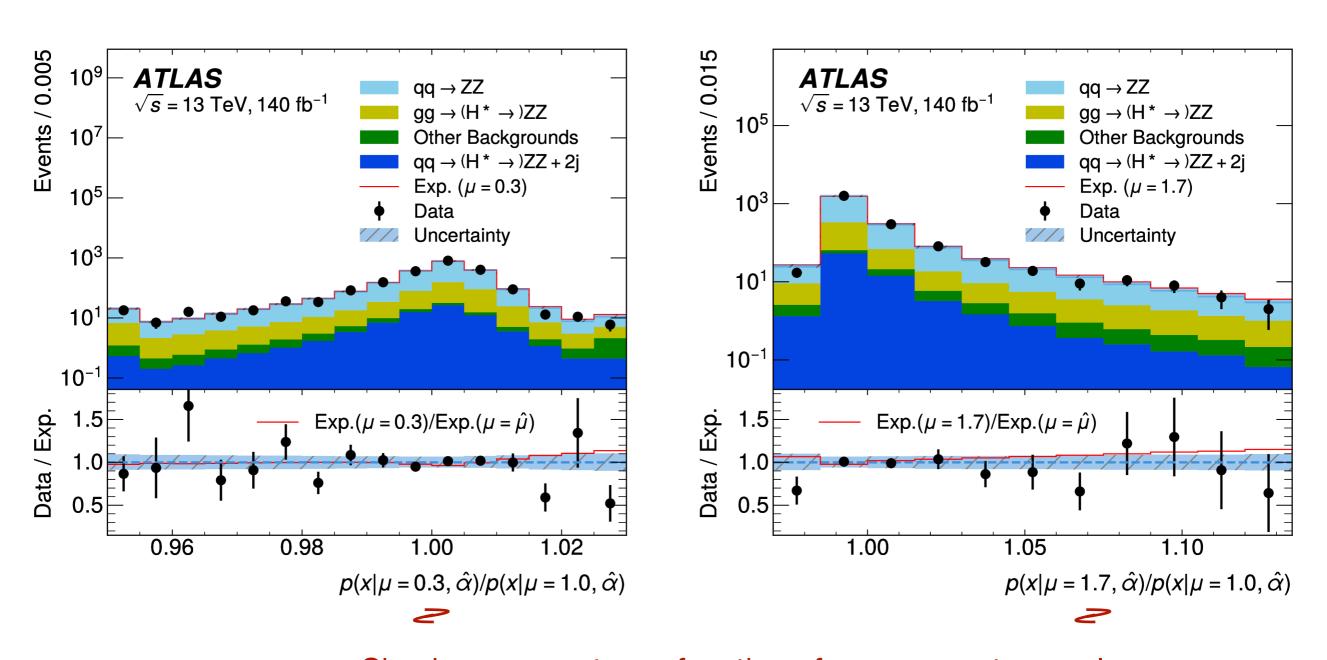


The per-event negative log-likelihood ratio allows a probe to identify phase space regions that contribute to the final analysis senstivity.

This allows to identify phase space regions that need robust modeling from Monte Carlo samples.

Real Data Diagnostics

A rigorous data-MC comparison is performed using the parameterized density ratios



Check agreement as a function of any parameter μ value

Building Frequentist Confidence Intervals

 In settings like the off-shell Higgs boson that do not follow Wald approximation:

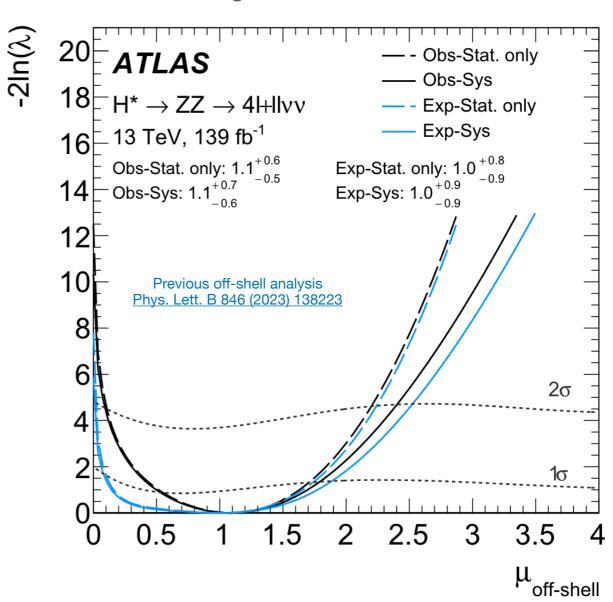
$$-2\ln\lambda(\mu) = \frac{(\mu - \hat{\mu})^2}{\sigma^2}$$

arXiv: 1007.1727

- Neyman construction is essential.
- But standard LHC techniques like Poisson PDF sampling cannot work directly.
- This is because the NSBI technique presented here does not have a PDF $p(x | \mu, \alpha)$ to sample pseudo-data from only the density ratios:

$$\frac{p(x \mid \mu, \alpha)}{p_{ref}(x)}$$

Previous Histogram-based $H^* \to ZZ$ measurement

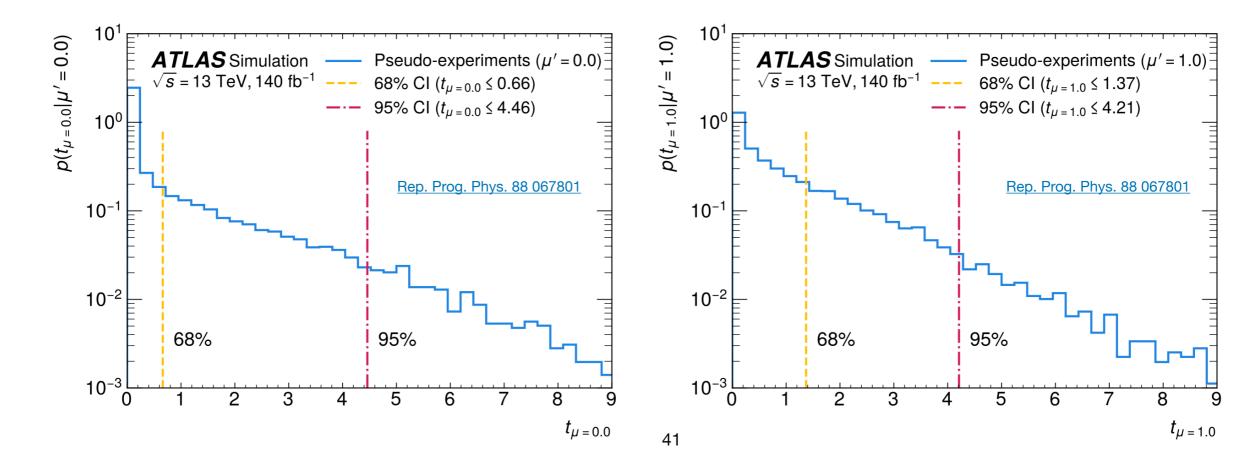


Neyman Construction for NSBI

• The trained density ratios are used to create unbiased Asimov samples with MC weights w_A for any value of the μ, α parameter space:

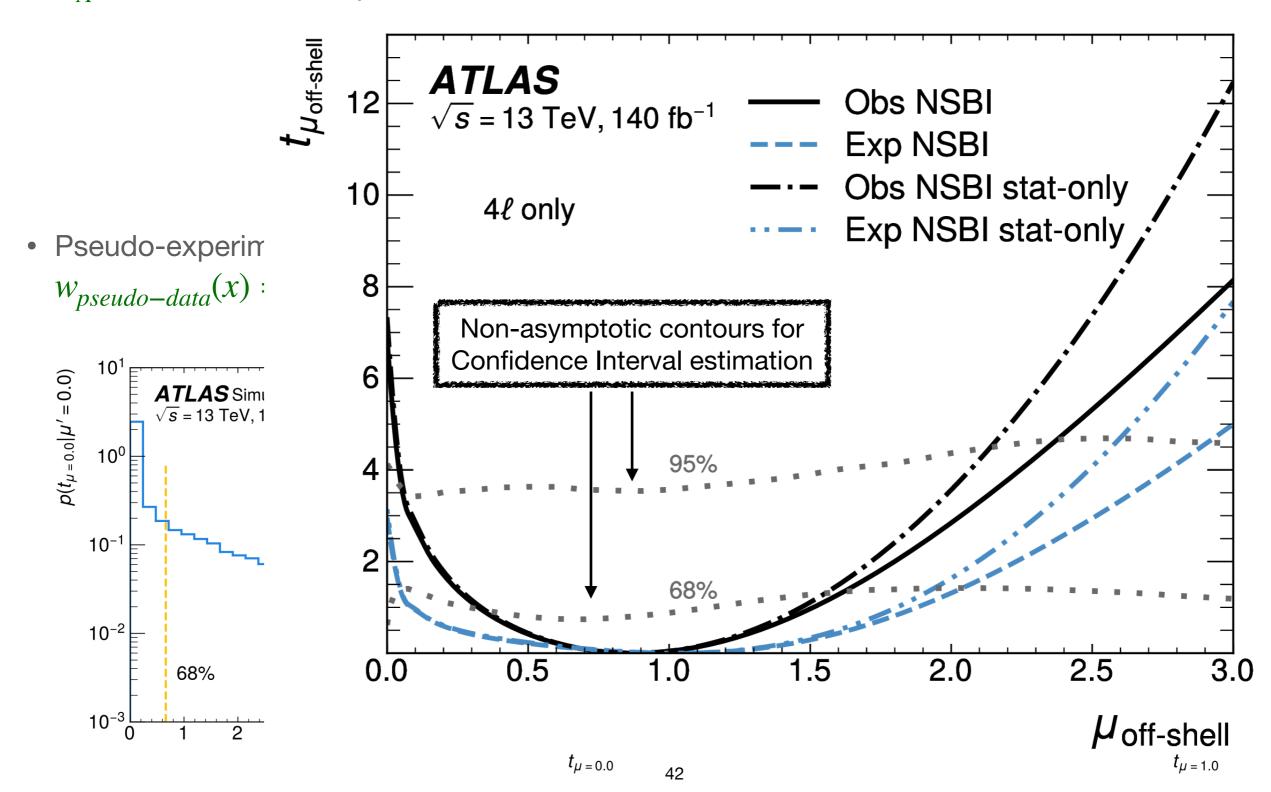
$$w_{A}(x \mid \mu_{truth}, \alpha) = \frac{\nu(\mu, \alpha)}{\nu_{ref}} \cdot \frac{p(x \mid \mu_{truth}, \alpha)}{p_{ref}(x)} \cdot w_{ref}(x)$$
 MC weights of reference sample

• Pseudo-experiments are then sampled using the Poisson bootstrap method - $w_{pseudo-data}(x) = \text{Poisson}(\ w_A(x \mid \mu_{truth}, \alpha)\).$



Neyman Construction for NSBI

• The trained density ratios are used to create unbiased Asimov samples with MC weights w_A for any value of the μ, α parameter space:



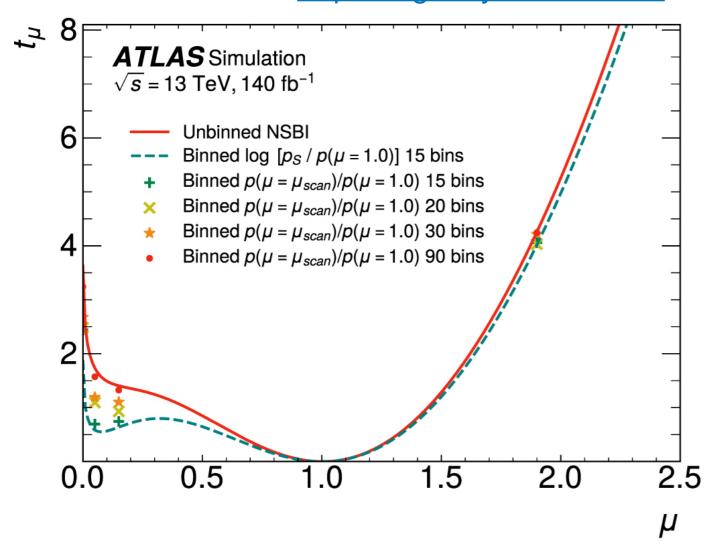
Conclusion and Outlook

- An implementation of NSBI was presented focused on building likelihood ratios as a function of complex, large-dimensional parameter spaces using well-motivated approximations.
- The NSBI approach presented in this talk has broad applicability across LHC analysis - particularly effective when the likelihood model is non-linear in the parameter of interest and when multi-dimensional information is needed for extra precision.
- The various conceptual and computational developments have been done and published in these companion papers by ATLAS:
 - Rep. Prog. Phys. 88 067801 [General NSBI method presented in this talk]
 - Rep. Prog. Phys. 88 057803 [Application to off-shell Higgs boson and Higgs boson width measurement with the ATLAS experiment]

Backup

Parameterized Observables and Unbinning

Rep. Prog. Phys. 88 067801



The improved sensitivity from using the NSBI approach is a result of:

- using parameterized information for the hypothesis testing
- and doing an unbinned fit

Uncertainty Parameterization

$$\frac{p(x_i | \mu, \alpha)}{p_{ref}(x_i)} = \frac{1}{\sum_c G_c(\alpha) \cdot f_c(\mu) \cdot \nu_c} \sum_c \left[f_c(\mu) \cdot g_c(x_i | \alpha) \cdot \nu_c \cdot \frac{p_c(x_i)}{p_{ref}(x_i)} \right]$$

Factorized **yield** α -dependence:

$$G_c(\alpha) = \prod_k \frac{\nu_c(\alpha_k)}{\nu_c}$$

Per-event analog of standard techniques

Factorized **per-event** α -dependence:

$$g_c(x \mid \alpha) = \prod_k \frac{p_c(x \mid \alpha_k)}{p_c(x)}$$

with $\nu_c(\alpha_k)/\nu_c$ estimated using **analytic** interpolation techniques:

Available from simulations at $\alpha_k=0,~\alpha_k^+,~\alpha_k^-$

$$\frac{\nu_c(\alpha_k)}{\nu_c} = \begin{cases}
\left(\frac{\nu_c(\alpha_k^+)}{\nu_c}\right)^{\alpha_k} & \alpha_k > 1 \\
1 + \sum_{n=1}^6 c_n \alpha_k^n & -1 \le \alpha_k \le 1, \\
\left(\frac{\nu_c(\alpha_k^-)}{\nu_c}\right)^{-\alpha_k} & \alpha_k < -1
\end{cases}$$

with $p_c(x \mid \alpha_k)/p_c(x)$ estimated using a **mix of** NNs and analytic interpolation techniques:

Density ratios trained using NNs from simulations at $\alpha_{\bf k}=0,~\alpha_{\bf k}^+,~\alpha_{\bf k}^-$

$$\frac{p_c(x \mid \alpha_k)}{p_c(x)} = \begin{cases}
\left(\frac{p_c(x \mid \alpha_k^+)}{p_c(x)}\right)^{\alpha_k} & \alpha_k > 1 \\
1 + \sum_{n=1}^6 c_n \alpha_k^n & -1 \le \alpha_k \le 1 \\
\left(\frac{p_c(x \mid \alpha_k^-)}{p_c(x)}\right)^{-\alpha_k} & \alpha_k < -1
\end{cases}$$

Ref: <u>HistFactory</u>

Full workflow of the NSBI Analysis

