

EveNet: Towards a Generalist Event Transformer for Unified Understanding and Generation of Collider Data

Yulei Zhang

University of Washington, Seattle

Team: Ting-Hsiang Hsu, Qibin Liu, Yuan-Tang Chou, Wei-Po Wang, Yue Xu, Haoran Zhao, Bai-Hong Zhou, Shu Li, Benjamin Nachman, Shih-Chieh Hsu, Vinicius Massami Mikuni, Yulei Zhang

July 10th, 2025

EPS-HEP 2025

Foundation Model

arXiv: 2108.07258

A *foundation model* is a model trained on broad data at scale that can be adapted (fine-tuned) to a wide range of downstream tasks. It is *not* a fully complete model in itself, but a *foundation* — a starting point for building task-specific models.

NVIDIA blog: What are foundation models?

Emergence:

• New behaviors from scale

Homogenization:

• One model, many tasks

CTransferable representations:

• Pretrain once, reuse anywhere

Multimodal potential:

• Works across data types

Foundation Model in HEP

Machine Learning + HEP

A Living Review of Machine Learning for Particle Physics

- Classification
- Regression
- Decorrelation Methods
- Equivariant Networks, PINNs, KANs
- Generative Models
- Anomaly Detection
- Foundation Models

...

• Simulation-based Inference

Л

Machine Learning + HEP

A Living Review of Machine Learning for Particle Physics

Classification

- Regression
- Decorrelation Methods
- Equivariant Networks, PI
- Generative Models
- Anomaly Detection
- Foundation Models

• ...

- Simulation-based Inferer
- As of 20.06.2025 350 v 300 Foundation Models, LLMs. Foundation Models, LLMs. • Large Language Models -- the Future of Fundamental Physics? (2025) Towards Foundation Models for Experimental Readout Systems Combining Discrete and Continuous Data (2025) Reconstructing hadronically decaying tau leptons with a jet foundation model (2025) A Method to Simultaneously Facilitate All Jet Physics Tasks [DOI] (2025) Aspen Open Jets: Unlocking LHC Data for Foundation Models in Particle Physics (2024) 202 202 202 202 202 Pretrained Event Classification Model for High Energy Physics Analysis (2024) Towards a foundation model for heavy-ion collision experiments through point cloud diffusion (2024) Bumblebee: Foundation Model for Particle Physics Discovery (2024) Is Tokenization Needed for Masked Particle Modelling? (2024) OmniLearn: A Method to Simultaneously Facilitate All Jet Physics Tasks [DOI] (2024) • Xiwu: A Basis Flexible and Learnable LLM for High Energy Physics (2024) Physics Event Classification Using Large Language Models [DOI] (2024) Re-Simulation-based Self-Supervised Learning for Pre-Training Foundation Models [DOI] (2024) • OmniJet- α : The first cross-task foundation model for particle physics [DOI] (2024) • Finetuning Foundation Models for Joint Analysis Optimization [DOI] (2024)

Number of HEP-ML Papers by Year

Can We build an Event-Level Foundation Model?

Could we resolve all event-level tasks with a single model?

Pre-trained Model 🥯

- Extensively pre-trained for general-purpose representations.
- Lightly fine-tuned for task-specific applications.
- Especially effective in scenarios with limited training data.

Core Ingredients of an Event-Level Foundation Model in HEP

- Generalist Embedding: Shared event-level representation
- Multi-task Learning: One model, many objectives
- Self-Supervised Pretraining: Learns from data structure
- Z Scalability: Improves with more data + compute
- Transferability: Fine-tune for new tasks easily

- Enables a unified understanding of HEP events.
- Designated to generalize across a wide range of tasks.

EveNet: Our Answer to Event-Level Foundation Models

Body - Point-Edge Transformer:

- Models both particles and their relationships as a graph (points + edges)
- Captures inter-particle interactions and global event structure
- Heads (multi-task outputs)
- Classification: Multi-class event classifier
- Assignment: Symmetry-aware mapping of objects to truthlevel partons
- **Generation (unsupervised)**: Reconstructs masked particles via a diffusion model
- Generation (supervised): Predicts missing objects (e.g., neutrinos)

What EveNet Sees and Learns?

Input Representation

- **Particle Cloud (Up to 18 Particles per Event)**:
 - Each particle is encoded with 7 features: 4momentum, isbJet, isLepton, and charge.
 - \rightarrow (7 features × 18 particles, zero-padded)
- Global Features / Event Observables:
 - Missing transverse energy
 - Number of leptons, number of jets
 - Invariant mass of visible objects
 - Scalar sums like HT, ST, etc.

The heads shown here are illustrative examples, designed to guide training, but **can be easily extended or replaced** for new downstream tasks, <u>while the body</u> <u>remains the core foundation</u>.

Dataset

- All processes help learn diverse point cloud patterns for classification and point cloud generation.
- ttv, vv, and HWW focus on harder tasks like assignment and neutrino generation due to their complex final states.

WW: 2L

18%

EveNet Wouldn't Train Itself—Thank You, Perlmutter!

Scaling Up EveNet with Perlmutter

- 🚀 Training Setup:
 - Model: EveNet-Pretrain (40M)
 - 128 nodes
 - 512 GPUs
 - 16,384 CPU cores
- **Data Scale:**
 - 3000 million raw events
 - 500 million effective events after processing

(Only 100M used in this talk)

• Trained for **10 full epochs**

Downstream Applications of EveNet in Physics Analyses

Search for new physics $H \rightarrow aa \rightarrow bbbb$ Assignment & Classification

Quantum Entanglement $pp \rightarrow t\bar{t} \rightarrow b\bar{b}\ell\nu\ell\nu$ Assignment & Generation

Anomaly Detection $\Upsilon \rightarrow \mu^+ \mu^-$ Event Generation

No hyperparameter tuning was applied in any of our tests

Search for New Physics: Overview

- **Exotic Higgs Decay (H → aa → bbbb)**: A challenging **4-b final state** sensitive to **b-tagging**

 inefficiency and jet misassignments → ideal for testing EveNet's assignment and classification capabilities.
- Samples:
 - Signal: $H \rightarrow aa \rightarrow bbbb$ ($m_a = 30, 40, 60$ GeV)
 - QCD: bbbb, bbbj, bbjj
- Methodology:
 - Network: EveNet (~40M parameters) vs. <u>SPANet</u> (same hidden dim, ~40M parameters)
 - Pretrain weights: True vs. False
 - Training Dataset size: 10k / 30k / 100k / 300k / 1M (signal portion: 10%)
 - Assignment head (as Aux Task): True vs. False

lefkThe signal samples used here were **not included** in pretraining,

which tests EveNet's ability to generalize to unseen new physics signatures.

Search for New Physics: Results

Final performance is reported as **background rejection at 25% signal efficiency**, reflecting the metric most relevant for new physics searches.

• This focus aligns with standard practices, where the sensitivity is driven by events in **the highest MVA score bins**.

Search for New Physics: Observations

- **I** EveNet shows strong scalability:
 - Performs well even on small training datasets.
 - Continues to improve with increasing data volume.
 - Pretrained model performs well even without assignment head, unlike SPANet or scratch models.
- 4 Compared to SPANet:
 - EveNet offers better **scalability** and **robust generalization** out of the box.
 - SPANet may require **additional tuning** to match performance at larger scales.
 - Performance improves **2–4**× with the pretrained EveNet.

Quantum Entanglement: Overview

- \mathscr{O} Quantum Entanglement ($pp \rightarrow t\bar{t} \rightarrow b\bar{b}\ell\nu\ell\nu$): A complex 2-lepton final state with multiple neutrinos and combinatorial jet ambiguity \rightarrow ideal for testing EveNet's assignment and neutrino generation capabilities.
- Samples: $pp \rightarrow t\bar{t} \rightarrow b\bar{b}\ell\nu\ell\nu$ (threshold region)
- Methodology:
 - **Network:** EveNet (~40M parameters)
 - Pretrain weights: True vs. False
 - Dataset size: 3.6M for training, 2.4M for evaluation
- Metrics:
 - $t \rightarrow b\ell$ pairing efficiency
 - **Uncertainty** from unfolded spin correlation matrix and $D = -(C_{kk} + C_{rr} + C_{nn})$

Quantum Entanglement: Results

Assignment Efficiency

- Matchable: Events where a ground-truth assignment exists; i.e., the event topology allows a well-defined mapping between reconstructed objects (e.g., jets) and true partons.
- All Events: The full set of events, including both matchable and unmatchable ones.

Model	Matchable Events	All Events	Efficiency [%]
Scratch	172,681 / 241,986	172,681 / 287,950	71.36 / 59.97
Pretrain	178,909 / 241,986	178,909 / 287,950	73.93 / 62.13

Quantum Entanglement: Results

Unfolded Uncertainty for spin correlation matrix and D

- Reference paper: <u>Eur. Phys. J. C (2022) 82:285</u>, assuming 139 fb⁻¹
- The observable $D = -C_{kk} C_{rr} C_{nn}$ is sensitive to quantum entanglement, with D > 1 indicating the quantum entanglement.
- Absolute uncertainty improvement (*pretrain vs. scratch*):

$$\frac{\sigma^s - \sigma^p}{\sigma^s} \approx \mathbf{12.5\%}$$

- Relative precision with $\epsilon = \sigma_D / (D 1)$
 - Pretrain: $\epsilon_D \approx 3.43\%$
 - Scratch: $\epsilon_D \approx 3.93\%$
 - Paper: $\epsilon_D \approx 5.26\%$

Quantum Entanglement: Observations

- **Pretrained model shows improved assignment performance**, increasing matching efficiency by:
 - +2.5% for matchable events
 - +2.1% for all events
- Uncertainty reduction:
 - Absolute improvement of $\sim 12.5\%$ in precision over the scratch model
 - **Relative precision improvement** of \sim **35%** over the pheno paper result
- A Rapid and stable convergence:
 - Pretrained model converges faster for both assignment and generation heads
 - Reduces risk of **overfitting** in the assignment task

Anomaly Detection: Overview

- **Reference paper**: <u>2502.14036</u> (To test EveNet's generative capability, we extend an existing anomaly detection method **using normalizing flows** by replacing it **with diffusion-based generation** of full 4-momentum)
- Dataset: CMS Open Data (2016 DoubleMu primary dataset) targeting Υ resonances in di-muon final states.
- Goal: Perform model-independent bump hunting in the invariant mass spectrum using diffusion-based generative models to interpolate background.
- Strategy Overview:
 - 1. Signal region (SR) and Sideband (SB) definition $(m_{\mu\mu})$: SR = [9, 10.6] GeV, SB = [5, 9] & [10.6, 16] GeV
 - 2. Background Modeling Replace NF (CATHODE in paper) with an ensemble of EveNet diffusion models
 - Global Generation: Conditioned on mass, generate H_T and $\Delta R_{\mu\mu}$
 - **PC generation:** Conditioned on mass, H_T and $\Delta R_{\mu\mu}$, generate muons with features: 4-momentum and ip3d
 - **Quality selection**: Recalculate every global information from the point cloud directly and re-apply analysis cut i.e., windows cut on the generated events.
 - 3. Weak supervision: training XGBoost to separate generated events and data events
 - 4. Significance extraction: cut-and-count and likelihood-reweighting

Anomaly Detection: Results

All results are performed 8 times with different random seeds to test the spread

Generation Quality (arXiv: 2106.11535)

- **Coverage**: measuring the diversity of the samples in Y relative to X
- **MMD**: the average distance between matched samples, measuring the quality of samples
- Efficiency: quality selection efficiency for generated events

 $\mu \pm \sigma$

Anomaly Detection: Results

ightarrowAll results are performed 8 times with different random seeds to test the spread

Final Significance (*l*-reweighting)

- paper: **6**. **4***σ*
- EveNet-Pretrain: $6.54 \pm 0.24\sigma$
- EveNet-Scratch: $7.04 \pm 0.37\sigma$

Method

pretrain scratch

Likelihood Reweighted Significance

 7.04 ± 0.37

Anomaly Detection: Observations

Final Significance:

- Both **pretrained** and **scratch** models achieve **comparable or better results** than the original CATHODE benchmark.
- Scratch model slightly outperforms the paper baseline.
- Pretrained model performs slightly below, but with <u>smaller variance across 8 random seeds</u>.
- No mass sculpting observed in **same-sign control region**.

Generation Efficiency:

• Pretrained model converges faster and achieves 2.5× higher quality selection efficiency than the scratch model.

Analysis-Specific Limitation:

- Slight underperformance of the pretrained model is likely due to the use of **ip3D**, a feature not present in pretraining.
- With a lower learning rate on body during fine-tuning, pretrained models adapt more slowly to unseen features like ip3D.
- For 4-momentum-related distributions, the pretrained model consistently produces higher-quality samples than scratch.

Pre-trained Model 🧐

Foundation Model 🥯

Our current study shows that **pretraining enables transferable and multi-task representations** across diverse HEP tasks.

• Pretrained EveNet demonstrates **strong scalability**, **fast convergence**, and **robust generalization** across diverse HEP tasks, without the need for hyperparameter tuning or task-specific design.

Search for new Physics $H \rightarrow aa \rightarrow bbbb$ Assignment & Classification Up to 2–4× gain on bkgd. Rej. Rate @ $\epsilon_{sig} = 25\%$, strong performance even without assignment head.

Quantum Entanglement $pp \rightarrow t\bar{t} \rightarrow b\bar{b}\ell\nu\ell\nu$ Assignment & Generation

+2.5% assignment, 12.5% uncertainty reduction, ~35% better than prior work Anomaly Detection $\Upsilon \rightarrow \mu^+ \mu^-$

Event Generation

Matches or exceeds baseline; **2.5× more efficient** generation and better **4-momentum modeling**.

W Next Milestone: Scaling for Emergence and Multimodal

- To explore **emergent capabilities**, we are preparing a **150M-parameter model** trained on up to **1.5B effective events**, aiming to push EveNet into the true foundation model regime.
- Multimodal Potential Ahead: Future extensions include integrating jet constituents, tracker hits, and heterogeneous data forms to explore multimodal learning in HEP.

Dataset Sharing: We have 3B raw events in Parquet format and are happy to share them for benchmarking or related studies.

Paper Coming Soon: We are finalizing the draft, and the arXiv link will be shared shortly!