# Bridging Experiments, Narrowing Uncertainties: When DUNE Meets Hyper-K to unveil insights into 2-3 Oscillation Sector

Ritam Kundu, Sanjib Kumar Agarwalla, Masoom Singh

Institute of Physics, Bhubaneswar, India Based on JHEP 10 (2024) 243

July 08, 2025

Contribution ID:- 491 EPS-HEP 2025 - Marseille, France



Ritam Kundu, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintic 1/29

# Outline

- Introduction and motivation
  - Status of current oscillation parameters
  - Deviation of  $\theta_{23}$  from maximal mixing
  - ▶ Role of appearance  $(\nu_{\mu} \rightarrow \nu_{e})$  and disappearance  $(\nu_{\mu} \rightarrow \nu_{\mu})$  oscillation channels in probing deviation from maximal mixing
- egarding this work
  - ► Sensitivity of DUNE and Hyper-K in determining deviation from maximal θ<sub>23</sub> with variable exposure
  - $\blacktriangleright$  Precision measurements in atmospheric oscillation parameters  $\theta_{23}$  and  $\Delta m^2_{31}$

Contribution ID:- 491 EPS-HEP 2025 - Ma

- Wrong  $\theta_{23}$  octant exclusion
- Allowed regions in  $(\sin^2 \theta_{23} \Delta m_{31}^2)$  and  $(\sin^2 \theta_{23} \delta_{CP})$  plane.
- Summary and Conclusions.

#### Matter Effect



- Neutrinos interact with matter by coherent forward elastic scattering.
- Charge current interaction of ν<sub>e</sub> with electrons creates an extra effective matter term for ν<sub>e</sub>, i.e, A=2√2G<sub>F</sub>N<sub>e</sub>E.
- Matter term changes sign when we switch from neutrino to anti-neutrino mode.
- Matter term modifies oscillation probability differently depending on the sign of  $\Delta m^2$ .
- The Hamiltonian corresponding to interaction with matter via CC-interaction is,  $H = U[\frac{1}{2E} \text{diag}(m_1^2, m_2^2, m_3^2)]U^{\dagger} + \text{diag}(V_{CC}, 0, 0)$

Contribution ID:- 491 EPS-HEP 2025 - Ma

#### Present global-fit scenario in 3*v*-paradigm



Ritam Kundu, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 4/29

### Deviation of $\theta_{23}$ from maximal mixing



•  $\mu \rightarrow \tau$  symmetry

$$\begin{array}{l} |\nu_2\rangle = \cos\theta_{23} \ |\nu_{\mu}\rangle + \sin\theta_{23} \ |\nu_{\tau}\rangle \\ |\nu_3\rangle = -\sin\theta_{23} \ |\nu_{\mu}\rangle + \cos\theta_{23} \ |\nu_{\tau}\rangle \end{array}$$

• If  $\theta_{23} = 45^{\circ}$ , i.e for MM,  $\nu_2$  and  $\nu_3$  have equal contributions of  $\nu_{\mu}$  and  $\nu_{\tau}$ .

https://arxiv.org/abs/hep-ph/9604415

Contribution ID:- 491 EPS-HEP 2025 - Ma

<u>Ritam Kundu</u>, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintic 5/29

# Deviation of $\theta_{23}$ from maximal mixing



| $\nu$ Mixing Model    | $\theta_{23}$ | $	heta_{13}$ | $	heta_{12}$ |
|-----------------------|---------------|--------------|--------------|
| Tri-bimaximal         | 45°           | 0°           | 35°          |
| Bi-maximal            | 45°           | 0°           | 45°          |
| Tri-bimaximal Cabibbo | 45°           | 8.54°        | 35°          |
| Bi-large              | 39°           | 12.12°       | 39°          |
| Bi-trimaximal         | 36.23°        | 12.18°       | 36.23°       |

 Deviation from maximal mixing of θ<sub>23</sub> indicates the exclusion of several theoritical neutrino mixing models.

<u>Ritam Kundu</u>, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintic 6/29

Contribution ID:- 491 EPS-HEP 2025 - Ma

# Considered values of neutrino oscillation parameters in our work

| Parameters                     | Best-fit | $1\sigma$ range | $3\sigma$ range |       |
|--------------------------------|----------|-----------------|-----------------|-------|
| $\Delta m_{21}^2/10^{-5} eV^2$ | 7.36     | 7.21-7.52       | 6.93-7.93       | Fixed |
| $\sin^2 \theta_{12}/10^{-1}$   | 3.03     | 2.90-3.16       | 2.63-3.45       | Fixed |
| $\sin^2 \theta_{13}/10^{-2}$   | 2.23     | 2.17-2.30       | 2.04-2.44       | Fixed |
| $\sin^2 \theta_{23}/10^{-1}$   | 4.55     | 4.40-4.73       | 4.16-5.99       | Free  |
| $\Delta m_{31}^2/10^{-3} eV^2$ | 2.522    | 2.490-2.545     | 2.436-2.605     | Free  |
| $\delta_{\rm CP}/^{\circ}$     | 223      | 200-256         | 139-355         | Free  |

Capozzi et al., https://arxiv.org/abs/2107.00532

Contribution ID:- 491 EPS-HEP 2025 - Ma

Ritam Kundu, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 7/29

#### Roles of different channels in our study

• The appearance probability  
for 
$$\nu_{\mu} \rightarrow \nu_{e}$$
 channel  
$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} \theta_{23} \sin^{2}(2\theta_{13}) \frac{\sin^{2}[(1-\hat{A})\Delta]}{(1-\hat{A})^{2}}$$
$$-\alpha \sin(2\theta_{13})\zeta \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})^{2}}$$
$$+\alpha \sin(2\theta_{13})\zeta \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})^{2}}$$

• The disappearance probability for  $\nu_{\mu} \rightarrow \nu_{\mu}$  channel

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^{2}(2\theta_{23}) \sin^{2}(\Delta)$  $+ (\alpha \Delta) c_{12}^{2} \sin^{2}(2\theta_{23}) \sin(2\Delta)$ 

$$-2lpha\zeta ext{cos}(\delta_{CP}) ext{cos}(\Delta) rac{ ext{sin}(\hat{A}\Delta)}{\hat{A}} rac{ ext{sin}[(\hat{A}-1)\Delta]}{(\hat{A}-1)}$$

$$\alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \approx 0.033$$

$$\Delta = \Delta m_{31}^2 L/4E$$

$$\zeta = \cos\theta_{13}\sin2\theta_{12}\sin2\theta_{23}$$

Appearance channel helps in  $\theta_{23}$  octant exclusion. Disappearance channel helps in the precision

of  $\theta_{23}$ .

$$\hat{A} = \pm rac{2\sqrt{2}G_F N_e E}{\Delta m_{31}^2}$$

 $+\frac{2}{(\hat{A}-1)}\alpha\zeta\cos(2\theta_{23})\cos(\delta_{CP})\sin(\Delta)[\hat{A}\sin(\Delta)-\frac{\sin(\hat{A}\Delta)}{\hat{A}}\cos((\hat{A}-1)\Delta)]$   $\stackrel{\square}{\longrightarrow} Contribution ID- 491 EPS-HEP 2025 - Mathematical Structure (1.5) - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025 - 2025$ 

# Salient features of DUNE and Hyper-K

| Features               | DUNE                        | Hyper-K                                 |  |
|------------------------|-----------------------------|-----------------------------------------|--|
| Baseline length        | 1300 km                     | 295 km                                  |  |
|                        | (Larger matter effect)      | (Smaller matter effect)                 |  |
| Detector Mass          | 40 kt                       | 187 kt                                  |  |
|                        | (Smaller statistics)        | (Larger statistics)                     |  |
| Detection technique    | LArTPC                      | Water Cherenkov                         |  |
| Beam type              | Wide-band, on-axis          | Narrow-band, off-axis (2.5 $^{\circ}$ ) |  |
| Beam Power             | 1.2 MW                      | 1.3 MW                                  |  |
| Run time               | 5 yrs $ u$ + 5 yrs $ar{ u}$ | 2.5 yrs $ u$ + 7.5 yrs $ar{ u}$         |  |
| P.O.T/year             | $1.1	imes10^{21}$           | $2.7	imes10^{21}$                       |  |
| Syst. Uncertainty in   |                             |                                         |  |
| App. (Disapp.) channel | 2% (5%)                     | 5% (3%)                                 |  |

Contribution ID:- 491 EPS-HEP 2025 - Ma

Ritam Kundu, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 9/29

# Deviation from maximal $\theta_{23}$



$$\Delta \chi^{2}_{\rm DM} = \min_{\delta_{\rm CP}, \Delta m^{2}_{31}} \left\{ \chi^{2} \left( \sin^{2} \theta^{\rm test}_{23} = 0.5 \right) - \chi^{2} \left( \sin^{2} \theta^{\rm true}_{23} \in [0.4, 0.6] \right) \right\}$$

• In Nature, if true  $\sin^2 \theta_{23}$  attains the lower value of the current  $1\sigma$  uncertainty (0.473), only DUNE+Hyper-K can achieve  $3\sigma$  sensitivity of non-maximal  $\theta_{23}$  with the present benchmark values.

Contribution ID:- 491 EPS-HEP 2025 - Ma

Ritam Kundu, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 10/29

# Deviation from maximal $\theta_{23}$ as the function of exposure



- The range of true values of  $\sin^2 \theta_{23}$  that can be differentiated from MM choices, by DUNE + Hyper-K with just  $\sim 0.4$  of their nominal exposures, cannot be achieved by either of them individually even at their respective full exposures.
- At lower exposure, Hyper-K always performs better than DUNE irrespective of the values of  $\theta_{23}$ . At nominal exposure, they perform almost in same way.

Contribution ID:- 491 EPS-HEP 2025 - Ma

Ritam Kundu, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 11/29

# Potential of exclusion of the wrong octant of $\theta_{23}$



- At lower confindence, Hyper-K wins due to larger statistics whereas, at higher confidence DUNE wins due to lesser systematics in appearance channel.
- The combined setup of DUNE and Hyper-K boosts their individual performances to exclude the wrong octant solution.
   Contribution ID: 491 EPS-HEP 2025 Within

<u>Ritam Kundu</u>, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 12 / 29

# Definition of $\Delta \chi^2_{\rm octant}$

• For 
$$\sin^2 \theta_{23}$$
 (true)<0.5 (LO),

$$\Delta \chi^{2}_{\text{octant}} = \min_{(\vec{\lambda})} \left\{ \chi^{2} \left( \sin^{2} \theta^{\text{true}}_{23} = [0.4, 0.5) \right) - \chi^{2} \left( \sin^{2} \theta^{\text{test}}_{23} = (0.5, 0.6] \right) \right\}$$

• For  $\sin^2 \theta_{23}$  (true)>0.5 (HO),

$$\Delta \chi^{2}_{\text{octant}} = \min_{(\vec{\lambda})} \left\{ \chi^{2} \left( \sin^{2} \theta^{\text{true}}_{23} = (0.5, 0.6] \right) - \chi^{2} \left( \sin^{2} \theta^{\text{test}}_{23} = [0.4, 0.5) \right) \right\}$$

where,  $\lambda = \delta_{\rm CP}, \ \Delta m_{31}^2$  is the marginalized parameters.

Contribution ID:- 491 EPS-HEP 2025 - Ma

Ritam Kundu, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 13/29

# Efficacy of DUNE and Hyper-K in octant exclusion at various exposures



• With just 0.25 times of the benchmark exposure of the individual experiments, the combined set up can exclude the wrong octant for more than half of the currently allowed  $\sin^2 \theta_{23}$ .

Contribution ID:- 491 EPS-HEP 2025 - Ma

Ritam Kundu, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 14/29

# Precision measurement of $heta_{23}$ and $\Delta m^2_{31}$



The combination of DUNE and Hyper-K outperforms their performances in isolation to the precision measurement of θ<sub>23</sub> and Δm<sup>2</sup><sub>31</sub>.

<u>Ritam Kundu</u>, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 15 / 29

# Definition of Relative $1\sigma$ precision and $\Delta \chi^2_{PM}$

The relative  $1\sigma$  precision in the measurement of oscillation parameters  $\zeta$  is estimated as follows:

$$p(\zeta) = rac{\zeta^{ ext{max}} - \zeta^{ ext{min}}}{6.0 imes \zeta^{ ext{true}}} imes 100\%.$$

 $\zeta^{\rm max}$  and  $\zeta^{\rm min}$  are the allowed  $3\sigma$  upper and lower bounds, respectively.

$$\Delta \chi^{2}_{\mathsf{PM, } \sin^{2}\theta_{23}} = \min_{(\delta_{CP}, \Delta m^{2}_{31})} \left\{ \chi^{2} \left( \sin^{2}\theta^{\mathrm{true}}_{23} \in [0.4, 0.6] \right) - \chi^{2} \left( \sin^{2}\theta^{\mathrm{test}}_{23} = [0.455] \right) \right\},$$

$$\Delta \chi^{2}_{\mathsf{PM, }\Delta m^{2}_{31}} = \min_{\left(\delta_{CP}, \sin^{2}\theta_{23}\right)} \left\{ \chi^{2} \left( \sin^{2}\theta^{\mathrm{true}}_{23} \in [2.4, 2.6] \times 10^{-3} \right) - \chi^{2} \left( \sin^{2}\theta^{\mathrm{test}}_{23} = 2.522 \times 10^{-3} \right) \right\}$$

|                      | Relative $1\sigma$ precision (%) |      |         |               |                        |      |  |
|----------------------|----------------------------------|------|---------|---------------|------------------------|------|--|
| Parameter            | HK                               | DUNE | HK+DUNE | $T2K+NO\nu A$ | Capozzi <i>et al</i> . | JUNO |  |
| $\sin^2 \theta_{23}$ | 1.18                             | 1.40 | 0.88    | 7.10          | 6.72                   | —    |  |
| $\Delta m_{31}^2$    | 0.25                             | 0.31 | 0.20    | 0.99          | 1.09                   | 0.2  |  |

NavasNicolas:2023fza

Contribution ID:- 491 EPS-HEP 2025 - Mi

<u>Ritam Kundu</u>, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 16 / 29

#### Performance of measuring precision at various exposures



<u>Ritam Kundu</u>, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 17 / 29

# Allowed regions in $\sin^2 \theta_{23} - \Delta m_{31}^2$ plane



 The combination of DUNE and Hyper-K can exclude the HO only in antineutrino mode at 3σ C.L. breaking sin<sup>2</sup> θ<sub>23</sub> - δ<sub>CP</sub> degeneracy due to higher ν̄ statistics in Hyper-K. So, majority of the appearance events are free from fake (matter-induced) CP-phase.

• HO can be ruled out when both  $\nu$  and  $\bar{\nu}$  modes are considered together.

Contribution ID:- 491 EPS-HEP 2025 - Ma

<u>Ritam Kundu</u>, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 18 / 29

# Allowed regions in $\sin^2 \theta_{23} - \delta_{\rm CP}$ plane



Ritam Kundu, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 19/29

# Allowed regions in $\sin^2\theta_{23}-\Delta m^2_{32}$ plane given by the other experiments



Ritam Kundu, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 20 / 29

Contribution ID:- 491 EPS-HEP 2025 - Mi

### Summary

- Ongoing long-baseline and atmospheric experiments (e.g.- T2K, NO $\nu$ A, MINOS+, Super-K etc.) strongly suggest deviation from MM of  $\theta_{23}$ .
- DUNE has large matter effect so is expected to measure Δm<sup>2</sup><sub>31</sub> precisely. But the larger matter effect induces fake CP-asymmetry which is negligible in Hyper-K.
- The disappearance statistics of Hyper-K is larger. So, Hyper-K is expected measure  $\theta_{23}$  precisely. But the combined setup improves the present achievable precision of sin<sup>2</sup>  $\theta_{23}$  and  $\Delta m_{31}^2$  by a factor of 7 and 5, respectively.
- Combination of DUNE and Hyper-K outperforms their isolated performances to establish non-maximal  $\theta_{23}$ . Furthermore, the range of true values of  $\sin^2 \theta_{23}$  that can be differentiated from MM choices, by DUNE + Hyper-K with just  $\sim 0.4$  of their nominal exposures, cannot be achieved by either of them individually even at their respective full exposures.
- With only 0.25 times of the benchmark exposure of the standalone experiments, the combination of DUNE and Hyper-K can exclude the wrong octant of  $\theta_{23}$  for more than half of the currently allowed sin<sup>2</sup>  $\theta_{23}$ .
- DUNE+Hyper-K can exclude the wrong octant solution with only antineutrino mode due to the complementarity between DUNE and Hyper-K.

Contribution ID:- 491 EPS-HEP 2025 - Ma



#### Total event rates in DUNE and Hyper-K



Ritam Kundu, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintic 23 / 29

# Total number of events in DUNE and Hyper-K

| Channe  | el          | LO $(\sin^2 \theta_{23} = 0.455)$ |                  | MM $(\sin^2 \theta_{23} = 0.5)$ |              | HO $(\sin^2 \theta_{23} = 0.599)$ |               |
|---------|-------------|-----------------------------------|------------------|---------------------------------|--------------|-----------------------------------|---------------|
|         |             | DUNE                              | Hyper-K          | DUNE                            | Hyper-K      | DUNE                              | Hyper-K       |
| App.    | ν           | 1601 [1586]                       | 1598 [1588]      | 1729 [1712]                     | 1725 [1713]  | 2004 [1983]                       | 1996 [1981]   |
|         | $\bar{\nu}$ | <b>297</b> [187]                  | <b>919</b> [755] | <b>328</b> [209]                | 1021 [844]   | <b>399</b> [260]                  | 1251 [1044]   |
| Disapp. | ν           | 15529 [14286]                     | 10064 [9487]     | 15209 [13974]                   | 9628 [9057]  | 15857 [14597]                     | 10661 [10074] |
|         | $\bar{\nu}$ | 9008 [4433]                       | 13949 [8985]     | <b>8884</b> [4333]              | 13541 [8643] | 9252 [4648]                       | 14613 [9553]  |

Table: Total (Signal + Background) appearance and disappearance event rates in DUNE and Hyper-K assuming 480 kt·MW·years and 2431 kt·MW·years of exposure, respectively. Events in parenthesis does not include the effect of wrong-sign contamination. The events are simulated by General Long Baseline Experiment Simulator (GLoBES).

- Contribution of wrong sign events is more in  $\bar{\nu}$  mode than  $\nu$  due to the cross-section suppression.
- Initially pions or kaons are produced due to pp or pn collision. Positive chaged mesons are abundant than the negative one. Hence, contamination of ν in ν beam is more.

<u>Ritam Kundu</u>, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 24/29

Definition of  $\chi^2$  used

$$\chi^2 = \min_{(\vec{\zeta_s},\vec{\zeta_b})} \left\{ 2 \sum_{i=1}^n (\tilde{y_i} - x_i - x_i \ln \frac{\tilde{y_i}}{x_i}) + \zeta_s^2 + \zeta_b^2 \right\},\$$

where, n is the total number of bins and

 $\tilde{y}_i(\{\omega, \alpha_{e\mu}\}, \{\zeta_s, \zeta_b\}) = N_i^{th}(\{\omega, \alpha_{e\mu}\})[1 + \pi^s \zeta_s] + N_i^b(\{\omega, \alpha_{e\mu}\})[1 + \pi^b \zeta_b]$ where,

- $N_i^{th}(\{\omega, \alpha_{e\mu}\}) =$  Predicted no. of events in i-th bin for a set of osc. params.  $\omega$  and for a given value of  $\alpha_{e\mu}$
- N<sup>b</sup><sub>i</sub>({ω, α<sub>eµ</sub>}) = No. of background events in the i-th bin where CC background depends on ω and α<sub>eµ</sub> but NC does not
- $\pi^{s}, \pi^{b} = Systematic errors in signal and background$
- $\zeta_s, \zeta_b =$  'Pulls' due to systematic errors in signal and background respectively
- x<sub>i</sub> = N<sub>i</sub><sup>ex</sup> + N<sub>i</sub><sup>b</sup> (where, N<sub>i</sub><sup>ex</sup> = No. of observed CC signal events in the i-th bin, N<sub>i</sub><sup>b</sup> = Same for the background)
   https://arxiv.org/pdf/1509.03517.pdf
   Contribution ID: 491 EPS-HEP 2025 (Mathematical States)

### Effect of Systematics of DUNE in probing non-maximal $\theta_{23}$



Contribution ID:- 491 EPS-HEP 2025 - Ma

Ritam Kundu, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintic 26 / 29

# Table of systematics in DUNE

| True                 | Channels     | 2%, 5% | 0%, 0% | 5%, 5% | 5%, 10% | 10%, 10% |
|----------------------|--------------|--------|--------|--------|---------|----------|
| $\sin^2 \theta_{23}$ |              |        |        |        |         |          |
|                      | App.+Disapp. | 17.64  | 24.13  | 16.88  | 16.74   | 15.42    |
| 0.455                | App.         | 3.52   | 4.05   | 2.33   | 2.33    | 1.05     |
| (Best-fit)           | Disapp.      | 14.31  | 18.79  | 14.31  | 14.16   | 14.16    |
|                      | App.+Disapp. | 4.28   | 5.72   | 3.88   | 3.84    | 3.42     |
| 0.473                | App.         | 1.27   | 1.47   | 0.84   | 0.84    | 0.38     |
| $(1\sigma$           | Disapp.      | 2.99   | 3.88   | 2.99   | 2.97    | 2.97     |
| upper                |              |        |        |        |         |          |
| bound)               |              |        |        |        |         |          |

Contribution ID:- 491 EPS-HEP 2025 - Ma

Ritam Kundu, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 27 / 29

#### Neutrino mixing in three-flavor oscillation

• Flavor and mass eigen-states are linearly combined as

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
(1)

The three flavor neutrino oscillation is given by

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j < i} Re(U_{\alpha i}U_{\beta i}^*U_{\alpha j}^*U_{\beta j})\sin^2(1.27\Delta m_{ij}^2L/E)$$
$$-2 \sum_{j < i} Im(U_{\alpha i}U_{\beta i}^*U_{\alpha j}^*U_{\beta j})\sin(2.54\Delta m_{ij}^2L/E)$$

where,  $\Delta m_{ij}^2 = m_i^2 - m_j^2$  (in eV<sup>2</sup>), L is the baseline length (in km), and E is the energy of the neutrino (in GeV).

<u>Ritam Kundu</u>, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 28/29

#### Parametrization of PMNS matrix

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix is parametrized by three independent mixing angles ( $\theta_{23}$ ,  $\theta_{13}$ , and  $\theta_{12}$ ,), two independent mass-squared difference [Solar mass-squared difference ( $\Delta m_{21}^2$ ), Atmospheric mass-squared difference ( $\Delta m_{31}^2$ )] and one  $\delta_{CP}$ phase.
- For the non-zero value of  $\theta_{13}$ , we have got  $3\nu$ -paradigm in neutrino oscillation.
- The (3×3) matrices in the red, green, and blue color are called "1-2 sector" or Solar Sector, "1-3 sector" or Reactor Sector, and "2-3 sector" or Atmospheric Sector.

Maki, Z; Nakagawa, M.; Sakata, S. (1962)

Contribution ID:- 491 EPS-HEP 2025 - Ma

<u>Ritam Kundu</u>, Sanjib Kumar Agarwalla, MascBridging Experiments, Narrowing Uncertaintie 29 / 29