

Multi-Scale Transformer Encoder for Di-Tau Invariant Mass Reconstruction

Valentina Camagni on behalf of the CMS collaboration

EPS-HEP 2025

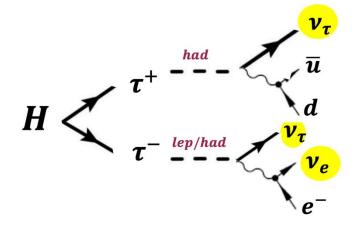
July 9, 2025

Reconstructing the di-tau invariant mass $(m_{\tau\tau})$ is crucial for precise SM measurements and BSM searches. Neutrinos from tau decays escape detection, worsening mass resolution and complicating resonance identification.

 \implies

The CMS experiment currently employs the **Secondary Vertex Fit (SVFit)** algorithm [1]

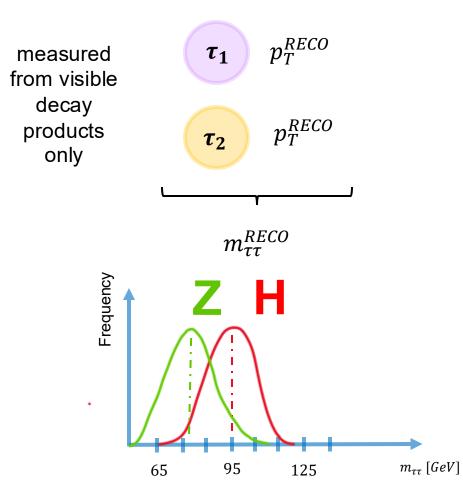
× High computational time

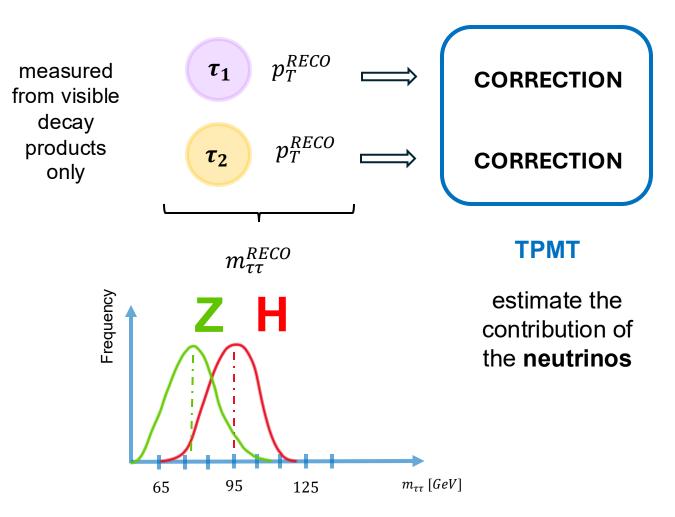


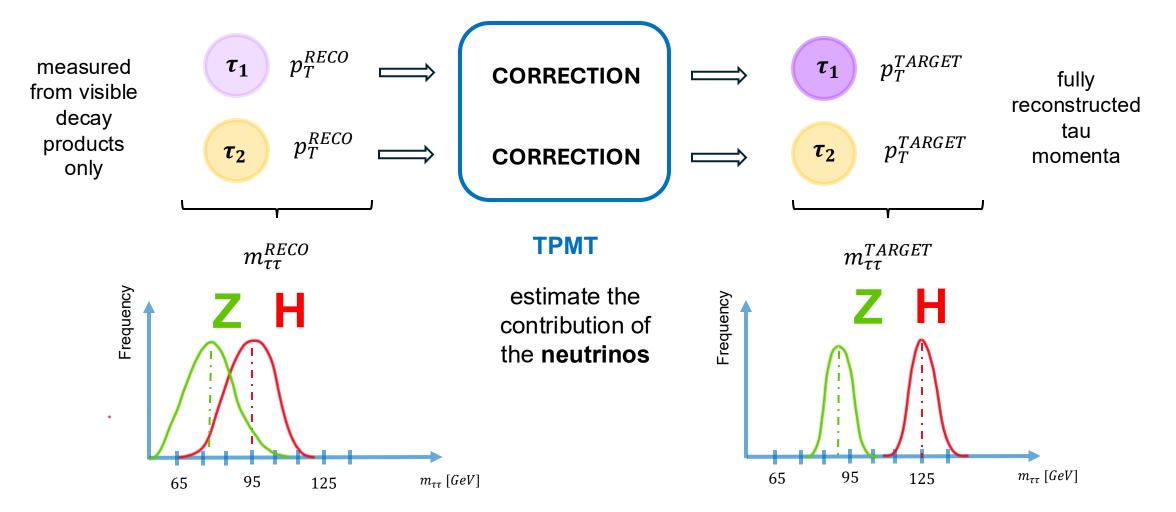
New strategies based on deep learning Tau Pair Mass Transformer (TPMT)

Aim

Reconstruct the four-momentum of each τ lepton prior to its decay, in order to recover the kinematics of the parent particle and accurately estimate the invariant mass



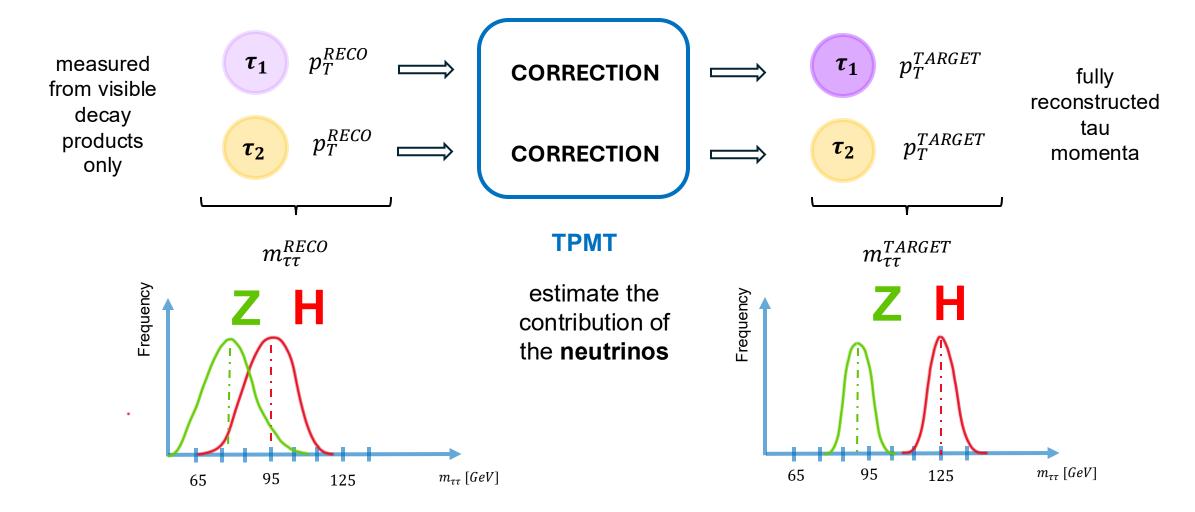




Assumption

- Uses η and φ from reconstructed taus

→ Collinear approximation valid for taus with $p_T^{RECO} > 20 \text{ GeV}$



First Strategy: Flat-mass samples

Goal: improve the reconstruction of the di-tau invariant mass by correcting the visible p_T of tau candidates for the momentum carried away by neutrinos, <u>without biasing the</u> <u>model toward any specific mass value</u>

Training configuration:

- Events from $X \rightarrow \tau \tau$ decays, generated via gluon-gluon fusion and vector boson fusion
- The invariant mass of the parent particle was drawn from a flat distribution in the range 30–300 GeV
- Includes both hadronic $(\tau_h \tau_h)$ and semileptonic tau decays $(\tau_h \tau_\mu)$

Evaluation configuration:

After training, the model was tested on realistic resonant processes to assess performance:

- Higgs boson production ($H \rightarrow \tau \tau$ with $m_{\tau \tau} = 125 \ GeV$)
- **Drell–Yan** events $(Z \rightarrow \tau \tau \text{ with } m_{\tau \tau} \approx 91 \text{ GeV})$

Motivation

Using flat-mass training allows the model to learn from kinematics alone, avoiding dependence on Z/H mass peaks and minimizing sculpting effects

TPMT inputs

 $\tau_h \tau_h$

H/Z/SUSY/X: 2 genuine τ_h (opposite charge, $p_T^{RECO} > 20 \ GeV$) $t\bar{t}$: 2 fake τ_h that match ($\Delta R < 0.4$) to top daughters (*b* or *W* decay products)

Feature importance analysis with **Random Forest** on the full set of taus, jets, MET variables to maximize H / Z classification

 $au_h au_\mu$

H/Z/SUSY/X: 1 genuine $\tau_h + 1 e/\mu$ from tau decay (opposite charge, $p_T^{RECO} > 20 \ GeV$) $t\bar{t}$: 1 fake $\tau_h + 1 e/\mu$ not from tau decay, both that match ($\Delta R < 0.4$) to top daughters (*b* or *W* decay products)

TauProd

Up to 10 decay products from the selected tau pair are included, sorted by p_T . In the semi-leptonic case, only the τ_h decay products are used. Zero-padding ensures fixed input size.

Up to 3 leading jets (with $\Delta R > 0.4$ from the selected taus) are provided as input. If fewer than 3 are found, zero-padding is applied.

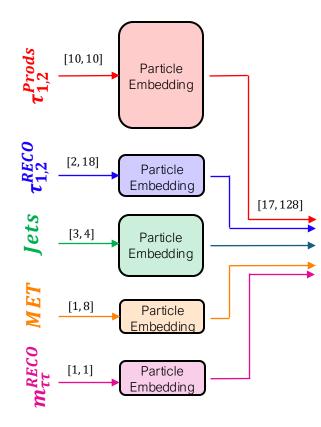
Particle Flow MET is included as a global feature to account for undetected neutrinos.

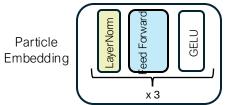
$m_{ au au}^{RECC}$

A scalar input with the visible di-tau mass.

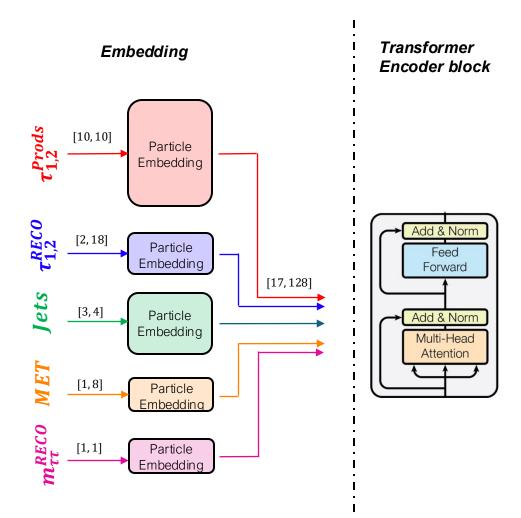
TPMT Architecture [4]

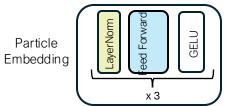
Embedding





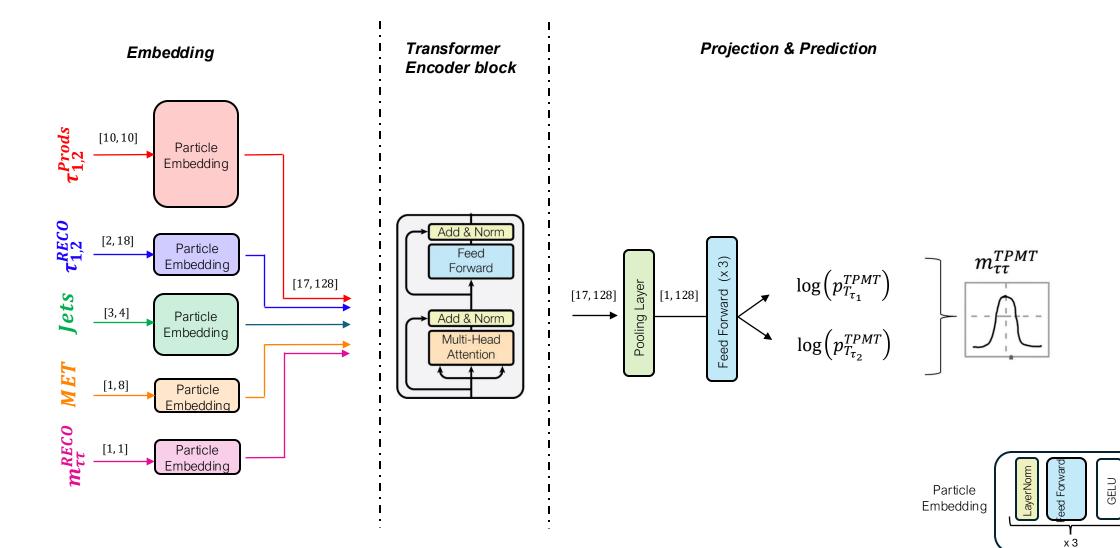
TPMT Architecture





6

TPMT Architecture



Training Hyperparameters

• Batch size: 1024

7

- Initial learning rate: 1×10⁻⁴
 Reduced to 1×10⁻⁶ using ReduceLROnPlateau
- N° Encoder blocks: 1
- N° Attention heads: 8
- **d_model** (Embedding dimension): 512
- EarlyStopping patience: 15 epochs
- ReduceLROnPlateau patience: 10 epochs
- **Optimizer**: Adam
- Trainable parameters: ~ 800,000
- Hardware: NVIDIA Tesla T4 (16GB)
- Inference time: $10^{-3}s$ per event

(for SVFit, $\mathcal{O}(s)$ per event)

• **GPU memory usage**: $\sim 50\%$

_	Flat Mass Trainings		
	Pairtype	Total Training Events	
	$ au_h au_h$	~ 800 k	

VBF: 400k, GGF: 400k

Loss Design

To guide the network toward physically meaningful predictions, the loss function is the weighted sum of two terms, both based on the MAE:

$$\mathcal{L}_{\text{total}} = \lambda_{\tau} \cdot \boldsymbol{\mathcal{L}}_{\tau} + \lambda_{\mathsf{M}_{\tau\tau}} \cdot \boldsymbol{\mathcal{L}}_{m_{\tau\tau}}$$

• Tau p_T loss (\mathcal{L}_{τ}):

 $MAE(p_T^{TPMT}, p_T^{TARGET})$ for the two taus

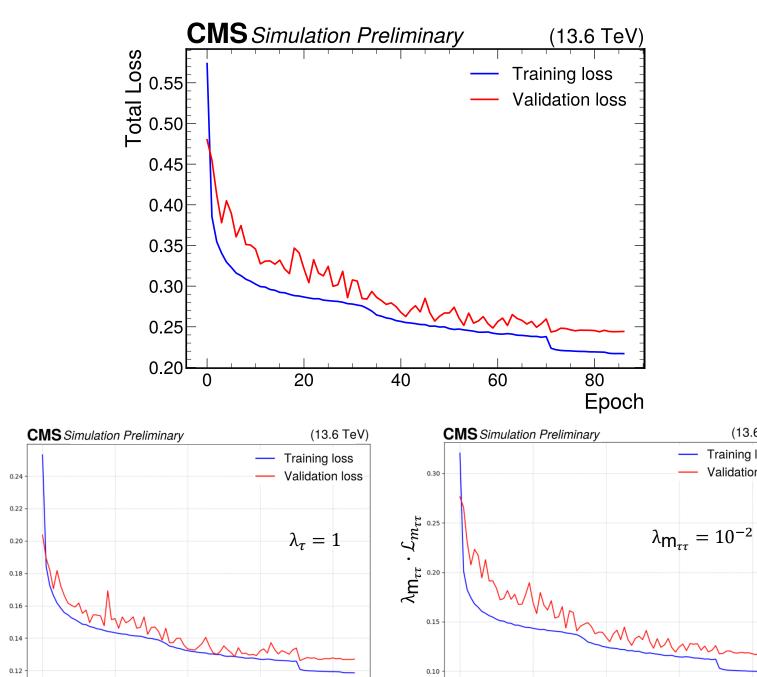
• Invariant Mass Loss $(\mathcal{L}_{m_{\tau\tau}})$:

 $MAE(m_{ au au}^{TPMT}$, $m_{ au au}^{TARGET})$

While \mathcal{L}_{τ} ensures per-object accuracy, small errors in p_T can cause large deviations in $m_{\tau\tau}$ due to its non-linear dependence on kinematics: $\mathcal{L}_{m_{\tau\tau}}$ term helps correct for this and encourages physically consistent predictions

 $\lambda_{ au} = 1$ $\lambda_{ extsf{m}_{ au au}} = 10^{-2}$

chosen to balance the two contributions to the same order of magnitude during training



- Rapid decrease in early epochs •
- Learning rate drops visible • (triggered by ReduceLROnPlateau)
- Losses plateau around ٠ epoch ~ 75 ($lr = 10^{-6}$)

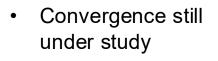
(13.6 TeV)

Training loss

Validation loss

80

Training vs validation: • good agreement \rightarrow good generalization



Loss components • follow similar trends smooth and stable total loss

 $\cdot \mathcal{L}_{ au}$

 λ_{τ}

20

40

Epoch

60

80

20

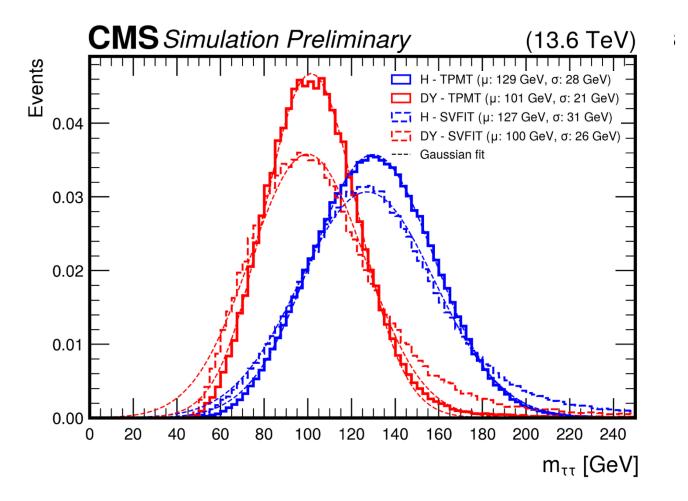
40

Epoch

60

Results

$m_{\tau\tau}^{TPMT}$ distribution from Flat Mass Training



TPMT vs SVFit comparison on test samples:

 \blacktriangleright $H \rightarrow \tau \tau$ and $Z \rightarrow \tau \tau$

Solid lines: TPMT prediction from predicted $\log(p_T^{TARGET})$ of the two taus

Dashed lines: SVFit $m_{\tau\tau}$ reconstruction + Gaussian fits

TPMT matches SVFit resolution on $H \rightarrow \tau \tau$ and $Z \rightarrow \tau \tau$ (fully hadronic), with > 1000x faster inference (ms vs s/event)

Second Strategy: Resonant-mass samples

Specialized model, tailored for $H \rightarrow \tau \tau$, not general-purpose τ reconstruction

Training and evalution configuration:

- <u>SM-only:</u>
 - $DY \rightarrow \tau\tau \ (m_{\tau\tau} > 50 \ GeV),$
 - $H \rightarrow \tau \tau \ (m_{\tau \tau} = 125 \ GeV),$
 - $t\bar{t} \to (W^+b)(W^-\bar{b})$

- <u>SM+BSM</u>:
 - SM-only processes
 - + SUSY 2HDM signals

(ggH/bbH,
$$m_{\tau\tau} = 350 \, GeV$$

Motivation

Resonant samples to better reflect the conditions expected at application time, where a resonance at a fixed mass is assumed

Second Strategy: Resonant-mass samples

Specialized model, tailored for $H \rightarrow \tau \tau$, not general-purpose τ reconstruction

Training and evalution configuration:

• <u>SM-only:</u>

11

- $DY \rightarrow \tau \tau \ (m_{\tau \tau} > 50 \ GeV),$
- $H \rightarrow \tau \tau \ (m_{\tau \tau} = 125 \ GeV),$
- $t\bar{t} \to (W^+b)(W^-\bar{b})$

- <u>SM+BSM</u>:
 - SM-only processes
 - + SUSY 2HDM signals
 - (ggH/bbH, $m_{\tau\tau} = 350 \ GeV$)
 - The choice of the 350 GeV benchmark is not driven by any specific theoretical motivation

Motivation

Resonant samples to better reflect the conditions expected at application time, where a resonance at a fixed mass is assumed

Channel-specific trainings for better adaptation to physics scenario and decay mode

Second Strategy: Resonant-mass samples

Specialized model, tailored for $H \rightarrow \tau \tau$, not general-purpose τ reconstruction

Training and evalution configuration:

• <u>SM-only:</u>

11

- $DY \rightarrow \tau \tau \ (m_{\tau \tau} > 50 \ GeV),$
- $H \rightarrow \tau \tau \ (m_{\tau \tau} = 125 \ GeV),$

 $\succ p_T^{TARGET} = p_T^{MC}$

• $t\bar{t} \rightarrow (W^+b)(W^-\bar{b})$

> used as **fake**- τ background > $p_T^{TARGET} = p_T^{RECO}$ enables the model to preserve the original p_T^{RECO} input for fake candidates, ensuring consistent treatment across genuine and misidentified taus

• <u>SM+BSM</u>:

SM-only processes

- + SUSY 2HDM signals (ggH/bbH, $m_{\tau\tau} = 350 \ GeV$)
 - The choice of the 350 GeV benchmark is not driven by any specific theoretical motivation

Motivation

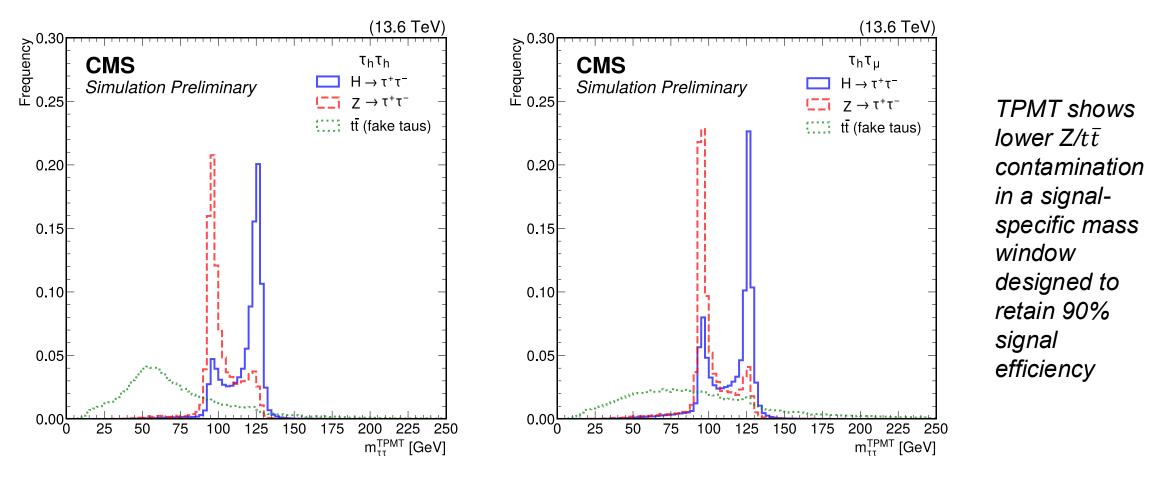
Resonant samples to better reflect the conditions expected at application time, where a resonance at a fixed mass is assumed

Channel-specific trainings for better adaptation to physics scenario and decay mode

SM-only

Differences across final states \rightarrow under study

$m_{\tau\tau}^{TPMT}$ distribution from scenario Resonance Mass Training



Two-mode behavior:

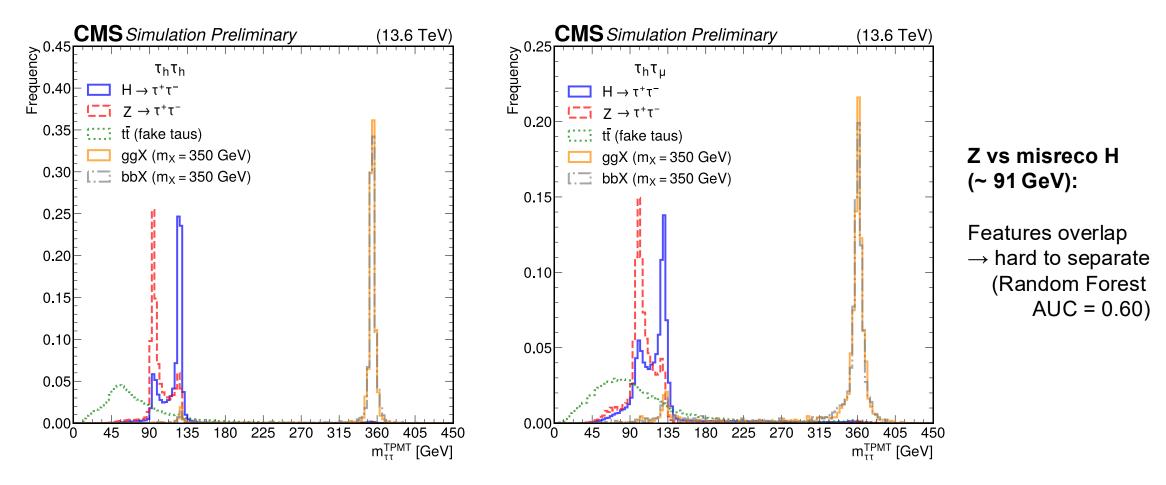
H and Z each show primary + secondary peaks

 \rightarrow Model favors either ~125 or ~ 91 GeV, reflecting learned resonance structure

SM+BSM

Differences across final states \rightarrow under study

$m_{\tau\tau}^{TPMT}$ distribution from scenario Resonance Mass Training



Two-mode behavior:

H and Z each show primary + secondary peaks

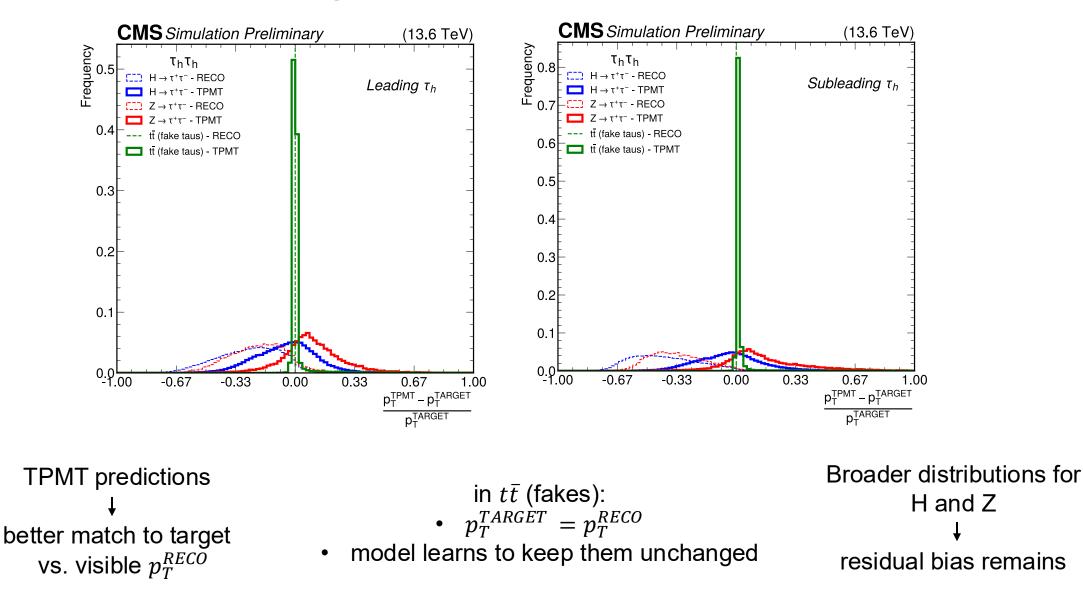
 \rightarrow Model favors either ~125 or ~ 91 GeV, reflecting learned resonance structure

Results p_T distribution from Resonance Mass Training

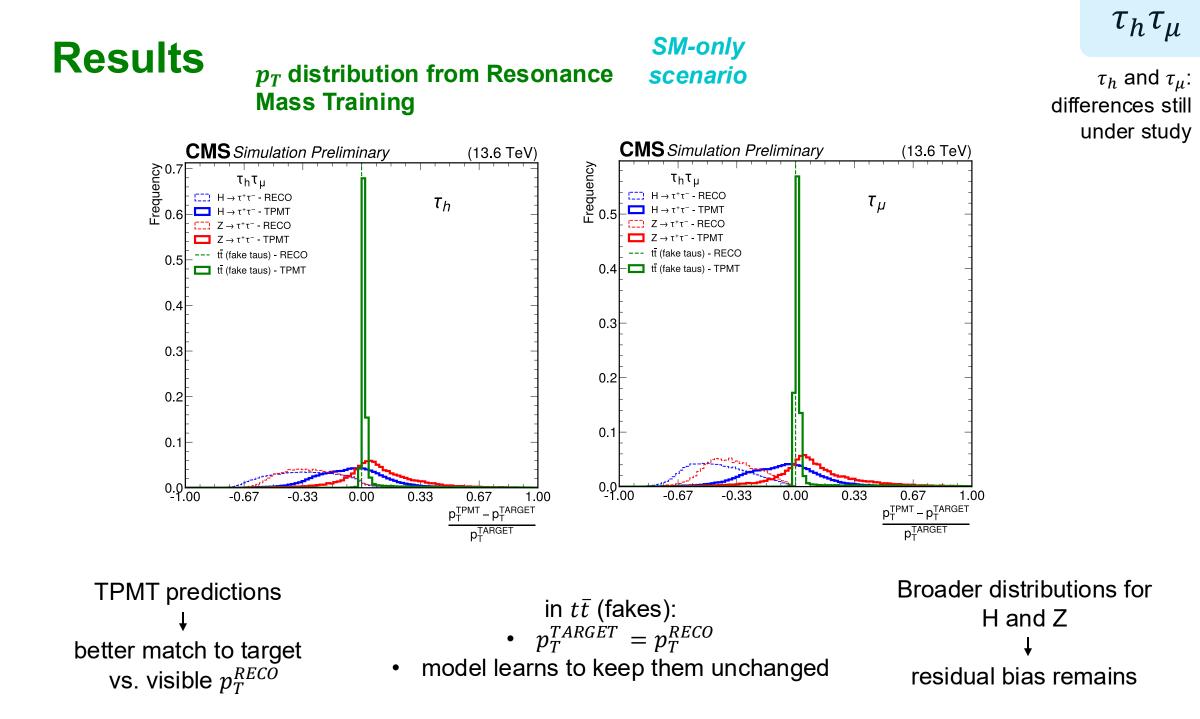
SM-only

scenario

Leading vs subleading T: differences still under study



14

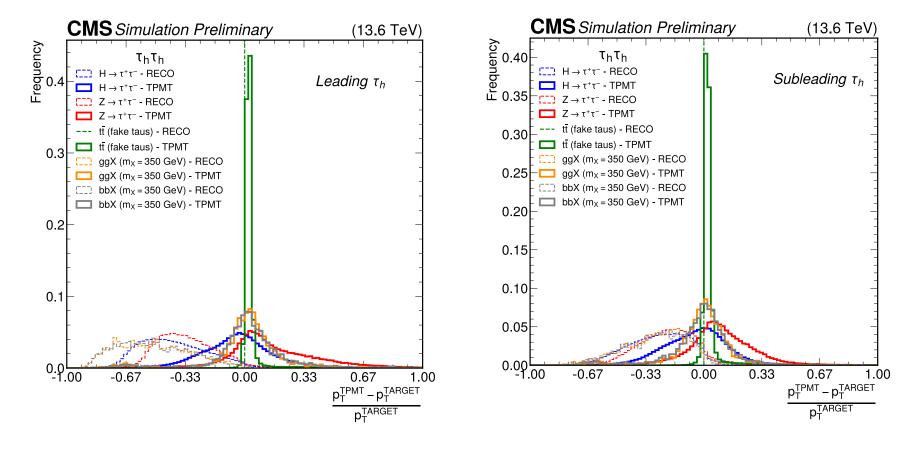


Results p_T distribution from R

SM+BSM

p_T distribution from Resonance scenario Mass Training

Leading vs subleading T: differences still under study



TPMT predictions \downarrow better match to target vs. visible p_T^{RECO}

in $t\bar{t}$ (fakes): • $p_T^{TARGET} = p_T^{RECO}$ model learns to keep them unchanged Broader distributions for H and Z I residual bias remains

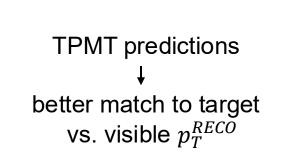
SM+BSM **Results** p_T distribution from Resonance scenario Mass Training **CMS** Simulation Preliminary **CMS** Simulation Preliminary (13.6 TeV) (13.6 TeV) Frequency Lrequency 0.35 0.30 τ_hτ_u τ_hτ_u .___ H → τ⁺τ⁻ - RECO [___] Η → τ⁺τ⁻ - RECC τ_h τ_{μ} H → τ⁺τ[−] - TPMT $H \rightarrow \tau^+ \tau^-$ - TPMT $Z \rightarrow \tau^+ \tau^- - RECO$ $7 \rightarrow \tau^+\tau^-$ - BECO \Box Z $\rightarrow \tau^+\tau^-$ - TPMT 0.30 $-\Box Z \rightarrow \tau^+\tau^- - TPMT$ --- tt (fake taus) - RECO --- tt (fake taus) - RECO 0.25 tt (fake taus) - TPMT 🗖 🗖 tt (fake taus) - TPMT 0.25 ggX (m_X = 350 GeV) - RECO ggX (m_x = 350 GeV) - RECO 🛄 ggX (m_X = 350 GeV) - TPMT ggX (m_X = 350 GeV) - TPMT 0.20 bbX (m_x = 350 GeV) - RECO bbX (m_X = 350 GeV) - RECO 0.20 bbX (m_x = 350 GeV) - TPMT bbX (m_X = 350 GeV) - TPMT 0.15 0.15 0.10 0.10

0.05

0.00

 $au_h au_\mu$

 au_h and au_μ : differences still under study



-0.33

-0.67

0.00

0.33

0.67

 $\frac{p_T^{TPMT} - p_T^{TARGET}}{p_T^{TARGET}}$

1.00

0.05

0.00

in $t\bar{t}$ (fakes): • $p_T^{TARGET} = p_T^{RECO}$ model learns to keep them unchanged residual

0.00

0.33

0.67

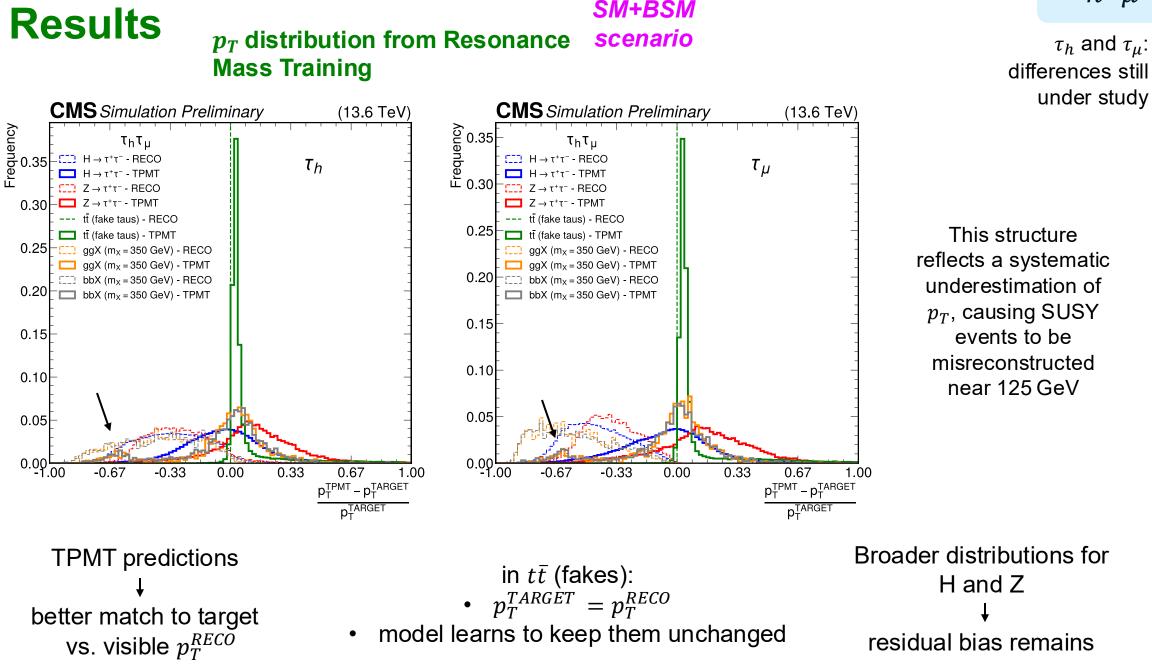
 $p_T^{TPMT} - p_T^{TARGET}$

1.00

-0.33

-0.67

Broader distributions for H and Z ↓ residual bias remains



 $\tau_h \tau_\mu$

Conclusions & Outlook

- Explored a Transformer-based approach for di-τ identification and kinematic reconstruction in SM and BSM scenarios
- The model shows promising performance, but further refinement is needed.

Key Observations:

18

- Binary-like behavior in mass reconstruction, especially H vs Z separation
- Limited smooth interpolation across overlapping mass regions.

Future developments:

- Introduce a parametric variant (mass hypothesis as input) to improve flexibility
- Focus on better generalization across mass spectra and transition regions

Thank you for the attention

References

- Bianchini, Lorenzo, et al. "Reconstruction of the Higgs mass in H→ TT events by dynamical likelihood techniques." *Journal of Physics: Conference Series*. Vol. 513. No. 2. IOP Publishing, 2014.
- [2] Qu, Huilin, and Loukas Gouskos. "Jet tagging via particle clouds." *Physical Review D* 101.5 (2020): 056019.
- [3] CMS Collaboration. "Reconstruction and identification of τ lepton decays to hadrons and v_{τ} at CMS." *Journal of Instrumentation* 11.01 (2016): P01019.
- [4] Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems* 30 (2017)
- [5] CMS Collaboration. "Particle-flow reconstruction and global event description with the CMS detector." *Journal of Instrumentation* 12.10 (2017): P10003.
- [6] CMS Collaboration, "Identification of hadronic tau lepton decays using a deep neural network," *Journal of Instrumentation*, 17 (2022): P07023