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l Foundation Model

arXiv: 2108.07258

A foundation model is a model trained on broad data at scale that can be adapted (fine-tuned) to a wide range of
downstream tasks. It is not a fully complete model in itself, but a foundation — a starting point for building task-specific

models.
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NVIDIA blog: What are foundation models?

r/Emergence:

* New behaviors from scale

i” [ o
Y’'Homogenization:

* One model, many tasks
&ITransferable representations:
* Pretrain once, reuse anywhere
& Multimodal potential:

* Works across data types



https://blogs.nvidia.com/blog/what-are-foundation-models/
https://arxiv.org/pdf/2108.07258
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l Foundation Model in HEP
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l Machine Learning + HEP

A Living Review of Machine Learning for Particle Physics

* Classification

* Regression

* Decorrelation Methods

e Equivariant Networks, PINNs, KANs
* Generative Models

* Anomaly Detection

* Foundation Models

* Simulation-based Inference
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https://iml-wg.github.io/HEPML-LivingReview

Machine Learning + HEP

Number of HEP-ML Papers by Year

A Living Review of Machine Learning for Particle Physics As of 20.06.2025
350

* Classification » 300
Foundation Models, LLMSs.

* Regression

B Foundation Models, LLMs. v

* Decorrelation Methods

Large Language Models -- the Future of Fundamental Physics? (2025)

Towards Foundation Models for Experimental Readout Systems Combining Discrete and Continuous Data (2025)

e Equivariant Networks, Pl

Reconstructing hadronically decaying tau leptons with a jet foundation model (2025)

A Method to Simultaneously Facilitate All Jet Physics Tasks [DOI] (2025)

e Generative Models

* Aspen Open Jets: Unlocking LHC Data for Foundation Models in Particle Physics (2024)

2022

Pretrained Event Classification Model for High Energy Physics Analysis (2024)

 Anomaly Detection

Towards a foundation model for heavy-ion collision experiments through point cloud diffusion (2024)
» Bumblebee: Foundation Model for Particle Physics Discovery (2024)

® Fou ndation MOdEIS o Is Tokenization Needed for Masked Particle Modelling? (2024)

» OmniLearn: A Method to Simultaneously Facilitate All Jet Physics Tasks [DOI] (2024)

L S| mu IaUO n-based I nfe rer ¢ Xiwu: A Basis Flexible and Learnable LLM for High Energy Physics (2024)
Physics Event Classification Using Large Language Models [DOI] (2024)

Re-Simulation-based Self-Supervised Learning for Pre-Training Foundation Models [DOI] (2024)

OmniJet-ce: The first cross-task foundation model for particle physics [DOI] (2024)

Finetuning Foundation Models for Joint Analysis Optimization [DOI] (2024)

2023
2024
2025



https://iml-wg.github.io/HEPML-LivingReview

l Can We build an Event-Level Foundation Model?

Could we resolve all event-level tasks with a single model?

Pre-trained Model Foundation Model <

e Extensively pre-trained for general-purpose representations. . ) |
i . - - * Enables a unified understanding of HEP events.
* Lightly fine-tuned for task-specific applications.

. .. , o . * Designated to generalize across a wide range of tasks.
* Especially effective in scenarios with limited training data.

“\ Core Ingredients of an Event-Level Foundation Model in HEP

- & Generalist Embedding: Shared event-level representation

«” . . . .
£ Multi-task Learning: One model, many objectives

X Self-Supervised Pretraining: Learns from data structure _ FR “69% OF.

“PHYSICISTS

o Scalability: Improves with more data + compute

Transferability: Fine-tune for new tasks easily




l EveNet: Our Answer to Event-Level Foundation Models
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& Body - Point-Edge Transformer:

* Models both particles and their relationships as a graph
(points + edges)

e Captures inter-particle interactions and global event
structure

& Heads (multi-task outputs)

* Classification: Multi-class event classifier

* Assignment: Symmetry-aware mapping of objects to truth-
level partons

* Generation (unsupervised): Reconstructs masked particles
via a diffusion model

e Generation (supervised): Predicts missing objects (e.g.,
neutrinos)
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l What EveNet Sees and Learns?

Input Representation

« * particle Cloud (Up to 18 Particles per Event):
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Condition

Each particle is encoded with 7 features: 4-
momentum, isblet, isLepton, and charge.

— (7 features x 18 particles, zero-padded)

- @ Global Features / Event Observables:

Missing transverse energy
Number of leptons, number of jets
Invariant mass of visible objects

Scalar sums like HT, ST, etc.

The heads shown here are illustrative examples,
designed to guide training, but can be easily extended
or replaced for new downstream tasks, while the body

remains the core foundation.

Prediction
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l Dataset TTV vV

ALL ttW:
FullHad
mQCD mtt mttW  mttz W+jets 13%
m Z+jets WWwW 7 W<Z m HWW
ttw:
w2 tHeHWL
tHtHZL
9%
ttw:
tHtLWH

wz
12%

9%

44
7%

- NAl processes help learn diverse point cloud patterns for
classification and point cloud generation.

« & ttV, VV, and HWW focus on harder tasks like assignment and
neutrino generation due to their complex final states.




' EveNet Wouldn’t Train Itself—Thank You, Perimutter!

< Scaling Up EveNet with Perlmutter

. %Training Setup:
* Model: EveNet-Pretrain (40M)
* 128 nodes
* 512 GPUs
* 16,384 CPU cores

« hl Data Scale:
3000 million raw events

* 500 million effective events after processing

(Only 100M used in this talk)

* Trained for 10 full epochs

W




l Downstream Applications of EveNet in Physics Analyses

b
s
IR b
< b
Search for new physics Quantum Entanglement Anomaly Detection
H — aa — bbbb pp — tt > bbfvev Y - putu
Assignment & Classification Assignment & Generation Event Generation

\ No hyperparameter tuning was applied in any of our tests
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l Search for New Physics: Overview

. ¢ Exotic Higgs Decay (H — aa — bbbb): A challenging 4-b final state sensitive to b-tagging
inefficiency and jet misassignments — ideal for testing EveNet’s assignment and classification capabilities.

 Samples:
e Signal: H - aa —» bbbb (m, = 30,40,60 GeV)
 QCD: bbbb, bbbj, bbjj

 Methodology:

* Network: EveNet (~40M parameters) vs. (same hidden dim, ~40M parameters)

* Pretrain weights: True vs. False
* Training Dataset size: 10k / 30k / 100k / 300k / 1M (signal portion: 10%)

* Assignment head (as Aux Task): True vs. False
w The signal samples used here were not included in pretraining,

which tests EveNet’s ability to generalize to unseen new physics signatures.

12


https://doi.org/10.1038/s42005-024-01627-4

l Search for New Physics: Results

@ Final performance is reported as background rejection at 25% signal efficiency, reflecting the metric
most relevant for new physics searches.

* This focus aligns with standard practices, where the sensitivity is driven by events in the highest MVA score
bins.
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l Search for New Physics: Observations

o Il EveNet shows strong scalability:

Performs well even on small training datasets.
Continues to improve with increasing data volume.

Pretrained model performs well even without assignment head,
unlike SPANet or scratch models.

. 42 Compared to SPANet:

EveNet offers better scalability and robust generalization out of the
box.

SPANet may require additional tuning to match performance at
larger scales.

Performance improves 2—4x with the pretrained EveNet.
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l Quantum Entanglement: Overview

. & Quantum Entanglement (pp — tt — bb£v£v): A complex 2-lepton final state with multiple
neutrinos and combinatorial jet ambiguity — ideal for testing EveNet’s assignment and neutrino

generation capabilities.

—
~

Anti-muon @ N

« Samples: pp — tt —» bbfv#v (threshold region) 7 prgles
W boson (> O measure
Muon |
 Methodology: Top quark ,,/_?tt‘/
collide ar%ll;zg: / . quark/v Electron
* Network: EveNet (~40M parameters) ko A9 poteneuting
* Pretrain weights: True vs. False i \ TO A”;'u‘;’ri\‘ 33;',,E°“°m
roton Gluon ©
(¥
* Dataset size: 3.6M for training, 2.4M for evaluation O S /' O

o (&)
Metrics: o ¢

=N/
/

©

onature

* t — b pairing efficiency

* Uncertainty from unfolded spin correlation matrix and D = —(Cyy + Crrr + Cp))

W
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l Quantum Entanglement: Results

Assignment Efficiency

* Matchable: Events where a ground-truth assignment exists; i.e., the event topology allows a well-defined mapping
between reconstructed objects (e.g., jets) and true partons.

* All Events: The full set of events, including both matchable and unmatchable ones.

Model Matchable Events All Events Efficiency [%]
Scratch 172,681 / 241,986 172,681 / 287,950 71.36 / 59.97

Pretrain 178,909 / 241,986 178,909 / 287,950 73.93 / 62.13

train/loss, val/loss train/generation-truth, val/generation-truth train/assignment, val/assignment
scratch-ema-ds1p0-Ir_half train/loss scratch-ema-ds1p0-Ir_half val/loss scratch-ema-ds1p0-Ir_half train/generation-truth scratch-ema-ds1p0-Ir_half train/assignment
pretrain-ema-ds1p0 train/loss pretrain-ema-ds1p0 val/loss scratch-ema-ds1p0-Ir_half val/generation-truth scratch-ema-ds1p0-Ir_half val/assignment pretrain-ema-ds1p0 train/assignment
" pretrain-ema-ds1p0 train/generation-truth pretrain-ema-ds1p0 val/assignment
4 | pretrain-ema-ds1p0 val/generation-truth
2
3 1
L3 L .
Training Loss s |\ i
2 0.4
0.8 03
0.7 0.2
) ) === , 0.6 E(E% : ; ‘ T
0.9 - epoct epoch X epach
0 50 100 150 0 50 100 150 0 50 100 150
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l Quantum Entanglement: Results

Unfolded Uncertainty for spin correlation matrix and D

. : : -1
Reference paper: ,assuming 139 fb 05— tEs bBIVIY mE EveNet Pretrain (41M)
_ . 13 Tev, 139 fb~! B EveNet Scratch (41M)
* The observable D = —Cy;, — C, — C,,5, is sensitive to quantum Une. (%] o 1%
entanglement, with D > 1 indicating the quantum entanglement. . | = -0.55 383 1.49
" -0.55 138 1.49
* Absolute uncertainty improvement (pretrain vs. scratch):
< . -0.32 *122 3.84
o° —0 Crr +0.98
| : ~0.32 3.10
~ 0 -0.98
o5 12.5%
-0.59 *1:3¢ 1.78
. . . . Cr T
* Relative precision with € = g, /(D — 1) | : -0.59 334 1.58
* Pretrain: €p =~ 3.43% o1l : 0.46 *181 393
B 0.46 *138 3.44
e Scratch: €p = 3.93% | | | | e
—-0.02 -0.01 0.00 0.01 0.02 0.03 0.04
* Paper: €Ep = 5.26% Uncertainty

W
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https://doi.org/10.1140/epjc/s10052-022-10245-9

l Quantum Entanglement: Observations

- 1@ pretrained model shows improved assignment performance, increasing matching efficiency by:
* +2.5% for matchable events

e +2.1% for all events

¢ BN Uncertainty reduction:
e Absolute improvement of ~12.5% in precision over the scratch model

* Relative precision improvement of ~35% over the pheno paper result

e A Rapid and stable convergence:
* Pretrained model converges faster for both assignment and generation heads

* Reduces risk of overfitting in the assignment task
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l Anomaly Detection: Overview

* Reference paper: (To test EveNet’s generative capability, we extend an existing anomaly detection
method using normalizing flows by replacing it with diffusion-based generation of full 4-momentum)

* Dataset: CMS Open Data (2016 DoubleMu primary dataset) targeting Y resonances in di-muon final states.

* Goal: Perform model-independent bump hunting in the invariant mass spectrum using diffusion-based generative
models to interpolate background.

* Strategy Overview:
1. Signal region (SR) and Sideband (SB) definition (m,,,): SR = [9,10.6] GeV,SB = [5,9] &[10.6,16] GeV
2. Background Modeling Replace NF (CATHODE in paper) with an ensemble of EveNet diffusion models

* Global Generation: Conditioned on mass, generate Hy and AR,

* PC generation: Conditioned on mass, Hy and AR, generate muons with features: 4-momentum and ip3d

* Quality selection: Recalculate every global information from the point cloud directly and re-apply analysis
cuti.e., windows cut on the generated events.

3. Weak supervision: training XGBoost to separate generated events and data events

4. Significance extraction: cut-and-count and likelihood-reweighting w

19


https://arxiv.org/abs/2502.14036

l Anomaly Detection: Results

wAll results are performed 8 times with different random seeds to test the spread
Generation Quality (arXiv: 2106.11535)

* Coverage: measuring the diversity of the samples in Y relative to X

* MMD: the average distance between matched samples, measuring the quality of samples
* Efficiency: quality selection efficiency for generated events

cov (after cut) mmd (after cut)
Method Method

B pretrain B pretrain
I scratch I scratch
0.92
@ h ﬁ

Method
I pretrain
I scratch

percentiles
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https://arxiv.org/pdf/2106.11535

l Anomaly Detection: Results

wAll results are performed 8 times with different random seeds to test the spread

Final Significance (¢-reweighting)

* paper: 6.40
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l Anomaly Detection: Observations

ll Final Significance:
* Both pretrained and scratch models achieve comparable or better results than the original CATHODE benchmark.
* Scratch model slightly outperforms the paper baseline.

* Pretrained model performs slightly below, but with smaller variance across 8 random seeds.

* No mass sculpting observed in same-sign control region.

® Generation Efficiency:
* Pretrained model converges faster and achieves 2.5x higher quality selection efficiency than the scratch model.
& Analysis-Specific Limitation:
* Slight underperformance of the pretrained model is likely due to the use of ip3D, a feature not present in pretraining.

* With a lower learning rate on body during fine-tuning, pretrained models adapt more slowly to unseen features like ip3D.

* For 4&-momentum-related distributions, the pretrained model consistently produces higher-quality samples than scratch.

W
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l Summary

Pre-trained Model & ‘ Foundation Model &

Our current study shows that pretraining enables transferable and multi-task representations across
diverse HEP tasks.

* Pretrained EveNet demonstrates strong scalability, fast convergence, and robust generalization across diverse HEP
tasks, without the need for hyperparameter tuning or task-specific design.

Search for new Physics Quantum Entanglement Anomaly Detection
H — aa — bbbb pp — tt > bbfvev Y - putu
Assignment & Classification Assignment & Generation Event Generation
Up to 2-4x gain on bkgd. Rej. Matches or exceeds baseline;

+2.5% assignment, 12.5% . . :
Rate @ €.;, = 25%, stron ] o 2.5x more efficient generation
@ €sig ° o uncertainty reduction, ~35% 2

performance even without . and better 4-momentum
) better than prior work .
assignment head. modeling. ! Z
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l Summary

Pre-trained Model & ‘ Foundation Model &

% Next Milestone: Scaling for Emergence and Multimodal

To explore emergent capabilities, we are preparing a 150M-parameter model trained on up to 1.5B effective events,
aiming to push EveNet into the true foundation model regime.

Multimodal Potential Ahead: Future extensions include integrating jet constituents, tracker hits, and heterogeneous
data forms to explore multimodal learning in HEP.

¥ Dataset Sharing: We have 3B raw events in Parquet format and are happy to share them for benchmarking or
related studies.

e Paper Coming Soon: We are finalizing the draft, and the arXiv link will be shared shortly!
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