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"All models are wrong, but some — those that know when they can be trusted — 
are useful!"
— George Box (adapted)



Case study for amplitude surrogates
• evaluating analytic expressions for amplitudes ℳ ! can be very expensive due to

• higher-order corrections
• large final-state multiplicities
• studied here: 𝑔𝑔 → 𝛾𝛾𝑔

 
• solution: 

• generate small training sample using full analytic expression
• train a NN to approximate ℳ ! 
• generate events using NN surrogate, which is much faster to evaluate

→ speed-ups of by a factor of 𝒪(100) possible
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Can we also control the uncertainties?



Regression with uncertainties
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Statistical unc ±2𝜎

Systematic unc ±2𝜎

• statistical or epistemic uncertainty *= lack of training data 

• systematic or aleatoric uncertainty *= noise in the data, lack in model expressivity

[Yi&Bessa, 2505.02743]



Systematic uncertainty: heteroskedastic loss
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• log-likelihood loss:

ℒ = − .
"!,$!∈&"#$%&

log	𝑝 𝐴'()*(𝑥+) 𝑥+, 𝜃

• assume Gaussian likelihood: 𝑝 𝐴|𝑥, 𝜃 = 𝒩(𝐴 𝑥 , 𝜎,-,'! 𝑥 )

• NN learns both: 𝐴(𝑥) and 𝜎,-,'(𝑥)

⇒ heteroskedastic	loss: 	ℒ =.
+

GH 𝐴 𝑥+ − 𝐴'()* 𝑥+
!

2𝜎,-,'! 𝑥+
+ log KL𝜎,-,' 𝑥+

• constant 𝜎,-,' → recovers MSE loss

true amplitudessum over training dataset

phase-space point

NN parameters



Statistical uncertainty: repulsive ensemble
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• train ensemble of networks 

• ensure convergence to correct posterior via repulsive 
interaction between ensemble members

• each networks leads to slightly different result

• spread of network predictions ∼ statistical uncertainty

• less data → higher spread
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Repulsive ensemble + heteroskedastic loss

Henning Bahl 7

𝜎!"!# = 𝜎$%$!# + 𝜎$!&!#

Combined learnable modelling of systematic and statistical uncertainties!



Alternative: Bayesian NNs
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• promote NN parameters 
to Gaussians 𝑞(𝜃)

• for each evaluation, 
sample from Gaussians

• learn means and widths



Behavior of learned uncertainties 
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Test: apply different levels of Gaussian noise to amplitudes

• statistical uncertainty decreases with more training data

• systematic uncertainty converges to level of applied noise

𝐴!"#$% ∼ 𝒩(𝐴!"&', 𝜎!"#$%( ) 
	𝜎!"#$% = 𝑓)*'#"𝐴!"&'



with                                          and                   being the systematic unc. due to limited NN expressivity.

Extracting the noise level

Henning Bahl 10

Able to reliably extract noise level!



Are these uncertainties calibrated?
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• statistical uncertainties play minor 
role for amplitude regression

• define systematic pull:

𝑡,-,' =
𝐴 𝑥 − 𝐴'(./0(𝑥)

𝜎,-,'(𝑥)

• if calibrated, 𝑡,-,' distribution should 
follow 𝒩(0, 1)

Almost perfectly calibration → reliable uncertainty estimate



Dependence on smearing
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• BNN and deterministic models                                                                                            
→ well calibrated for different smearing levels

• Repulsive ensemble overestimates uncertainty for low smearing                       
→ consequence of ensemble being more precise than single member



Enhancing NN expressivity
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Can we improve accuracy for low smearing?

Improve NN expressivity:
• more layers,
• Lorentz invariance,
• permutation invariance between 

identical particles

Also tested: KANs, activation functions, …



Adding more layers
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adding more layers 

convergence towards noise level



Encoding our physics knowledge
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Permutation 
invariant Lorentz 

invariant

Large gain in NN accuracy! Also found uncertainties still to be well calibrated.

relative deviation: Δ = $''1$"#()
$"#()



Conclusions
• amplitude surrogates → speed up MC generation

• uncertainty-aware NNs allow for controlled modelling

• systematic uncertainties: heteroskedastic loss

• statistical uncertainties: Bayesian neural networks + repulsive ensembles

• found well-calibrated uncertainties

• encoding physics knowledge increase accuracy with still well-calibrated unc.

Henning Bahl 16

Same techniques also applicable to all kind of other problems



Appendix
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Does it work?
[Janßen et al.,2301.13562]
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𝑓'++ =
𝑇)!#%,#",
𝑇)&""-.#!'

Large speed-ups possible!

Can we also control the uncertainties?



Repulsive ensemble calibration
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Uncertainty overview
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BNN prior dependence
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• KAN layer:

• KAN network:

• GroupKAN layer:

• GroupKAN network:

• Normal MLP network

Kolmogorov-Arnold Networks
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KAN results
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