
July 9, 2025

Multi-Scale Transformer Encoder for

Di-Tau Invariant Mass Reconstruction

Valentina Camagni

on behalf of the CMS collaboration

EPS-HEP 2025



2
Introduction (1)

Reconstructing the di-tau invariant mass (𝑚𝜏𝜏) is crucial for 

precise SM measurements and BSM searches. 

Neutrinos from tau decays escape detection, worsening mass 

resolution and complicating resonance identification.

The CMS experiment currently employs the 

Secondary Vertex Fit (SVFit) algorithm [1]

High computational time

New strategies based 

on deep learning 

Aim

Reconstruct the four-momentum of each 𝜏 lepton prior to its 

decay, in order to recover the kinematics of the parent particle 

and accurately estimate the invariant mass

Tau Pair Mass 

Transformer (TPMT)
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https://inspirehep.net/files/ff3326a782d43e44e94733a065eb9c31
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• Uses η and ϕ from reconstructed taus
 → Collinear approximation valid for taus 
      with 𝑝𝑇
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Goal: improve the reconstruction of the di-tau invariant mass by correcting the visible 

𝑝𝑇  of tau candidates for the momentum carried away by neutrinos, without biasing the 

model toward any specific mass value

Evaluation configuration:

After training, the model was tested on realistic resonant 

processes to assess performance:

• Higgs boson production (𝐻 → 𝜏𝜏 with 𝑚𝜏𝜏 = 125 𝐺𝑒𝑉)

• Drell–Yan events (Z → 𝜏𝜏 with 𝑚𝜏𝜏 ≈ 91 𝐺𝑒𝑉)

Using flat-mass 

training allows the 

model to learn 

from kinematics 

alone, avoiding 
dependence on 

Z/H mass peaks 

and minimizing 

sculpting effects

MotivationTraining configuration:

• Events from 𝑿 → 𝝉𝝉 decays, generated via gluon-gluon fusion and 

vector boson fusion

• The invariant mass of the parent particle was drawn from a flat 

distribution in the range 30–300 GeV
• Includes both hadronic (𝜏ℎ𝜏ℎ) and semileptonic tau decays (𝜏ℎ𝜏𝜇)

First Strategy: Flat-mass samples 4
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Taus

TauProd

MET

Jets

Up to 10 decay products from the selected tau pair are included, sorted 

by 𝑝𝑇. In the semi-leptonic case, only the 𝜏ℎ decay products are used. 

Zero-padding ensures fixed input size.

Up to 3 leading jets (with ΔR > 0.4 from the selected taus) are provided as input. 

If fewer than 3 are found, zero-padding is applied.

A scalar input with the visible di-tau mass.

Particle Flow MET is included as a global feature to account for undetected neutrinos. 

H/Z/SUSY/X: 2 genuine 𝜏ℎ

(opposite charge, 𝑝𝑇
𝑅𝐸𝐶𝑂> 20 𝐺𝑒𝑉)

𝒕 ҧ𝒕: 2 fake 𝜏ℎ that match (Δ𝑅 < 0.4) 

to top daughters (𝑏 or 𝑊 decay 

products)

𝝉𝒉𝝉𝒉 𝝉𝒉𝝉𝝁

H/Z/SUSY/X: 1 genuine 𝜏ℎ + 1 𝑒/𝜇 from tau 

decay (opposite charge, 𝑝𝑇
𝑅𝐸𝐶𝑂 > 20 𝐺𝑒𝑉)

𝒕 ҧ𝒕: 1 fake 𝜏ℎ + 1 𝑒/𝜇 not from tau decay, both 

that match (Δ𝑅 < 0.4) to top daughters (𝑏 or 𝑊
decay products)

[2], [3]

TPMT inputs

𝒎𝝉𝝉
𝑹𝑬𝑪𝑶

Feature importance analysis with Random Forest on the full set of 

taus, jets, MET variables to maximize H / Z classification

https://cds.cern.ch/record/2798318?ln=it
https://cds.cern.ch/record/2062435/files/jinst16_11_p01019.pdf
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• Batch size: 1024

• Initial learning rate: 1×10⁻⁴
 Reduced to 1×10⁻⁶ using ReduceLROnPlateau

• N° Encoder blocks: 1

• N° Attention heads: 8

• d_model (Embedding dimension): 512

• EarlyStopping patience: 15 epochs

• ReduceLROnPlateau patience: 10 epochs

• Optimizer: Adam

• Trainable parameters: ~ 800,000

• Hardware: NVIDIA Tesla T4 (16GB)

• Inference time: 10−3𝑠 per event 
              (for SVFit, 𝒪(s) per event)

• GPU memory usage: ~ 50%

Training Hyperparameters

𝜏ℎ𝜏ℎ

Pairtype
Total 

Training 

Events

𝑭𝒍𝒂𝒕 𝑴𝒂𝒔𝒔 𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈𝒔

VBF: 400k, GGF: 400k

~ 800 k



8 Loss Design

To guide the network toward physically meaningful predictions, the loss 

function is the weighted sum of two terms, both based on the MAE:

ℒtotal = λ𝜏 ∙ 𝓛𝝉 + λm𝜏𝜏
∙ 𝓛𝒎𝝉𝝉

• Tau 𝒑𝑻 loss (ℒ𝝉): 

𝑀𝐴𝐸(𝑝𝑇
𝑇𝑃𝑀𝑇 , 𝑝𝑇

𝑇𝐴𝑅𝐺𝐸𝑇) for the two taus

• Invariant Mass Loss (𝓛𝒎𝝉𝝉
):

         𝑀𝐴𝐸(𝑚𝜏𝜏
𝑇𝑃𝑀𝑇 , 𝑚𝜏𝜏

𝑇𝐴𝑅𝐺𝐸𝑇)

While ℒ𝝉 ensures per-object accuracy, small errors in 𝑝𝑇 can cause 

large deviations in 𝑚𝜏𝜏 due to its non-linear dependence on kinematics: 
ℒ𝒎𝝉𝝉

term helps correct for this and encourages physically consistent 

predictions

λ𝜏 = 1
λm𝜏𝜏

= 10−2

chosen to 

balance the 
two 

contributions 

to the same 

order of 

magnitude 
during training
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• Convergence still 

under study

• Loss components

follow similar trends

λ𝜏 = 1

λ m
𝜏

𝜏
∙ℒ

𝑚
𝜏

𝜏

• Rapid decrease in early epochs

• Learning rate drops visible 

(triggered by 

ReduceLROnPlateau)

• Losses plateau around 

     epoch ~ 75 (𝑙𝑟 = 10−6)

• Training vs validation: 

 good agreement 

 → good generalization

λ 𝜏
∙ℒ

𝜏

smooth and stable total loss

λm𝜏𝜏
= 10−2



𝒎𝝉𝝉
𝑻𝑷𝑴𝑻  distribution from Flat Mass Training 

10 Results 

TPMT vs SVFit comparison on test 

samples:

➢ 𝐻 → 𝜏𝜏  and  Z → 𝜏𝜏

Solid lines: TPMT prediction from 

predicted log(𝑝𝑇
𝑇𝐴𝑅𝐺𝐸𝑇) of the two taus

Dashed lines: SVFit 𝑚𝜏𝜏 

reconstruction + Gaussian fits

TPMT matches SVFit resolution 

on 𝐻 → 𝜏𝜏 and Z → 𝜏𝜏 (fully 

hadronic),

with > 1000𝑥 faster inference 

(𝑚𝑠 vs 𝑠/𝑒𝑣𝑒𝑛𝑡)
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Specialized model, tailored for 𝐻 → 𝜏𝜏, not general-purpose 𝜏 reconstruction

Training and evalution configuration:

• SM-only: 
• 𝐷𝑌 → 𝜏𝜏 𝑚𝜏𝜏 > 50 𝐺𝑒𝑉 ,
• 𝐻 → 𝜏𝜏 𝑚𝜏𝜏 = 125 𝐺𝑒𝑉 ,
• 𝑡 ҧ𝑡 → 𝑊+𝑏 𝑊− ത𝑏

11 Second Strategy: Resonant-mass samples 

Resonant 

samples to 

better reflect the 

conditions 

expected at 
application time, 

where a 

resonance at a 

fixed mass is 

assumed

Motivation• SM+BSM: 

     SM-only processes 

     + SUSY 2HDM signals      

        (ggH/bbH, 𝑚𝜏𝜏 = 350 𝐺𝑒𝑉)
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𝒎𝝉𝝉

𝑻𝑷𝑴𝑻 distribution from 
Resonance Mass Training 

Results 

Two-mode behavior:

H and Z each show primary + secondary peaks

→ Model favors either ~125 or ~ 91 GeV, reflecting learned resonance structure

Differences across final 

states → under study
SM-only 

scenario

TPMT shows 

lower Z/𝑡 ҧ𝑡 

contamination

in a signal-

specific mass 
window

designed to 

retain 90% 

signal 

efficiency

Z Z
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Z vs misreco H 

(~ 91 GeV):

Features overlap 

→ hard to separate

    (Random Forest 

           AUC = 0.60)

Z Z



14 Results 𝒑𝑻 distribution from Resonance 
Mass Training 

SM-only 
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differences still under study

TPMT predictions

better match to target 

  vs. visible 𝑝𝑇
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in 𝑡 ҧ𝑡 (fakes): 

• 𝑝𝑇
𝑇𝐴𝑅𝐺𝐸𝑇 = 𝑝𝑇

𝑅𝐸𝐶𝑂 

• model learns to keep them unchanged

Broader distributions for 

H and Z

residual bias remains
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18 Conclusions & Outlook

• Explored a Transformer-based approach for di-τ identification and kinematic 

reconstruction in SM and BSM scenarios

• The model shows promising performance, but further refinement is needed.

Key Observations:

• Binary-like behavior in mass reconstruction, especially H vs Z separation

• Limited smooth interpolation across overlapping mass regions.

Future developments:

• Introduce a parametric variant (mass hypothesis as input) to improve flexibility

• Focus on better generalization across mass spectra and transition regions



Thank you for the attention
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