Accurate Surrogate Amplitudes with Calibrated Uncertainties

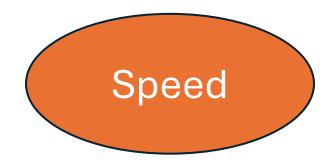
Henning Bahl

based on 2412.12069 in collaboration with Nina Elmer, Luigi Favaro, Manuel Haußmann, Tilman Plehn, and Ramon Winterhalder

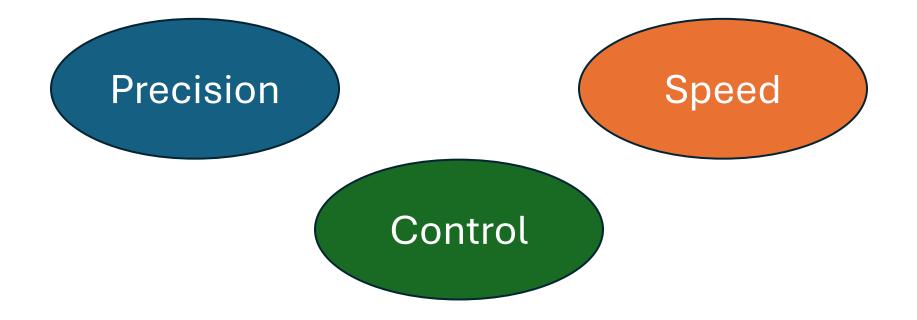
EPS-HEP Marseille, 8.7.2025

Henning Bahl

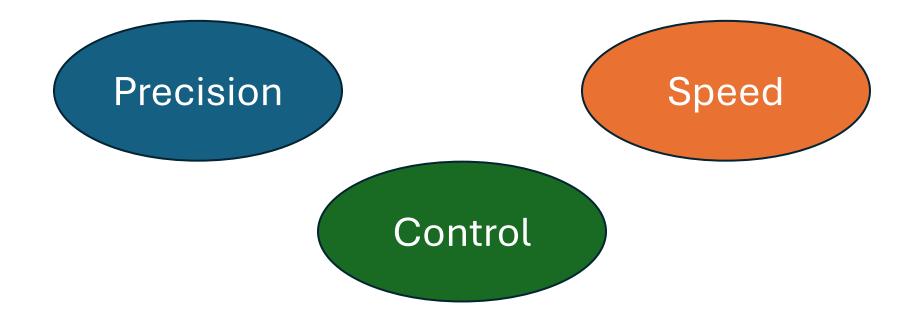
ML for particle physics — requirements



ML for particle physics — requirements



ML for particle physics — requirements



"All models are wrong, but some — those that know when they can be trusted — are useful!"

— George Box (adapted)

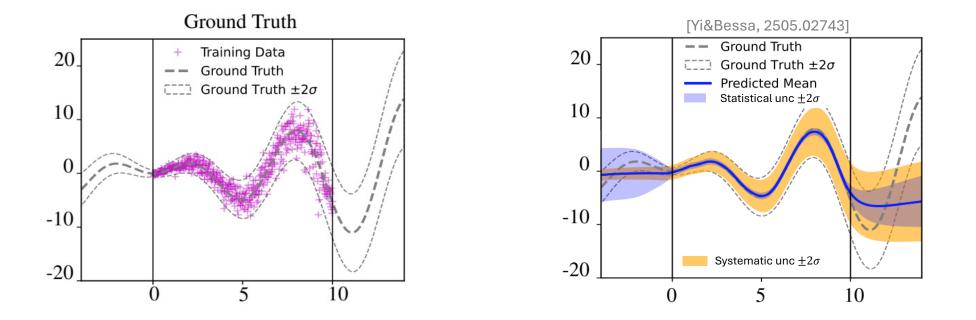
Case study for amplitude surrogates

- evaluating analytic expressions for amplitudes $|\mathcal{M}|^2$ can be very expensive due to
 - higher-order corrections
 - large final-state multiplicities
 - studied here: $gg \rightarrow \gamma \gamma g$
- solution:
 - generate small training sample using full analytic expression
 - train a NN to approximate $|\mathcal{M}|^2$
 - generate events using NN surrogate, which is much faster to evaluate

 \rightarrow speed-ups of by a factor of $\mathcal{O}(100)$ possible

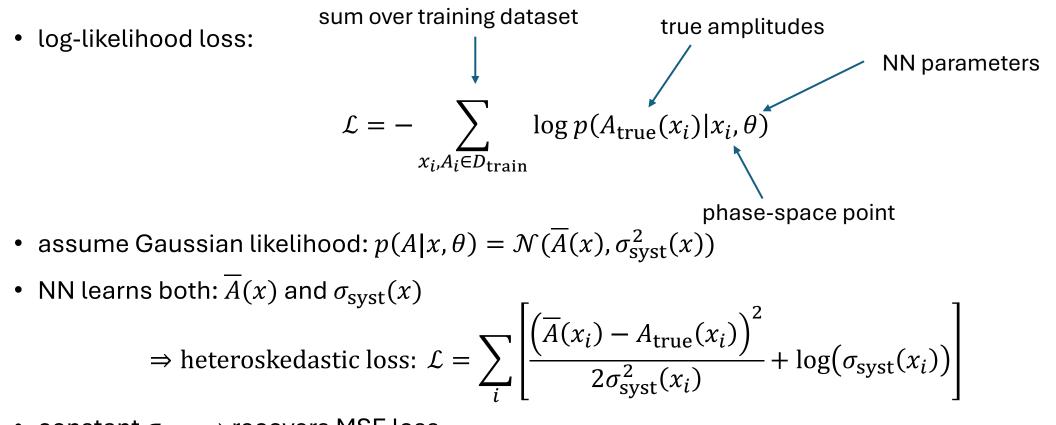
Can we also control the uncertainties?

Regression with uncertainties



- statistical or epistemic uncertainty $\widehat{=}$ lack of training data
- systematic or aleatoric uncertainty $\widehat{=}$ noise in the data, lack in model expressivity

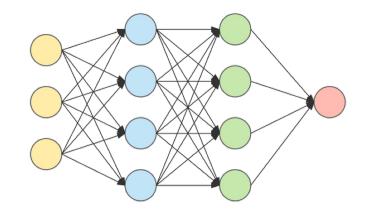
Systematic uncertainty: heteroskedastic loss



- constant $\sigma_{\rm syst} \rightarrow {\rm recovers}\;{\rm MSE}\;{\rm loss}$

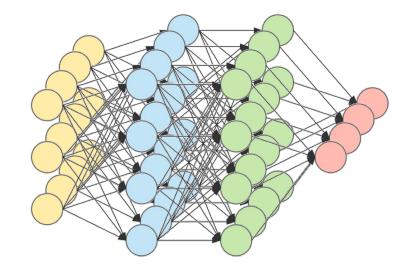
Statistical uncertainty: repulsive ensemble

- train ensemble of networks
- ensure convergence to correct posterior via repulsive interaction between ensemble members
- each networks leads to slightly different result
- spread of network predictions ~ statistical uncertainty
- less data \rightarrow higher spread

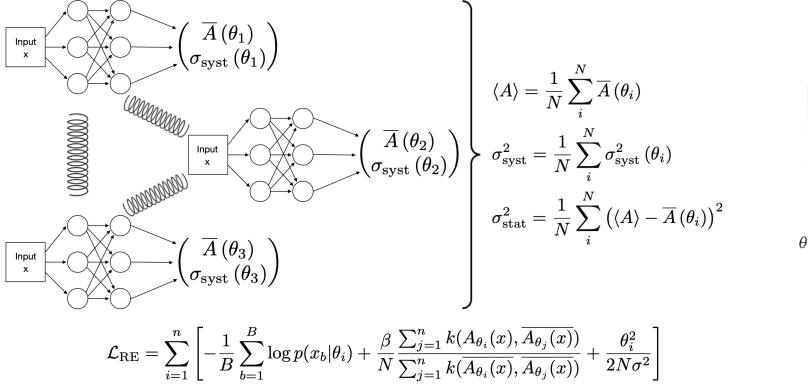


Statistical uncertainty: repulsive ensemble

- train ensemble of networks
- ensure convergence to correct posterior via repulsive interaction between ensemble members
- each networks leads to slightly different result
- spread of network predictions ~ statistical uncertainty
- less data \rightarrow higher spread



Repulsive ensemble + heteroskedastic loss



 θ

Combined learnable modelling of systematic and statistical uncertainties!

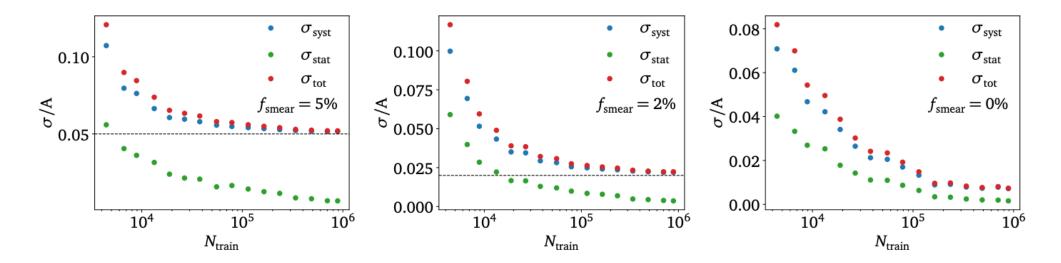
Alternative: Bayesian NNs

Ensemble of networks -0.1 0.2 0.8 $\overline{A}(\omega_1)$ x $\sigma_{\rm stoch}(\omega_1)$ Sanding **BNN** Output $q(\omega)$ -0.3 $\langle A \rangle = \frac{1}{N} \sum_{i=1}^{N} \overline{A}(\omega_i)$ 0.5 0.7 $\overline{A}(\omega_2)$ $\sigma_{\text{stoch}}^{2} = \frac{1}{N} \sum_{i}^{N} \sigma_{\text{stoch}}^{2}(\omega_{i})$ $\sigma_{\text{pred}}^{2} = \frac{1}{N} \sum_{i}^{N} (\langle A \rangle - \overline{A}(\omega_{i}))^{2}$ output х $\sigma_{\rm stoch}(\omega_2)$ 0.9 0.4 $\overline{A}(\omega_3)$ x $\sigma_{\rm stoch}(\omega_3)$

 $\mathcal{L}_{\text{BNN}} = \sum_{x} \left[\text{KL}[q(\theta), p(\theta)] - \left\langle \log p(D_{\text{train}} | \theta) \right\rangle_{\theta \sim q(\theta)} \right]$

- promote NN parameters to Gaussians $q(\theta)$
- for each evaluation, sample from Gaussians
- learn means and widths

Behavior of learned uncertainties



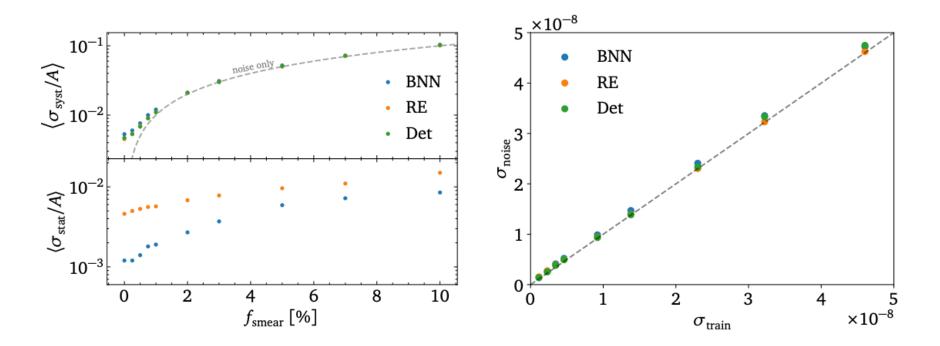
Test: apply different levels of Gaussian noise to amplitudes

- statistical uncertainty decreases with more training data
- systematic uncertainty converges to level of applied noise

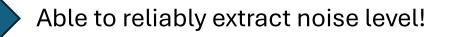
 $A_{\text{train}} \sim \mathcal{N}(A_{\text{true}}, \sigma_{\text{train}}^2)$

 $\sigma_{\text{train}} = f_{\text{smear}} A_{\text{true}}$

Extracting the noise level



with $\sigma_{\text{noise}}^2 = \sigma_{\text{syst}}^2 - \sigma_{\text{syst},0}^2$ and $\sigma_{\text{syst},0}^2$ being the systematic unc. due to limited NN expressivity.

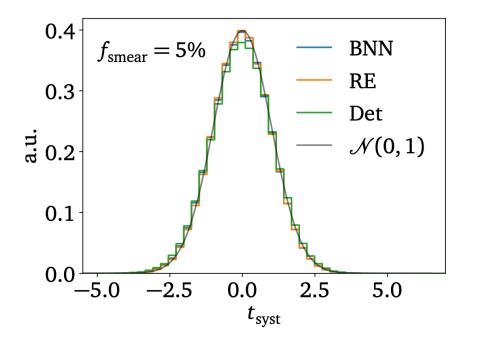


Are these uncertainties calibrated?

- statistical uncertainties play minor role for amplitude regression
- define systematic pull:

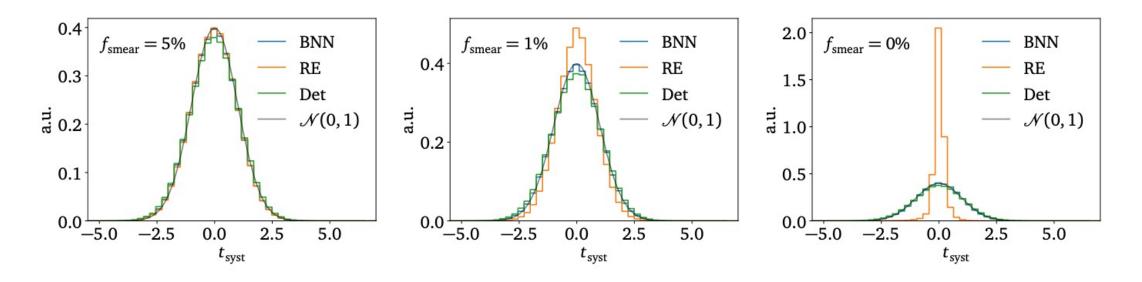
$$t_{\rm syst} = \frac{\langle A \rangle(x) - A_{\rm train}(x)}{\sigma_{\rm syst}(x)}$$

- if calibrated, $t_{\rm syst}$ distribution should follow $\mathcal{N}(0,1)$



Almost perfectly calibration \rightarrow reliable uncertainty estimate

Dependence on smearing



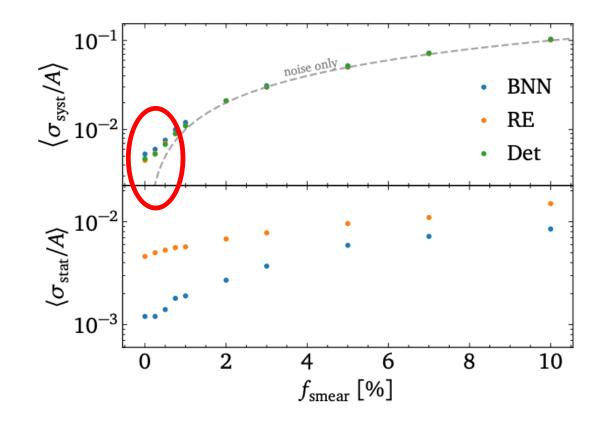
• BNN and deterministic models

 \rightarrow well calibrated for different smearing levels

Repulsive ensemble overestimates uncertainty for low smearing

 \rightarrow consequence of ensemble being more precise than single member

Enhancing NN expressivity



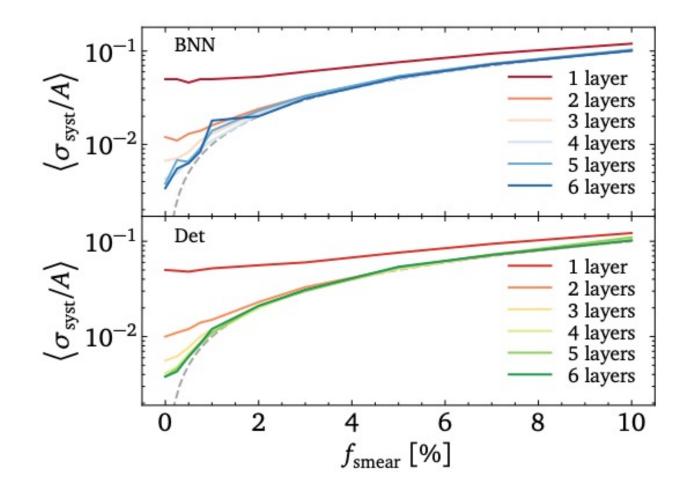
Can we improve accuracy for low smearing?

Improve NN expressivity:

- more layers,
- Lorentz invariance,
- permutation invariance between identical particles

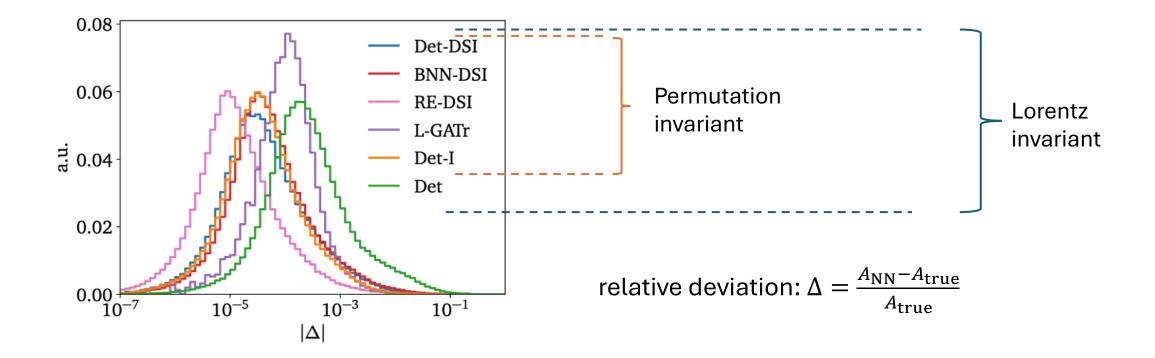
Also tested: KANs, activation functions, ...

Adding more layers



convergence towards noise level

Encoding our physics knowledge



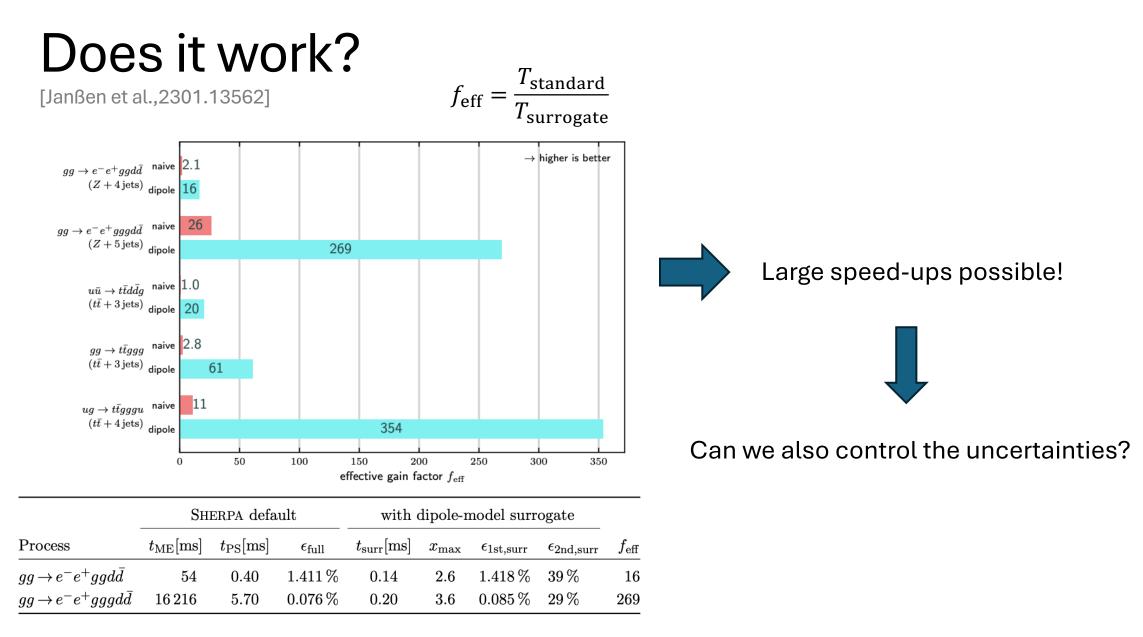
Large gain in NN accuracy! Also found uncertainties still to be well calibrated.

Conclusions

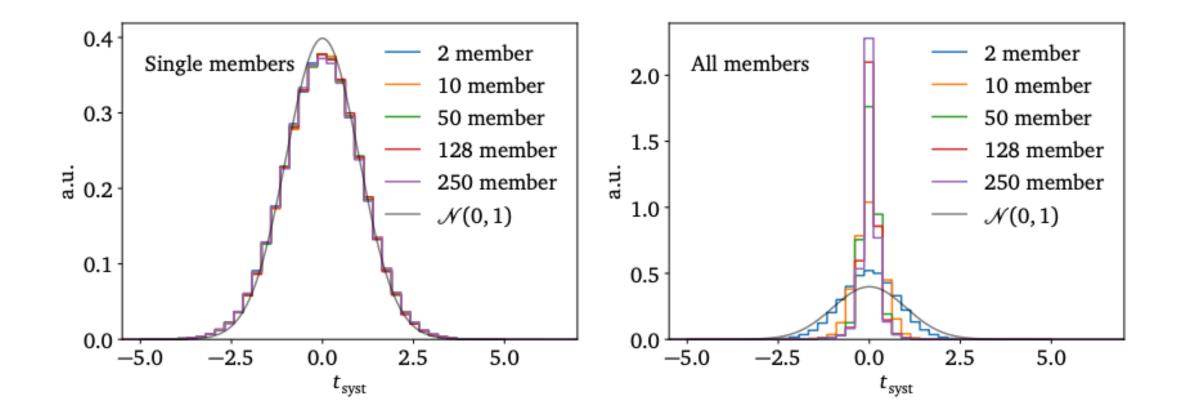
- amplitude surrogates \rightarrow speed up MC generation
- uncertainty-aware NNs allow for controlled modelling
- systematic uncertainties: heteroskedastic loss
- statistical uncertainties: Bayesian neural networks + repulsive ensembles
- found well-calibrated uncertainties
- encoding physics knowledge increase accuracy with still well-calibrated unc.

Same techniques also applicable to all kind of other problems

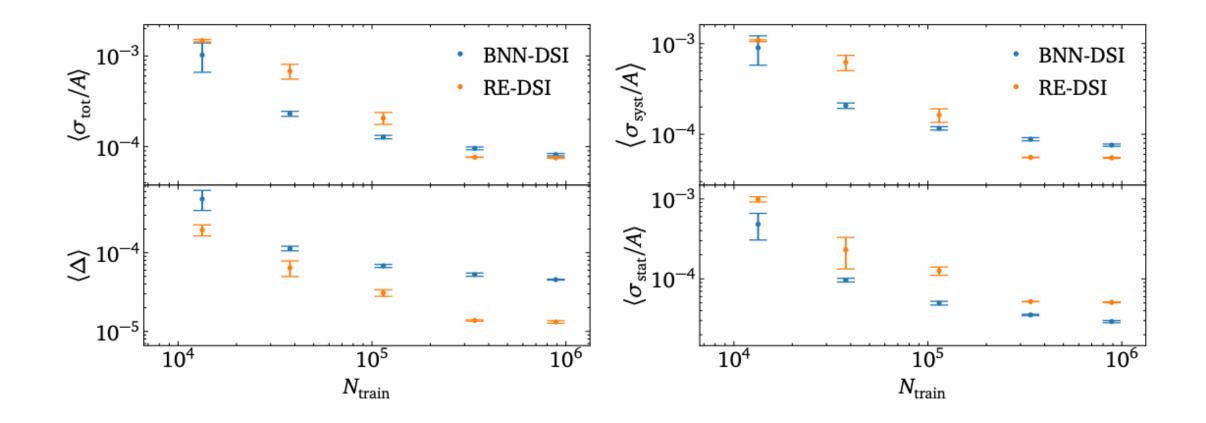
Appendix



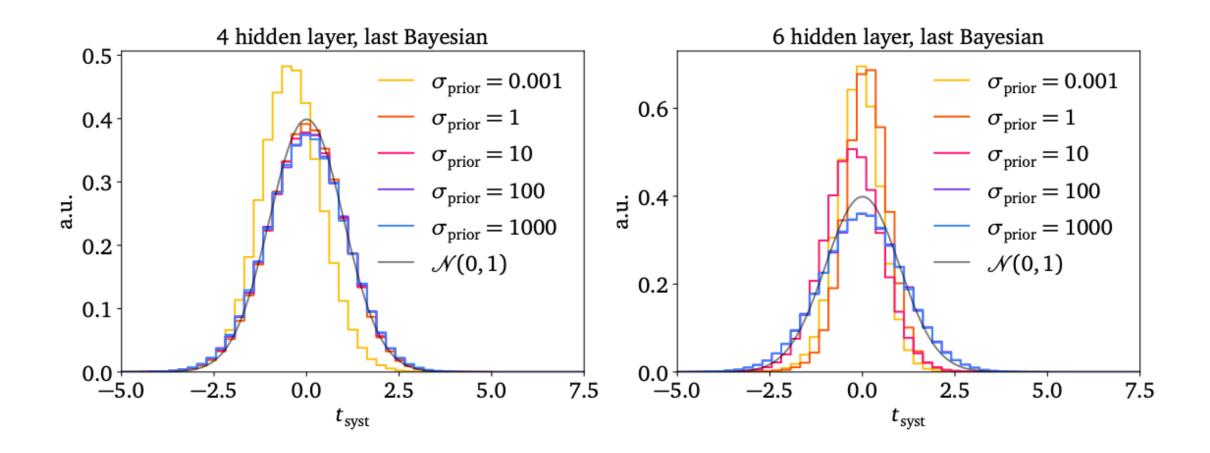
Repulsive ensemble calibration



Uncertainty overview



BNN prior dependence



Kolmogorov-Arnold Networks

• KAN layer:
$$x_{l+1} = \underbrace{\begin{pmatrix} \phi_{l,1,1}(\cdot) & \phi_{l,1,2}(\cdot) & \cdots & \phi_{l,1,n_{l}}(\cdot) \\ \phi_{l,2,1}(\cdot) & \phi_{l,2,2}(\cdot) & \cdots & \phi_{l,2,n_{l}}(\cdot) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{l,n_{l+1},1}(\cdot) & \phi_{l,n_{l+1},2}(\cdot) & \cdots & \phi_{l,n_{l+1},n_{l}}(\cdot) \end{pmatrix}}_{\equiv \Phi_{l}} x_{l},$$

• KAN network:
$$KAN(x) = (\Phi_{L-1} \circ \Phi_{L-2} \circ \dots \circ \Phi_1 \circ \Phi_0)x$$

• GroupKAN layer: activation(x)
$$\rightarrow$$
 GroupKAN layer_l(x) =
$$\begin{pmatrix} \phi_{l,g_l(1)}(x_1) \\ \phi_{l,g_l(2)}(x_2) \\ \vdots \\ \phi_{l,g_l(n_l)}(x_{n_l}) \end{pmatrix}$$

- GroupKAN network: GroupKAN(x) = ($W_{L-1} \circ$ GroupKANlayer_{L-2} $\circ W_{L-2} \circ ... \circ$ GroupKANlayer₀ $\circ W_0$)x
- Normal MLP network $MLP(x) = (W_{L-1} \circ \operatorname{activation} \circ W_{L-2} \circ \ldots \circ \operatorname{activation} \circ W_0)x$

KAN results

