

Higgs Signal Strength Estimation with a Dual-Branch GNN under Systematic Uncertainties

Daohan Wang

Institute of High Energy Physics (HEPHY), Austrian Academy of Sciences (OeAW)

July 9, 2025

Collaborated with Minxuan He and Claudius Krause

Higgs Uncertainty Challenge

FAIR Universe HiggsML Uncertainty Challenge Competition

Wahid Bhimjil - Paolo Calafuru¹, Raganu Chakkeppal^{1,4}, Po-Wan Chang¹, Yuan - Tang Chou¹, Sascha Diefenbacher¹, Jordan Dudley⁴, Steven Farrell¹, Aishik Ghosh^{3,4}, Isabelle Guyon⁶, Chris Harris¹, Shihi Chiteh Hu¹, Elham E Khoda^{1,5}, Revin Jysac¹, Alexandre Michor¹, Benjamin Nachman¹, Peter Nugen¹, Mathis Reymon³, David Rousseau³, Benjamin Sluijte^{3,4}, Benjamin Thorne¹, Isan Ultaf², and Yulei Zhang¹

> ¹Lawrence Berkeley National Laboratory ²Université Paris-Saclay, CNRS/IN2P3, IJCLab ⁴University of Washington, Seattle ⁴University of California, Berkeley ³University of California, San Diego ⁹University of California, San Diego ⁹University of California, San Diego ⁹University California, San Diego

fair-universe@lbl.gov https://fair-universe.lbl.gov

Compiled: December 19, 2024

Abstract

The FARR Universe – HiggML Uncertainty Challenge focuses on measuring the physics properties of elementary particles with imperfect simulators due to differences in modelling systematic errors. Additionally, the challenge is leveraging a large-compute-scale of platform for braining duatests; rationing models, and houting machine learning communities to advance our understanding and methodologies in handling systematic (optionetic) uncertainties within A 14 exching east.

- Successor to the **2014 Higgs ML Challenge**, now targeting parameter estimation rather than pure classification.
- Objective: deliver a confidence interval on the signal strength μ while being robust to systematics & able to quantify them.
- Improvements: Larger dataset (from 800k to ~300 M events).
- Parameterised systematics (multiple nuisance parameters).
- Challenge: scale modern ML techniques to this high-dimensional systematic landscape.

2410.02867

AUSTRIAN ACADEMY OF SCIENCES

Higgs Uncertainty Challenge

Process	Number Generated	LHC Events	Label
Higgs Z Boson	52101127 221724480	1015 1002395	signal background
Di-Boson	2105415	3783	background
$t\bar{t}$	12073068	44190	background

Variable	Mean	Sigma	Range
$\alpha_{\rm tes}$	1.	0.01	[0.9, 1.1]
$\alpha_{\rm jes}$	1.	0.01	[0.9, 1.1]
$\alpha_{\rm soft_met}$	0.	1.	[0. <i>,</i> 5.]
α_{ttbar_scale}	1.	0.02	[0.8, 1.2]
$\alpha_{diboson_scale}$	1.	0.25	[0., 2.]
α_{bkg_scale}	1.	0.001	[0.99, 1.01]

Data: 28 Input Features

The six nuisance parameters lead to unknown nonlinear variations in the 28 input features via simulation and reconstruction effects.

Higgs Uncertainty Challenge

- Pseudo-experiments
 - dataset representative of what would be measured from 10 fb⁻¹ for a given value of µ and of the Nuisance Parameters
- Objective
 - Measure signal strength parameter μ
 - Give correct and small 68% CI on the measurement
- Evaluation Metrics
 - Interval width (ω) averaged over N test sets $\omega = \frac{1}{N_{test}} \sum_{i=1}^{N} |\mu_{84,i} \mu_{16,i}|$
 - **Coverage (c):** fraction of time μ is contained $c = \frac{1}{N_{test}} \sum_{i=1}^{N} 1$ if $\mu_{true,i} \in [\mu_{16,i} \mu_{84,i}]$

	Primary Features (PRI)					
Symbol	Description	Symbol	Description			
p_{T}^{ℓ}	Transverse momentum of the lepton	η^{ℓ}	Pseudorapidity of the lepton			
ϕ^ℓ	Azimuthal angle of the lepton	$p_{\mathrm{T}}^{ au_{\mathrm{had}}}$	Transverse momentum of the hadronic $ au$			
$\eta^{\tau_{had}}$	Pseudorapidity of the hadronic $ au$	$\phi^{ au_{ ext{had}}}$	Azimuthal angle of the hadronic $ au$			
$p_{\mathrm{T}}^{j_1}$	Transverse momentum of the leading jet	η^{j_1}	Pseudorapidity of the leading jet			
ϕ^{j_1}	Azimuthal angle of the leading jet	$p_{\mathrm{T}}^{j_2}$	Transverse momentum of the subleading jet			
η^{j_2}	Pseudorapidity of the subleading jet	ϕ^{j_2}	Azimuthal angle of the subleading jet			
Nj	Number of reconstructed jets	$\sum_{\text{jets}} p_{\text{T}}$	Scalar sum of transverse momenta of all jets			
$\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse momentum	$\phi^{ m miss}$	Azimuthal angle of missing transverse momentum			
	Derive	d Features (DER)				
Symbol	Description	Symbol	Description			
$m_{\rm T}(\ell, \vec{p}_{\rm T}^{{ m miss}})$	Transverse mass of lepton and $ec{p}_{ ext{T}}^{ ext{miss}}$	$m_{\rm vis}$	Visible invariant mass of $ au_{ ext{had}}$ and ℓ			
p_{T}^{H}	Vector sum of $p_{\rm T}^{\tau_{\rm had}}$, $p_{\rm T}^{\ell}$, $\vec{p}_{\rm T}^{\rm miss}$	$m^{j_1 j_2}$	Invariant mass of the two leading jets			
$\Delta R(\ell, miss)$	Angular distance between ℓ and MET	$\Delta R(\tau_{\rm had}, miss)$	Angular distance between $ au_{had}$ and MET			
$\Delta R(j_1, miss)$	Angular distance between j_1 and MET	$\Delta R(j_2, miss)$	Angular distance between j_2 and MET			
$\Delta R(j_1, \tau_{\rm had})$	Angular distance between j_1 and $ au_{had}$	$\Delta R(j_2, \tau_{\rm had})$	Angular distance between j_2 and $ au_{ m had}$			
$\Delta R(j_1, \ell)$	Angular distance between j_1 and ℓ	$\Delta R(j_2, \ell)$	Angular distance between j_2 and ℓ			
$\Delta R(j_1, j_2)$	Angular distance between j_1 and j_2	$\Delta R(\tau_{\rm had}, \ell)$	Angular distance between $ au_{ ext{had}}$ and ℓ			
$p_{\mathrm{T}}^{\mathrm{tot}}$	Vector sum of all visible momenta and $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$	$\sum p_{\mathrm{T}}$	Scalar sum of all visible momenta and $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$			
C_{ϕ}^{miss}	Azimuthal centrality of $\vec{p}_{T}^{\text{miss}}$ w.r.t. ℓ , τ_{had}	C_{η}^{ℓ}	Pseudorapidity centrality of the lepton w.r.t. the jet			
$p_{\mathrm{T}}^{\ell}/p_{\mathrm{T}}^{\mathrm{T}\mathrm{had}}$	Transverse–momentum ratio of lepton to τ_{had}	,				

Overall Model Architecture.

Table: Node feature assignment for final-state objects. Each node is represented by a one-hot encoding indicating its type. Deterministic and uncertainty-aware features are assigned separately according to their sensitivity to systematic variations. These two types of features are represented as \vec{x}_{det} and \vec{x}_{unc} .

Node Type	Feature Type	Variables Used	Feature Role	Node Encoding
Lepton	Deterministic	p_T, η, ϕ	Fully specified	[1, 0, 0, 0, 0]
Tau-jet	Deterministic	η, φ	Spatial info	[0, 1, 0, 0, 0]
Tau-jet	Uncertainty-aware	p_T	Affected by α_{tes}	[0, 1, 0, 0, 0]
Leading Jet	Deterministic	η, φ	Spatial info	[0, 0, 1, 0, 0]
	Uncertainty-aware	p_T	Affected by α_{jes}	[0, 0, 1, 0, 0]
Subleading Jet	Deterministic	η, φ	Spatial info	[0, 0, 0, 1, 0]
Subleading Jet	Uncertainty-aware	p_T	Affected by α_{jes}	[0, 0, 0, 1, 0]
MET	Uncertainty-aware	p_T, ϕ	Affected by α_{met}	[0, 0, 0, 0, 1]

Table: Edge features constructed between pairs of final-state objects, which are categorized as deterministic or uncertainty-aware based on their sensitivity to systematic variations. These two types of features are represented as \vec{y}_{det} and \vec{y}_{unc} .

Edge Type	Feature Name	Feature Type		
Tau-jet – MET	$\Delta R(\tau_{\rm had},{\rm miss})$	Uncertainty-aware		
Lepton – MET	$\Delta R(\ell, \text{miss})$	Uncertainty-aware		
Lepton – WET	$m_{\mathrm{T}}(\ell, p_{\mathrm{T}}^{\mathrm{miss}})$	Uncertainty-aware		
Jet1 – MET	$\Delta R(j_1, miss)$	Uncertainty-aware		
Jet2 – MET	$\Delta R(j_2, miss)$	Uncertainty-aware		
Tau-jet – Jet1	$\Delta R(\tau_{ m had}, j_1)$	Deterministic		
Tau-jet – Jet2	$\Delta R(\tau_{\rm had}, j_2)$	Deterministic		
Lepton – Jet1	$\Delta R(\ell, j_1)$	Deterministic		
Lepton – Jet2	$\Delta R(\ell, j_2)$	Deterministic		
Jet1 – Jet2	$\Delta R(j_1, j_2)$	Deterministic		
Jett – Jetz	$m^{j_1 j_2}$	Uncertainty-aware		
	$\Delta R(\tau_{\rm had}, \ell)$	Deterministic		
Tau-jet – Lepton	$p_{\mathrm{T}}^{\ell}/p_{\mathrm{T}}^{ au_{\mathrm{had}}}$	Uncertainty-aware		
	$m_{\rm vis}(\tau_{\rm had},\ell)$	Uncertainty-aware		

Table: Global features constructed from three or more final-state objects. Each feature is categorized by its defining particles and its sensitivity to systematic uncertainties. These two types of features are represented as \vec{z}_{det} and \vec{z}_{unc} .

Particles Involved	Feature Name	Feature Type		
All QCD jets	N_j	Uncertainty-aware		
Tau-jet, Lepton, Jet1, Jet2, MET	$p_{\mathrm{T}}^{\mathrm{tot}}$	Uncertainty-aware		
Tau-jet, Lepton, MET	p_{T}^{H}	Uncertainty-aware		
Tau-jet, Lepton, Jet1, Jet2, MET	$\sum p_{\mathrm{T}}$	Uncertainty-aware		
Tau-jet, Lepton, MET	$C_{\phi}^{ m miss}$	Uncertainty-aware		
All QCD jets	$\sum_{ m jets} p_{ m T}$	Uncertainty-aware		
Lepton, Jet1, Jet2	C^ℓ_η	Deterministic		

Deterministic GNN Branch

Edge Construction

AUSTRIAN

SCIENCES

Uncertain-aware GNN Branch

Edge Construction

Fusion Module

AUSTRIAN ACADEMY OF SCIENCES

Histogram of Output Probabilities

Relative Change in Event Yields

Process	Fraction [%]	TES [%]	ν [%]
$Z \rightarrow \tau \tau$	95.3	6.5	0.5
$t\overline{t}$	4.4	3.8	10
VV	0.3	5.3	100

Table: Relative change in event yields (up to 5σ variations) due to TES and normalization parameters for $Z \rightarrow \tau \tau$, $t\bar{t}$, and VV process in inclusive region.

Variable	Mean	Sigma	Range
α_{tes}	1.	0.01	[0.9, 1.1]
$\alpha_{\rm jes}$	1.	0.01	[0.9, 1.1]
α_{soft_met}	0.	1.	[0., 5.]
α_{ttbar_scale}	1.	0.02	[0.8, 1.2]
$\alpha_{diboson_scale}$	1.	0.25	[0., 2.]
α_{bkg_scale}	1.	0.001	[0.99, 1.01]

ÖAW AUSTRIAN ACADEMY OF SCIENCES

Analysis Regions

Region	Requirements	Туре	Poisson yield $\mathcal{L}\sigma$				S/B
Region	Requirements	Type	$H\! ightarrow\!\tau au$	$Z \rightarrow \tau \tau$	$t\overline{t}$	VV	570
inclusive	-	-	966.0	901 137.5	41 283.4	3 433.5	$1.02 imes 10^{-3}$
	$p_{ m T}^{j_1}\!>\!50~{ m GeV}$						
highMT-VBFJet	$p_{\rm T}^{j_2} > 30 { m GeV}$	CR1	14.7	721.7	16768.6	193.2	$8.30 imes 10^{-4}$
	$m_{\rm T}\!>\!70~{\rm GeV}$						
highMT-noVBFJet-tt	$m_{\mathrm{T}}\!>\!70~\mathrm{GeV}$	CR2	2.7	202.7	3 607.1	268.8	$6.62 imes 10^{-4}$
	veto on VBFJet						
	$\hat{f}_{t\bar{t}} > 0.4$						
highMT-noVBFJet-VV	$m_{\rm T}\!>\!70~{\rm GeV}$						
	veto on VBFJet	CR3	1.8	189.5	207.6	597.4	$1.8 imes 10^{-3}$
	$\hat{f}_{VV} > 0.2$						

Region-wise Interpolation Tables

- **Regions:** 1 inclusive Full Region + 3 Control Regions (CR1, CR2, CR3).
- Objective: extract the signal strength μ while profiling six nuisance parameters $\nu = (\nu_{\text{tes}}, \nu_{\text{jes}}, \nu_{\text{met}}, \nu_{\text{bkg}}, \nu_{\text{tt}}, \nu_{\text{VV}}).$
- TES, JES \in [0.96, 1.04], MET \in [0,5], 17 \times 17 \times 41 = 11 849 systematic nodes per region

• Adaptive observable binning

- Start from 100 uniform bins in the signal-class output probability.
- Greedy merge neighbouring bins until every remaining bin contains at least 10 weighted counts simultaneously in tt, vv, z.
- The procedure is run independently for each region, producing region-specific bin edges: 52 bins for FR, 14 for CR1, 15 for CR2, and 13 for CR3 after merging.

AUSTRIAN ACADEMY O SCIENCES

Parameterisation & Trilinear Interpolation

Nuisance re-mapping $\alpha \rightarrow \nu$

$$\begin{split} \alpha_{tes} &= 1 + 0.01 \, \nu_{tes}, \quad \alpha_{jes} = 1 + 0.01 \, \nu_{jes}, \\ \alpha_{met} &= e^{\nu_{met}} - 1, \qquad \alpha_{bkg} = e^{\sigma_{bkg} * \nu_{bkg}}, \\ \alpha_{tt} &= e^{\sigma_{tt} * \nu_{tt}}, \qquad \alpha_{VV} = e^{\sigma_{VV} * \nu_{VV}} \end{split}$$

Vectorised $17 \times 17 \times 41$ trilinear interpolation (up to 4 σ (99.9937%))

 $(tes, jes, met) \xrightarrow{_trilinear_multi()} \{S_{raw}, tt_{raw}, VV_{raw}, Z_{raw}\}$

 $\lambda_{\text{Full}} = \mu S_{\text{raw}} + \alpha_{tt} \alpha_{bkg} t t_{\text{raw}} + \alpha_{VV} \alpha_{bkg} V V_{\text{raw}} + \alpha_{bkg} Z_{\text{raw}}, \quad \lambda_{\text{CR}} = \alpha_{tt} \alpha_{bkg} t t_{\text{raw}} + \alpha_{VV} \alpha_{bkg} V V_{\text{raw}} + \alpha_{bkg} Z_{\text{raw}}.$

Prior widths: $\sigma_{tes,jes,met} = 1$; $\sigma_{tt} = 0.02$; $\sigma_{vv} = 0.25$; $\sigma_{bkg} = 0.001$. The yields of all four regions are concatenated into one vector λ .

Negative Log-Likelihood

$$\mathrm{NLL}(\mu, \boldsymbol{\nu}) = \sum_{b=1}^{B} \left[\lambda_b(\mu, \boldsymbol{\nu}) - n_b \log \lambda_b(\mu, \boldsymbol{\nu})\right] + \frac{1}{2} \|\boldsymbol{\nu}\|^2 + \mathrm{const.}$$

- **Profiling** ν at fixed μ
 - **O** Global search: dual_annealing on $\nu_k \in [-5, 5]$ (met bound $[\ln 1.001, \ln 6]$).
 - In All nuisance parameters mapped to physical domain.
 - S Local refinement: L-BFGS-B + 5 random restarts.

(1)

μ Scan and Confidence Interval

- Scan grid: μ ∈ [0,3] (150 points). Compute profile NLL. Every 10th point uses a fresh global optimisation based on dual_annealing; others warm-start from the previous *ν̂*.
- Local refinement: each profile step finishes with L-BFGS-B (maxiter=150, ftol=1e-12) and up to five random restarts.
- Uses analytical gradients (via PyTorch autograd)
- 68% CL limits:

$$\Delta NLL(\mu) = NLL(\mu) - NLL_{min} = 0.5$$

Roots (p_{16}, p_{84}) are located with Brent's method; spline and quadratic fall-backs guarantee a solution.

• **Output:** Signal strength estimate $\hat{\mu}$ with 68% confidence interval [p_{16} , p_{84}], along with fitted nuisance parameters $\hat{\alpha}_i$.

AUSTRIAN ACADEMY OF SCIENCES

Toy Studies

Daohan Wang (HEPHY Vienna)

Higgs Signal Strength Estimation

AUSTRIAN ACADEMY OF SCIENCES

ö

Toy Studies

Interval and Coverage

- Architecture Dual-branch GNN: Deterministic GNN branch for features unaffected by nuisance variations Uncertainty-aware GNN branch for systematics-perturbed features
- Training The uncertainty-aware GNN branch averages over 100 different nuisance configurations for each update.
- Interpolation We interpolate event yields across a dense nuisance grid using region-specific templates, building a smooth surrogate likelihood that combines all four analysis regions.
- **Measurement** The signal strength μ is extracted via profile likelihood scanning over nuisance parameters. The 68% confidence interval is defined by Δ NLL = 0.5.
- **Performance** Large-scale pseudo-experiments demonstrate accurate coverage and consistently narrow intervals, validating the method's reliability under systematic uncertainties. Based on public leaderboard trends, our method likely ranks around **3rd place**.