Symmetric Mass Generation

Anna Hasenfratz and **Oliver Witzel** (for the Lattice Strong Dynamics collaboration)

EPS-HEP 2025 Marseille, France · July 08, 2025

Examples 0000000 Summary 000

Two paradigms to generate mass:

Chiral Symmetry Breaking (χ SM)

Symmetric Mass Generation (SMG)

- ▶ Generate mass without symmetry breaking
- ▶ UV limit: N_f massless flavors gauged with SU(N_c): SU(N_f)_V × SU(N_f)_A × U(1)_V × U(1)_A
- ▶ IR limit: Spontaneous symmetry breaking
 - \rightarrow Fermions are confined
 - \rightarrow Chiral symmetry breaks
 - \rightarrow Massless Goldstone bosons
 - \rightarrow Bilinear condensate $\langle \psi \bar{\psi} \rangle \neq 0$
 - \rightarrow Non-Goldstone states are gapped
- ► If a system has 't Hooft anomalies, massless Goldstones are necessary to satisfy the anomaly matching condition

- ► IR limit: Symmetric mass generation
 - \rightarrow Fermions are confined
 - \rightarrow No symmetry breaking
 - \rightarrow No massless Goldstones bosons
 - \rightarrow Bilinear condensate $\langle \psi \bar{\psi} \rangle = 0$
 - $_{\rightarrow}$ Expect $\langle\psi_1\bar{\psi}_1\psi_2\bar{\psi}_2\rangle\neq 0$ and/or instantons
 - \rightarrow All bound states are gapped
- ► If all 't Hooft anomalies are canceled SMG is possible

Examples 0000000 Summary 000

 $U(1)_A$

Two paradigms to generate mass: Chiral Symmetry Breaking (χ SM)

Symmetric Mass Generation (SMG)

► Generate mass without symm ry breaking

▶ UV limit: N_f massless flavors gauged with SU(N_c): SU(N_f)_V × SU(N_f)

- ▶ IR limit: Spontaneous symmetry breaking
 - \rightarrow Fermions are confined
 - \rightarrow Chiral symmetry breaks
 - \rightarrow Massless Goldstone bosons
 - ightarrow Bilinear condensate $\langle \psi \bar{\psi}
 angle
 eq 0$
 - \rightarrow Non-Goldstone states are gapped
- If a system has 't Hooft anomalies, massless Goldstones are necessary to satisfy the anomaly matching condition
- ▶ IR limit: Symmetri \rightarrow Fermions are \rightarrow No symm \rightarrow No m₂ \rightarrow Bil Instantons ✓ canceled ▶ If all 't SMG is pos

How to cancel 't Hooft anomalies (qualitative example by Cenke Xu for illustration)

▶ Vector N_f massless flavors gauged with $SU(N_c)$: $SU(N_f)_V \times SU(N_f)_A \times U(1)_V \times U(1)_A$

▶ $U(1)_A: \psi \to e^{i\alpha\gamma_5}\psi, \, \bar{\psi} \to \bar{\psi}e^{i\alpha\gamma_5}$ is explicitly broken by the anomaly

$$Z \to \exp\{ilpha N_c N_f Q\}Z, \quad Q = \int d^4 x F \overline{F}$$

▶ Spin- Z_4 : $\psi_L \rightarrow i\psi_L$, $\psi_R \rightarrow -i\psi_R$, $(\phi \rightarrow -\phi, A_\mu \rightarrow A_\mu)$ is a symmetry of the action

- → The measure changes: $Z \rightarrow \exp \left\{ i \frac{2\pi}{4} N_c N_f Q \right\} Z$ → Not anomalous, if $N_f N_c Q \mod 4 = 0$
- ▶ If the system breaks $U(1)_A \rightarrow \text{Spin-}Z_4$ an SMG phase is possible
 - \rightarrow Breaking could be explicit (add 4-fermion interaction or lattice discretization) or spontaneous

.

Rigorous examples [García-Etxebarria, Montero JHEP 08 (2019) 003]

▶ 2-D: Eight Weyl (massless Majorana) fermions cancel all anomalies (chiral and time reversal)

 \rightarrow Add 4-fermion interaction \Rightarrow SMG phase is predicted [Fidkowski, Kitaev PRB 81 (2010) 134509]

[Review by Wang, You Symmetry 14 (2022) 7]

► 4-D: 16 Weyl fermions or 8 massless Dirac fermions to cancel all 't Hooft anomalies [You, BenTov, Xu, arXiv:1402.4151] [Butt et al. PRD 104 (2021) 094504]

- $_{\rightarrow}$ Counting in the UV: $\mathit{N_f} \times \mathit{N_c} \mbox{ mod } 8 = 0$
- \rightarrow Possible 4-D candidate models:
 - SU(2) gauge + $N_f = 4$ fundamental flavors
 - SU(3) gauge + $N_f = 8$ fundamental flavors
 - SU(4) gauge + $N_f = 2, 4, 6, \dots$ fundamental flavors
- ► Anomaly cancellation is necessary but not sufficient condition
 - \rightarrow Does SMG exist in any of these systems? Where?
 - \rightarrow Does it exist in the continuum limit at a strongly coupled fixed point?

Phases of gauge-fermion systems

▶ $SU(N_c)$ gauge + N_f (fundamental) massless flavors

 \rightarrow Known up to 5-loop in $\overline{\text{MS}}$ [Baikov, Chetyrkin, Kühn PRL118(2017)082002]

▶ Perturbatively emerges the IR fixed point at $g_0^2 = \infty$ for $N_f = N^*$ and moves to $g_0^2 = 0$ for $N_f \rightarrow N^{IF}$ Oliver Witzel (University of Siegen)

Phases of gauge-fermion systems

• $SU(N_c)$ gauge + N_f (fundamental) massless flavors

▶ Nonperturbatively the IR fixed point could emerge at finite g_*^2 if $\beta(g^2) \sim (\delta - \delta_*) - (g - g_*)^2$

→ "Conformality lost" at IR-UV fixed point merger [Kaplan et al. PRD80 (2009) 125005] [Vecchi PRD82 (2010) 045013] [Gorbenko et al. JHEP10 (2018) 108]

 \rightarrow UVFP: phase transition, new phase, new relevant operator

Numerically investigated examples in 4-D

▶ Similar results for two systems using $m_f = 0$

- \rightarrow SU(3) gauge + N_f = 8 [Hasenfratz PRD 106 (2022) 014513] [Hasenfratz, OW (LSD) PoS Lattice 2024 146]
- \rightarrow SU(2) gauge + N_f = 4 [Butt et al. PRL 134 (2025) 031602]

Phase structure

Numerical investigations: dynamical LFT simulations

- \blacktriangleright Wick-rotate to Euclidean time $t \rightarrow i \tau$
- ▶ Discretize space-time introducing the lattice spacing a
- ▶ Restrict volume to a hypercube of finite extent $(L/a)^3 \times T/a$
- ► Formulate problem in terms of Feynman's path integral $\langle \mathcal{O} \rangle_E = \frac{1}{Z} \int \mathcal{D}[\psi, \overline{\psi}] \mathcal{D}[U] \mathcal{O}[\psi, \overline{\psi}, U] e^{-S_E[\psi, \overline{\psi}, U]}$
- ► The lattice regularizes the theory
 - \rightarrow Finite lattice spacing a: UV regulator
 - \rightarrow Finite volume of length L/a: IR regulator
- ▶ Stochastic interpretation of the path integral
 - \rightsquigarrow Markov chain Monte Carlo simulations w/ importance sampling
 - \rightarrow Requires High Performance Computing (HPC)

SMG

Simulations

- ▶ nHYP-smeared staggered fermions → Dirac-Kähler fermions
- ► Additional Pauli-Villars fields
- ▶ Plaquette gauge action with adjoint term
- \blacktriangleright Volume 16 $^3\times$ 32, 24 $^3\times$ 64, 32 $^3\times$ 64, 48 $^3\times$ 96
- ▶ $\beta_b = 8.10, 8.20, 8.30, 8.40, 8.50, 8.60, 8.70, 8.80, 8.90, 9.10, 9.20, 9.30, 9.50$
 - \rightarrow Simulations cross from weak coupling to symmetric mass generation (SMG) phase [Hasenfratz PRD 106 (2022) 014513]
- ► HMC: QEX (Osborn, Jin, Peterson)
- ▶ Spectrum: MILC (DeTar et al., ..., Schaich, Hasenfratz)
- ▶ Gauge flow: QLUA (Pochinsky et al.)

SMG 0000 Examples 0000000 Summary 000

Pseudoscalar correlator (would-be Goldstone pion)

► aM_{PS}

► Conformal scaling for $\beta_b > 8.6$ $M_{PS}L \approx \text{const}$

Oliver Witzel (University of Siegen)

Examples 0000000

Vector correlator

▶ aM_{VT}

"gapped phase"

1/L volume scaling conformal phase

 $\blacktriangleright LM_{VT}$

► Conformal scaling for $\beta_b > 8.6$ $M_{VT}L \approx \text{const}$

Pseudoscalar correlator (would-be Goldstone pion)

• Weak coupling $\beta_b = 9.20$ (conformal)

- Degenerate pseudoscalar and scalar (parity doubling)
- No taste splitting

 Degenerate pseudoscalar and scalar (parity doubling) Strong coupling $\beta_b = 8.60 \text{ (SMG)}$

- Degenerate pseudoscalar and scalar (parity doubling)
- ▶ No chiral symmetry breaking

Summary 000

Vector correlator

• Weak coupling $\beta_b = 9.20$ (conformal)

 Degenerate vector and axial (parity doubling) ▶ β_b = 8.90

 Degenerate vector and axial (parity doubling) Strong coupling $\beta_b = 8.60 \text{ (SMG)}$

- Degenerate vector and axial (parity doubling)
- ▶ No chiral symmetry breaking

Summary •00

Order of the phase transition

- Finite size scaling/curve collapse analysis near the critical point $g \to g^*$ [Hasenfratz PRD 106 (2022) 014513]
 - $_{\rightarrow} \mathcal{O}$ is a dimensionless operator: $\mathcal{O}(g,L) = f(L/\xi)$
 - $\rightarrow \xi$ correlation length at g
 - $_{
 ightarrow} f(x=L/\xi)$ unique curve, independent of L
- \blacktriangleright Second order scaling: $\xi \propto |g-g_*|^{-\nu}$
 - $_{\rightarrow}$ First order scaling is similar and has $\nu=1/d=0.25$
- ▶ Merged fixed point (BKT) scaling: $\xi \propto \exp{\{\zeta/|g g_*|\}}$ if $\beta(g^2) \sim (g^2 g_*^2)^2$
- \blacktriangleright Obtain exponents and g^* by standard curve-collapse analysis

Outlook: finite size scaling analysis

Summary

- ▶ SMG is possible in 4-D, if all 't Hooft anomalies are canceled
- ▶ Large scale simulations to scrutinize SU(3) with $N_f = 8$ fundamental flavors at strong coupling using additional Pauli-Villars fields
 - \rightarrow Preliminary findings support picture of a conformal and an SMG phase
 - \rightarrow No chiral symmetry breaking
 - \rightarrow Indications for a new non-trivially interacting UVFP in 4-D
 - $_{\rightarrow}$ Implies: SU(3) + $\mathit{N_{f}}$ = 8 fundamental flavors is likely the onset of the conformal window
 - \rightarrow Maybe: merged fixed point with marginal operator like QCD but not asymptotically free
 - \rightarrow Are staggered (Dirac-Kähler) fermions special?
- \blacktriangleright Ongoing $48^3 \times 96$ volume simulations

T14, Fri 9:50 Salle Joliette