

MUON NEUTRINO INTERACTION STUDIES WITH SND@LHC DETECTOR

Neutrinos at the LHC

Feasibility of high energy neutrino studies at LHC has been investigated since the **90**'s

- \rightarrow Possibility to study pp \rightarrow vX in an **unexplored range**
 - → High v energies: E_v [10²,10³] GeV
- \rightarrow Large v flux in forward region from pp collisions

Currently, two experiment in complementary ranges:

- → **FASERv** on axis: $\eta > 9$
- → Scattering and Neutrino Detector at the LHC slightly off axis: $7.2 < \eta < 8.4$

PRL 122 (2019) 041101

SND@LHC physics goal

SND@LHC studies all neutrino flavours at TeV energies

- ightarrow Measure charm production at high η (gg ightarrow cc)
 - \rightarrow Given the η region, the majority of vs is from charmed hadrons decay
- \rightarrow High-energy neutrino cross section measurements
- $\rightarrow \nu_{\tau}$ observations
- \rightarrow Test lepton flavour universality measuring ν_e/ν_{μ} and ν_e/ν_{τ}
- \rightarrow Direct search of **feebly-interacting particles** (FIPs)

	Neutrinos in acceptance		CC neutrino interactions		
Flavour	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield	
$ u_{\mu}$	130	$3.0 imes 10^{12}$	452	910	
$\bar{ u}_{\mu}$	133	$2.6 imes 10^{12}$	485	360	
ν_e	339	$3.4 imes 10^{11}$	760	250	
$\bar{ u}_e$	363	$3.8 imes 10^{11}$	680	140	
$ u_{ au}$	415	$2.4 imes 10^{10}$	740	20	
$ar{ u}_{ au}$	380	2.7×10^{10}	740	10	
TOT		4.0×10^{12}		1690	

Expected neutrino interaction in Run 3: 250 fb⁻¹

The detector: location

480 m away from the ATLAS interaction point (IP1) in the TI18 tunnel

→ Shielded by 100 m rock
 → LHC magnet deflects charged particles
 ↓
 Neutrinos and FIPs reach the detector

The detector

Hybrid detector composed of:

The detector

Hybrid detector composed of:

- \rightarrow Veto system
 - → Since 2024: 3 planes of scintillating bars to tag incoming charged particles

Veto System Upgrade

Inefficiency **optimal value** in the 2022-23 period was $(7.8 \pm 2.8) \times 10^{-8}$ achieved on a fiducial area of 35×35 cm² → target coverage of ~ 64%.

In Year End Technical Stop of 2023-24 a **3**rd **veto plane** was added

The 3^{rd} plane has **vertical** bars to reduce overlapping area \rightarrow minimizes signal loss due to spatial and temporal coincidences

G. Paggi

The detector

Hybrid detector composed of:

- \rightarrow Veto system
 - → 3 planes of scintillating bars to tag incoming charged particles
- → Target with vertex detector and electromagnetic calorimeter
 - → Emulsion plates interleaved with tungsten (Emulsion cloud chamber) for tracking and vertex identification
 - → Scintillating fibers (SciFi) for **time and** calorimetric information

The detector

Hybrid detector composed of:

- \rightarrow Veto system
 - → 3 planes of scintillating bars to tag incoming charged particles
- → Target with vertex detector and electromagnetic calorimeter
 - → Emulsion plates interleaved with tungsten (Emulsion cloud chamber) for tracking and vertex identification
 - → Scintillating fibers (SciFi) for **time and** calorimetric information
- $\rightarrow\,$ Hadronic calorimeter and muon system
 - $\rightarrow\,$ 5+3 scintillator planes read by SiPMs interleaved with iron
 - \rightarrow 5 US: horizontal bars, focus on **calorimeter**
 - → 3 DS: horizontal and vertical bars, focus on muon tracking

Upgrade of Muon system

Ongoing analyses confirm a need for better muon tracking \rightarrow in 2024 two drift chambers with CMS DT technology were installed

Aim of reducing resolution from \sim 3 cm to \sim 1.5 cm

- Offline event matching validated
- Track reconstruction development ongoing

Hadron calorimeter calibration

vN collisions produce hadronic showers \rightarrow estimate the energy deposited in both the target and the calorimeter

Test beam in 2023 to calibrate with hadrons beam at various energies reaching a resolution of **12-22%**

G. Paggi

SND@LHC Data

- Electronic detectors:
 - 2025 (so far): Recorded 10 fb⁻¹
 - 2022 2024: Recorded 187 fb⁻¹
 - 96% uptime
- Emulsion detector:
 - 14 targets exposed in 2022 2024
 - ~170 fb⁻¹ integrated
 - 5700 emulsion films (210 m²) exposed and developed
- Unexpected increase in the muon flux in 2024.
 - Doubled the target replacement rate.
 - Instrumented only the lower half of the target.
 - Keep 65% of neutrino interactions.
 - Situation improved in 2025, but rates are still
 40% higher than in 2022 and 2023.

Emulsion data analysis

UNIVERSITA DI BOLOGNA

Neutrino search in emulsion:

- Achieved position resolution 0.2 μm
- Vertices search ongoing on reconstructed data
 - Muon neutrinos
 - Electron neutrino
 - Muon DIS → crucial for background studies

SND@LHC Preliminary

μ analysis with electronic detector

Muon analysis

- **Passing muons:** Muon flux is important for detector operations and physics analyses
 - Main experimental backgrounds are due to muon interactions
 - Measurement of flux with 2022 data (<u>Eur. Phys. J. C (2024) 84: 90</u>): Excellent agreement between all subdetectors, including emulsion
- **Passing muons in heavy ions runs:** Softer energy spectrum due to different LHC optics
 - Cross-check of detector performance
 - Further validation of the background model
- Muon trident cross-section measurement: look for Onur Durhan's poster
- Muon DIS in emulsion: discussed before

v analysis with electronic detector

Recently published:

- 0μ final states: the first observation of non- ν_{μ} CC neutrino interaction using electronic detectors at the LHC PRL 134 231802 (2025)
- Signal: veCC and NC interactions
 - Expected signal: 7.2 events \rightarrow 4.9 ν_e CC, 2.2 NC, 0.1 ν_{τ} CC
 - Expected significance: 5.5 σ
- Total expected background: 0.32 ± 0.06 events
 - Neutral hadrons: 0.015 events \rightarrow constrained by control region data
 - Neutrino background: 0.30 events \rightarrow due to ν_{μ} CC interactions

Number of events observed: 9 Observation significance: 6.4 σ

Muon neutrino analysis

- Published: Observation of collider muon neutrinos with the SND@LHC experiment, PRL 131 031802 (2023)
 - On 2022 data, 36.8 fb⁻¹
 - Observed 8 ν_{μ} interaction candidates
- Ongoing: Update on 2022+2023 dataset
 - Larger statistic: 68.8 fb⁻¹
 - Optimized fiducial volume cuts \rightarrow acceptance 18% up from 7.5%
 - Signal: 19.1± 4.1 (syst) ± 4.4 (stat)
 - Neutral hadrons: 0.25 ± 0.06
 - Passing muon background: 1.53
 Number of events observed: 32

Goal: update the CC ν_{μ} study with the 2024 SND@LHC data and exploiting the upgraded veto system and new algorithms developed on 2023 test beam data

2024 dataset: SND@LHC recorded 119 fb⁻¹ \rightarrow **1.75x dataset** 2022+2023

Given the large sample \rightarrow selection method and background rejection* are developed on a subsample of ~20 fb⁻¹ keeping the rest of the data blinded

*Use data also for **undetected** muon background estimation \rightarrow reversing veto requirements

2024 v_{μ} update: event selection

Aim:

- ν_{μ} sample: find the cleanest set of events to characterize the main features of a neutrino interaction For now we require:
- No hit in the veto system in u_{μ} sample
- Activity in all us planes → ensure **muon is crossing the whole detector**
- Two consecutive planes to match the shower tag criteria → minimum number of hits close to each other
- At least a reconstructed track that:
 - Extrapolated (x,y) to the scifi wall in which the shower start is tagged inside the target region
 - Extrapolated (x,y) is close to computed *centroid* \equiv average of hits position, weighted by signal
 - Extrapolated (x,y) with centroid correction to the veto is in the active area

Given **new veto inefficiency** \rightarrow using a larger fiducial area of 34×35 cm² instead of 25×26 cm² of 2022-23 analysis

Work in progress!

Istituto Nazionale di Fisica Nucleare

Sezione di Bologna

600

z [cm]

600

z [cm]

Dup 2

Recently approved (<u>CERN-LHCC-2025-004</u>) upgrade to run during HL-LHC

- Need to replace emulsions → reuse CMS Outer Barrel strips making it the first Si-based neutrino vertex detector
- Add **magnetized** calorimeter for charge and momentum measurement \rightarrow distinguish ν and $\bar{\nu}$
- Include fast-timing detector → resolve the pile-up and sending a trigger signal to ATLAS, feasibility study ongoing

	Ru	115	TILT	
Measurement	Uncertainty		Uncertainty	
	Stat.	Sys.	Stat.	Sys.
Gluon PDF ($x < 10^{-5}$)	5%	35%	2%	5%
ν_e/ν_τ ratio for LFU test	30%	22%	6%	10%
ν_e/ν_μ ratio for LFU test	10%	10%	2%	5%
Charm-tagged ν_e/ν_μ ratio for LFU test	-	-	10%	< 5%
ν_{μ} and $\overline{\nu}_{\mu}$ cross-section	<u> </u>)	1%	5%

EPS-HEP

Summary and outlook

Summary:

- Lot of ongoing analyses both on electronic detector and emulsion data
- Detector upgrade:
 - 3rd veto plane allows for strong incoming particle rejection over all target area
 - Muon system upgrade
- Thanks to test beam campaign:
 - Calibrated the detector response to hadronic showers
 - Developed and validated simple but effective **shower tagging algorithm**

Into the future:

• Stay tuned for SND@HL-LHC: recently approved

THANKS FOR THE ATTENTION

Remember to check out Onur Durhan's poster Filippo Mei's poster

Observation of v_{μ} : background

- >= 2 veto hits;
- A shower tagged in SciFi

Undetected muon background

Muon-induced **neutral particles**

= in SND@LHC volume

Aim: tag the first wall in which an hadronic shower is visible

Achieved by: requiring a minimum number of hits close to each other

[1] The SND@LHC Collaboration, Observation of collider muon neutrinos with the SND@LHC experiment, Phys. Rev.Lett. 131

Validation of shower centroid

Centroid: Mean position averaged with qdc value. A minimum number of hits is needed *Aim*: Validate centroid distribution using muon producing DIS showers

SND@LHC Data

- Electronic detectors:
 - 2025 (so far): Recorded 10 fb⁻¹
 - 2022 2024: Recorded 187 fb⁻¹
 - 96% uptime
- Emulsion detector:
 - **14** targets exposed in 2022 2024
 - **~170 fb**⁻¹ integrated
 - 5700 emulsion films (210 m²) exposed and developed
- Unexpected increase in the muon flux in **2024.**
 - Doubled the target replacement rate.
 - Instrumented only the lower half of the target.
 - Keep 65% of neutrino interactions.
 - Situation improved in 2025, but rates are still
 40% higher than in 2022 and 2023.

- Emulsion scanning is performed with fully automated microscopes in six laboratories: CERN, Bologna, Napoli, Nagoya, Gran Sasso, Santiago
- Track density up to 4x10⁵ tracks/cm²

Status of emulsion scanning: 800 kg x 42 fb⁻¹

Backup

SND@LHC wall SND@LHC brick Emulsion Cloud Chamber (ECC) 192 mm 38.4 cm E 192 60 emulsion films 59 W layers 17 *X*₀ 78 mm N Tracks 38.4 cm SND@LHC 100 µm EMULSION FILM 700 emulsion layer $\sigma_x = 0.2 \ \mu m$ (70 µm) 600 plastic base (170 µm) 500 emulsion layer (70 µm) 400 charged particle 300 200 Position resolution 0.2 µm 100 ᢙᡊᡀᡗᡳᡗ in i la na d 0<u>-</u>2 0.5 1.5 2 -1.5 -1 -0.5 0 1 Δx [μm]

Passing muons

- Muon flux is important for detector operations and physics analyses. ۰
 - Defines the emulsion exposure limit. 0
 - Main experimental backgrounds are due to muon interactions. 0
- Measurement of flux with 2022 data.
 - Eur. Phys. J. C (2024) 84: 90 0
 - Excellent agreement between all sub-detectors, including emulsion. 0
 - Agreement with MC predictions within 20%. 0
- Recent improvements in emulsion reconstruction ۰ allow for the measurement of muon momentum via multiple Coulomb scattering.

EPS-HEP

N Track

SND@LHC

year

2022

2024

2025

MC

557

1154

832

460

29

Passing muons in heavy ion runs

60 Run 7080 SciFi Hough transform, plane 1

-45 -40 -35 -30 -25 -20 -15 -10 -5

- Measurement of the muon flux in heavy ion collisions.
 - Different physics compared to pp.
 - Softer energy spectrum.
 - Different LHC optics compared to pp.
- Allows for further validation of the background model.
- Cross-check of detector performance.
- Measurement in good agreement with MC expectation:

25

- \circ 1.56 ± 0.19 × 10⁴ nb/cm²
- PbPb/pp flux ratio: ~10⁶
 - With different LHC optics

Muon trident cross-section measurement

photon and q_N is the nuclear recoil four-momentum.

Muon DIS in the emulsion

- Identification of **muon DIS** in the emulsion target with cut-based
 approach on topological and kinematical variables
- Data sample: vertices reconstructed in RUN1 brick 21: 32kg x 9.5fb⁻¹

Event selection criteria

- charged vertex
- mean angular aperture > 13 mrad
- impact parameter<2.5µm
- fraction of rec. segments>0.87
- rec. hadron momentum > 16 GeV

Observation of 0μ events in SND@LHC

Signal: *v*_eCC and NC interactions **Backgrounds**

- Neutral hadrons: 0.01 events
 - Constrained by control region data.
- Neutrino background: 0.30 events
 - Dominated by muon neutrino CC interactions

0μ observation significance

- Total expected background: 0.32 ± 0.06 events
- Expected signal: 7.2 events
 - 4.9 v_{e} CC, 2.2 NC, 0.1 v_{τ} CC
- Expected significance: 5.5 σ

Number of events observed: 9 Observation significance: 6.4 σ

 v_{e} CC observation significance: 3.7 σ

- First observation of non- ν_{μ} CC neutrino interaction using electronic detectors at the LHC.
- Milestone towards neutrino observation at the HL-LHC.

SND@HL-LHC

- Running the emulsion detector during the HL-LHC is unfeasible.
- HL-LHC phase of the experiment will use silicon-strip instrumentation.
 - First Si-based neutrino vertex detector!
- The calorimeter will be magnetised for muon momentum and charge measurement.

CERN-LHCC-2024-014

Backup

SND@HL-LHC Physics case

Extending ν cross-section measurements to a few TeV

<u>Technical Proposal for Run 4</u> <u>https://cds.cern.ch/record/2926288</u>

ESPPU Input

• Energy and η distribution of (charm-induced) ν_{a} C	C interactions
---	----------------

• Left: event yield. Right: normalized to an arbitrarily chosen reference bin

	IXU	110		
Measurement	Uncertainty		Uncertainty	
	Stat.	Sys.	Stat.	Sys.
Gluon PDF ($x < 10^{-5}$)	5%	35%	2%	5%
ν_e/ν_τ ratio for LFU test	30%	22%	6%	10%
ν_e/ν_μ ratio for LFU test	10%	10%	2%	5%
Charm-tagged ν_e/ν_μ ratio for LFU test		-	10%	< 5%
ν_{μ} and $\overline{\nu}_{\mu}$ cross-section	<u> </u>		1%	5%

Run 3 HL-LHC

0.00 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -1.5 -1.0 -1.5 -2.0 Slope [rad] ($\times 10^{-1}$) **EPS-HEP**

This was validated to be a good method but

- Resolution depends on the dimension of the shower
- Not applicable if the shower starts in the last wall

36

Aim: reconstruct shower direction \rightarrow crucial for the ν_{μ} energy reconstruction as $E_{\nu} \sim E_{S} \left(1 + \frac{\sin(\theta_{S})}{\sin(\theta_{\mu})}\right)$

Backup: Shower direction reconstruction

Idea:

CERN

- In all SciFi planes with a shower \rightarrow compute **centroid**: average hit position 1. weighted with signal amplitude
- 2. Fit centroids position to compute direction

