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Abstract

‘The FAIR Universe — HiggsML Uncertainty Challenge focuses on measuring
the physics propertics of clementary particles with imperfect simulators due to
dditionall leveraging
al le Al platform aining models, and hosti
machine learning competitions. Our challenge brings together the physics and

)nm“mg systematic (epistemic) uncertainties within AT techniques.
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Successor to the 2014 Higgs ML Challenge, now
targeting parameter estimation rather than pure
classification.

Objective: deliver a confidence interval on the
signal strength y while being robust to
systematics & able to quantify them.

Improvements: Larger dataset
(from 800k to ~300 M events).

Parameterised systematics
(multiple nuisance parameters).

Challenge: scale modern ML techniques to this
high-dimensional systematic landscape.
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Higgs Uncertainty Challenge
Process  Number Generated =~ LHC Events Label Data: 28 Input Features
Higgs 52101127 1015 signal . .
Z Boson 221724480 1002395  background The six nuisance parameters lead to unknown
Di-Boson 2105415 3783  background nonlinear variations in the 28 input features via
tf 12073068 44190  background simulation and reconstruction effects.
MET
Variable Mean | Sigma Range et <
Qtes 1. 0.01 [0.9,1.1] .
Qjes 1. 0.01 [0.9,1.1] ¢
soft-met 0. 1. [0, 5]
Kttbar.scale 1. 0.02 [08, 12] \
Qdiboson_scale 1. 0.25 [0.,2.]
Vokg scale 1| 0001 | [0.99,101]
Leading jet
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Higgs Uncertainty Challenge

@ Pseudo-experiments

> dataset representative of what would be measured from 10 fb~! for a given value of y and of the
Nuisance Parameters

@ Objective

> Measure signal strength parameter y
» Give correct and small 68% CI on the measurement

o Evaluation Metrics
> Interval width (w) averaged over N test sets w = ﬁ Zilil lpsai — 116,

» Coverage (c): fraction of time y is contained ¢ = ﬁ Zilil 1if pirue,i € [H16, — Hsai)
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Primary Features (PRI)

Symbol Description Symbol Description

pe Transverse momentum of the lepton 7' Pseudorapidity of the lepton

¢ Azimuthal angle of the lepton p;had Transverse momentum of the hadronic T

17 "had Pseudorapidity of the hadronic T ¢'had Azimuthal angle of the hadronic T

p? Transverse momentum of the leading jet nh Pseudorapidity of the leading jet

PN Azimuthal angle of the leading jet p? Transverse momentum of the subleading jet

2 Pseudorapidity of the subleading jet P2 Azimuthal angle of the subleading jet

N; Number of reconstructed jets Yjets PT Scalar sum of transverse momenta of all jets

prese Missing transverse momentum M Azimuthal angle of missing transverse momentum
Derived Features (DER)

Symbol Description Symbol Description

mr (L, fi{-“iss) Transverse mass of lepton and ﬁ%“iss Myis Visible invariant mass of Tj,q and ¢

pit Vector sum of pgad, pf, pmiss mfle Invariant mass of the two leading jets

AR(?, miss) Angular distance between ¢ and MET AR(Thad, miss)  Angular distance between Ty,,q and MET

AR(j1,miss)  Angular distance between j; and MET AR(jp, miss) Angular distance between j, and MET

AR(j1, Thad ) Angular distance between j; and Tj,q AR(j2, Thad) Angular distance between j, and Tjq

AR(j1, ) Angular distance between j; and ¢ AR( j2,0) Angular distance between j, and ¢

AR(j1, J2) Angular distance between j; and j, AR(Thad, ¢) Angular distance between Ty,4 and £

plot Vector sum of all visible momenta and pmiss Ypr Scalar sum of all visible momenta and pfiss

C(‘;‘jss Azimuthal centrality of P w.r.t. £, Thag Cfl Pseudorapidity centrality of the lepton w.r.t. the jets

pL/ p?“"‘d Transverse-momentum ratlo of lepton to Thad
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Overall Model Architecture.

Each epoch = 1 update by averaging over 100 parallel nuisance configurations

repeat 100 times
in parallel
over 1 epoch

n (@tes Ajes) Asoft met)
—

randomly
sampled

calculate normalize _idet N —
3D continuous . DER features globally
nuisance inject

T —— %
35 features Vet - a
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L : det
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/

o

&

o

Xunc BEEEEEE—

16 PRI features 16 PRI features -
—— Yunc |—)

—_— p—
Zunc

Daohan W




Table: Node feature assignment for final-state objects. Each node is represented by a one-hot encoding
indicating its type. Deterministic and uncertainty-aware features are assigned separately according to their
sensitivity to systematic variations. These two types of features are represented as €4et and Zunc.

Node Type Feature Type Variables Used Feature Role Node Encoding
Lepton Deterministic pT, 1, ¢ Fully specified [1,0,0,0,0]
. Deterministic 7, ¢ Spatial info [0,1,0,0,0]
Tau-jet
Uncertainty-aware pT Affected by ties [0,1,0,0,0]
. Deterministic 7, ¢ Spatial info [0,0,1,0,0]
Leading Jet
Uncertainty-aware pr Affected by ajes [0,0,1,0,0]
Deterministic , Spatial info 0,0,0,1,0
Subleading Jet a4 P [ ]
Uncertainty-aware pT Affected by ajes [0,0,0,1,0]
MET Uncertainty-aware pT, ¢ Affected by amet [0,0,0,0,1]
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Table: Edge features constructed between pairs of final-state objects, which are categorized as deterministic or
uncertainty-aware based on their sensitivity to systematic variations. These two types of features are
represented as %get and Yunc-

Edge Type Feature Name Feature Type
Tau-jet - MET AR(Thaq, miss) Uncertainty-aware

AR (¢, miss) Uncertainty-aware
Lepton - MET )

mr (£, pse) Uncertainty-aware
Jetl - MET AR(ji, miss) Uncertainty-aware
Jet2 - MET AR(j, miss) Uncertainty-aware
Tau-jet — Jetl AR(Thad, j1) Deterministic
Tau-jet — Jet2 AR(Thad, j2) Deterministic
Lepton — Jetl AR(¢, 1) Deterministic
Lepton — Jet2 AR(¢, 1) Deterministic

AR(jy, 7 Deterministic
Jetl - Jet2 ‘ F] 1f2)

mi2 Uncertainty-aware

AR(Thaa, ¢) Deterministic
Tau-jet - Lepton ph/ piad Uncertainty-aware

Myis (Thad, £) Uncertainty-aware

Daohan Wang (HEPHY V



Table: Global features constructed from three or more final-state objects. Each feature is categorized by its
defining particles and its sensitivity to systematic uncertainties. These two types of features are represented
as Zger and Zync.

Particles Involved Feature Name Feature Type

All QCD jets N; Uncertainty-aware
Tau-jet, Lepton, Jetl, Jet2, MET piet Uncertainty-aware
Tau-jet, Lepton, MET pH Uncertainty-aware
Tau-jet, Lepton, Jetl, Jet2, MET YrT Uncertainty-aware
Tau-jet, Lepton, MET Cg‘iss Uncertainty-aware
All QCD jets YjetsPT Uncertainty-aware
Lepton, Jetl, Jet2 Cf; Deterministic

gnal Strength Estimation
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Deterministic GNN Branch

Concat
1

=
global expander ,—'J — |.—' Broadcast to nodes (4096*5, 32)
Linear(1, 32) J det N

= Linear(64,32)

(4096*5, 8) | ==X L

¢ ) ~det = RelU

(4096*6, 1) | ——V 401 _idet — (3x) concat-Linear(64,32)-ReLU~aggregation / Globatmean (4096, 32)
(4096, 1) —Zdet _y’det —residual mixing with a learnable a »ReLU pool '

Message PassingH

e N T N T N O N
—_— 6,2 4096*5 edges 1-to-1 mapping edge features
Y det

Edge Construction
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(40965, 8)
(40968, 1)
(4096, 6)

Daohan

— Xunc
—Yunc

Zunc

Uncertain-aware GNN Branch
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Fusion Module

Gate 1
A R
- Linear r--« \:: Gating Modulation Con—;at‘>
(32 > 32) --=r| Sigmoid ) hyy*(1+gate)
(4096, 32) ~ - (4096, 64)
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(4096, 32) (4096, 8)
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Relative Change in Event Yields

Process Fraction[%] TES[%] v [%]

Z—=TT 95.3 6.5 0.5
tF 44 3.8 10
\'AY 0.3 53 100

Table: Relative change in event yields (up to 5¢ variations) due to TES and normalization parameters for
Z— 17, tt, and VV process in inclusive region.

Variable Mean | Sigma Range
Qtes 1. 0.01 [0.9, 1.1]
Hjes 1. 0.01 [09,1.1]

Qsoft-met 0 1. [0.,5.]

Qttbar.scale 1 0.02 [08, 1 2]

Qdiboson.scale 1 0.25 [0 2. ]

Xbkg scale 1 0.001 [0.99, 1.01]
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Analysis Regions

Region Requirements | Type Poisson yield ?U S/B
H—=tt | Z—=1T tt \'A%

inclusive - - 966.0 | 901137.5 | 41283.4 | 3433.5 | 1.02 x 1073
ph >50 GeV

highMT-VBFJet p’f >30 GeV CR1 14.7 721.7 16768.6 | 193.2 | 8.30 x 1074
mt >70 GeV
mt >70 GeV

highMT-noVBFJet-tt | veto on VBFJet | CR2 2.7 202.7 | 3607.1 | 2688 | 6.62x107*
fii>04
mt >70 GeV

highMT-noVBFJet-VV | veto on VBFJet | CR3 1.8 189.5 207.6 597.4 1.8 x 1073
fvv >0.2
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Region-wise Interpolation Tables

@ Regions: 1 inclusive Full Region + 3 Control Regions (CR1, CR2, CR3).
@ Objective: extract the signal strength y while profiling six nuisance parameters
v = (Vtes, Vjes, Vmet, Vbkg, Vit VYV )-
@ TES, JES € [0.96,1.04], MET € [0,5], 17 x 17 x 41 = 11 849 systematic nodes per region

@ Adaptive observable binning

@ Start from 100 uniform bins in the signal-class output probability.

@ Greedy merge neighbouring bins until every remaining bin contains at least 10 weighted counts
simultaneously in tt, vv, z.

@ The procedure is run independently for each region, producing region-specific bin edges: 52 bins
for FR, 14 for CR1, 15 for CR2, and 13 for CR3 after merging.

Daohan Wang (HEPHY Vienna) igy al Strength Estimation
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Parameterisation & Trilinear Interpolation

Nuisance re-mapping a — v
apes = 1+ 0.01 v, Kjes = 1+ 0.01 Vies.

— LU — O0pko *V]
Kmet = € T = 1/ ‘xbkg = e'tks bkg,

_ L0V, _ OVVEY
ay = el ayy = eTVvEYY
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Vectorised 17 x 17 x 41 trilinear interpolation (up to 4 ¢ (99.9937%))

(tesr jesz mEt) trilinear multi O {Sraw; ttraw, V Viaw, Zraw}

v

Afull = M Sraw + &1t Xpkg ttraw +ayy Xpkg VViaw + Xpkg Zraw, ACR = &1t Xpkg ttraw +ayy Xpkg VViaw + Xpkg Zraw-

Prior widths:Oyes jes met = 1; 01 = 0.02; 0y = 0.25; oy = 0.001.
The yields of all four regions are concatenated into one vector A.
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Negative Log-Likelihood

B

1
NLL(p,v) = Y [Ap(p,v) — nylog Ay (i, v)] + E||y||2 + const.

b=1
@ Profiling v at fixed

@ Global search: dual_annealing on v, € [—5,5] (met bound [In1.001,1n6]).
@ All nuisance parameters mapped to physical domain.
© Local refinement: L-BFGS-B + 5 random restarts.
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1 Scan and Confidence Interval

@ Scan grid: 1 € [0,3] (150 points). Compute profile NLL. Every 10th point uses a fresh global
optimisation based on dual_annealing; others warm-start from the previous 7.

@ Local refinement: each profile step finishes with L-BFGS-B (maxiter=150, ftol=1e-12) and up to five
random restarts.

@ Uses analytical gradients (via PyTorch autograd)

@ 68% CL limits:
ANLL(p#t) = NLL(3t) — NLLpjp, = 0.5

Roots (p16, psa) are located with Brent’s method; spline and quadratic fall-backs guarantee a solution.

@ Output: Signal strength estimate /i with 68% confidence interval [p14, ps4], along with fitted nuisance
parameters &;.

Daohan Wang (HEPHY Vienna) igy al Strength Estimation
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Toy Studies

mean (i = 0392

-

mean ji = 0.66:
true i = 0.60
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Interval and Coverage
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1o interval
< 20 interval
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S 0.6827
E o
g z 06
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= 0.2 —— 1lointerval
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HMtrue Mtrue
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Summary

@ Architecture — Dual-branch GNN:
Deterministic GNN branch for features unaffected by nuisance variations
Uncertainty-aware GNN branch for systematics-perturbed features

@ Training — The uncertainty-aware GNN branch averages over 100 different nuisance configurations for each update.

@ Interpolation — We interpolate event yields across a dense nuisance grid using region-specific templates, building a
smooth surrogate likelihood that combines all four analysis regions.

@ Measurement — The signal strength y is extracted via profile likelihood scanning over nuisance parameters. The 68%
confidence interval is defined by ANLL = 0.5.

@ Performance — Large-scale pseudo-experiments demonstrate accurate coverage and consistently narrow intervals,
validating the method’s reliability under systematic uncertainties.
Based on public leaderboard trends, our method likely ranks around 3rd place.
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