

B-meson Decays to Vector Mesons and Charmless Decays at LHCb

Yanxi Wu

(Peking University, University of Cambridge) On behalf of LHCb collaboration

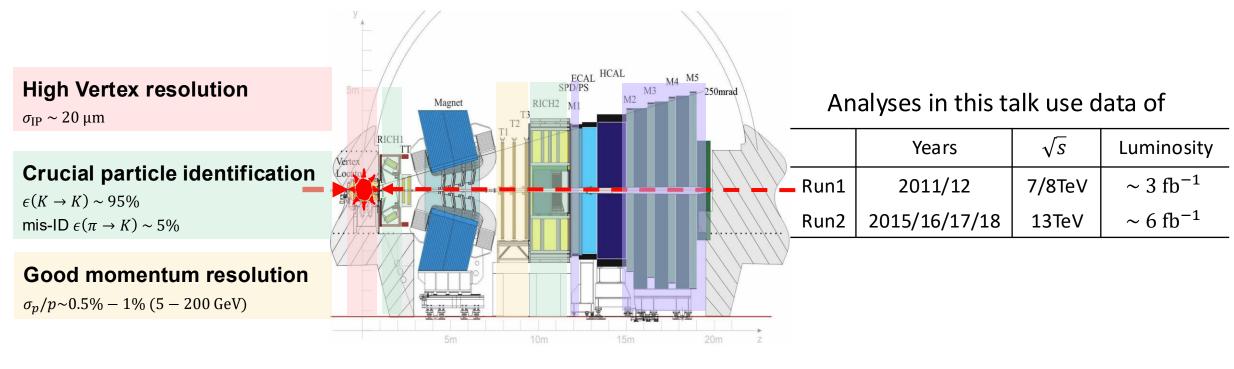
EPS-HEP CONFERENCE 07-11 JULY, 2025 PALAIS DU PHARO MARSEILLE, FRANCE

Outline

Several recent results from LHCb:

• *B*-meson decays to vector mesons ($B \rightarrow VV$)

- First observation of *CP* violation and measurement of polarisation in $B^+ \rightarrow \rho(770)^0 K^*(892)^+$ decays [LHCb-PAPER-2025-026] (In preparation)
- Updated measurement of *CP* violation and polarisation in $B_s^0 \rightarrow J/\psi \overline{K}^*(892)^0$ decays
- NEW Search for the decay $B^0 \rightarrow \phi \phi$ [LHCb-PAPER-2025-018] (In preparation)


Searches for new charmless decay modes and BF measurements

- Observation of the decay $B_s^0 \to K^0 p \bar{p}$ and measurement of the $B_{(s)}^0 \to K^0 p \bar{p}$ branching fractions [arXiv: 2504.21269]
- First observation of the charmless baryonic decay $B^+ \rightarrow \overline{\Lambda} p \overline{p} p$ [LHCb-PAPER-2025-032] (In preparation)
 - Study of light-meson resonances decaying to $K_S^0 K \pi$ in the $B \rightarrow (K_S^0 K \pi) K$ channels (will not be shown in this talk) [Phys. Rev. D111 (2025) 092009]

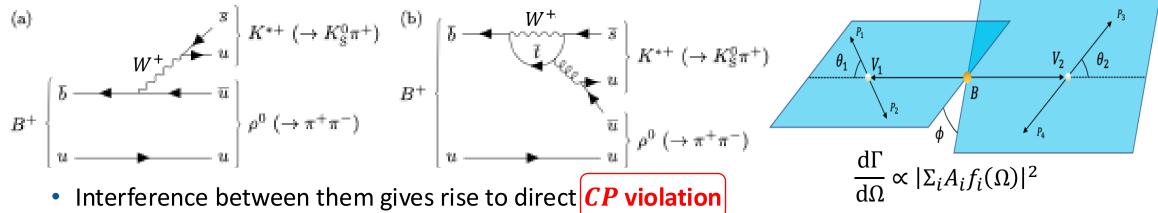
[arXiv: 2506.22090]

• A single-arm forward region spectrometer covering $2 < \eta < 5$

Optimised for beauty and charm physics

[JINST 3 (2008) S08005] [IJMPA 30 (2015) 1530022]

Yanxi Wu (PKU & Cambridge)

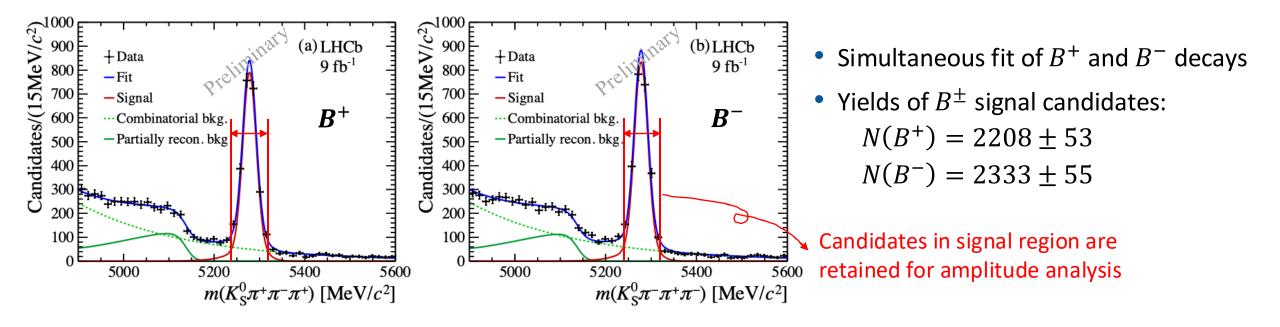

 $B \rightarrow VV$ and charmless decays at LHCb

B-meson decays to vector mesons $(B \rightarrow VV)$

- First observation of *CP* violation and measurement of polarisation in $B^+ \rightarrow
 ho(770)^0 K^*(892)^+$ decays [LHCb-PAPER-2025-026] (In preparation)
- Updated measurement of *CP* violation and polarisation in $B_s^0 \rightarrow J/\psi \overline{K}^*(892)^0$ decays [arXiv: 2506.22090]
- Search for the decay $B^0 \rightarrow \phi \phi$ [LHCb-PAPER-2025-018] (In preparation)

 $B \rightarrow VV$ decays (b-meson decays into two vector mesons) are highly interesting

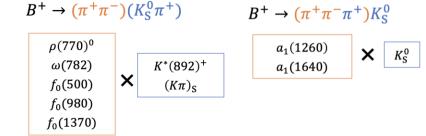
Generally mediated by both tree-level and loop processes

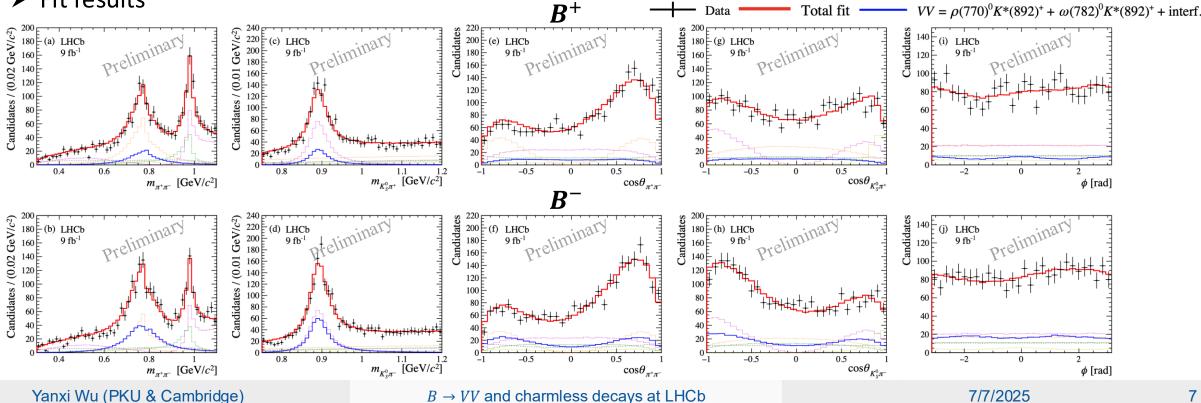

> Three contributing amplitudes: longitudinal (A_0) , parallel (A_{\parallel}) , and perpendicular (A_{\perp})

- Longitudinal polarisation $f_L = |A_0|^2 / (|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2)$
- In the naive factorisation ansatz, $f_L \approx 1$ [Phys. Lett. B 89 (1979) 105.958]
- Experimental results of f_L vary from 0.1 ~ 1 for general $B \rightarrow VV$ decays, which is the so-called "polarisation puzzle", motivating theoretical studies both in QCD effects and New Physics

CPV and polarisation measurements in $B^+ o ho^0 K^{*+}$ [LHCb-PAPER-2025-026] (In preparation)

Preliminary!


- Charmless $B \to VV$ decay $B^+ \to \rho(770)^0 K^*(892)^+ \hookrightarrow \pi^+ \pi^- \hookrightarrow K^0_S \pi^+$
 - Observed by BaBar, branching fraction, longitudinal polarization and *CP* asymmetry have also been measured [Phys.Rev.D83:051101,2011]
 - This is the first measurement by LHCb, larger statistics expected (Run 1 + Run 2)


CPV and polarisation measurements in $B^+ \rightarrow \rho^0 K^{*+}$ [LHCb-PAPER-2025-026] (In preparation)

- Study with an amplitude analysis of
 - $B^+ \to (\pi^+ \pi^-) (K_{\rm S}^0 \pi^+)$
 - $0.3 < m(\pi^+\pi^-) < 1.1 \text{ GeV}/c^2$, $0.75 < m(K_{\rm S}^0 \pi^+) < 1.2 \ {\rm GeV}/c^2$

Preliminary! Resonances considered

Fit results

CPV and polarisation measurements in $B^+ o ho^0 K^{*+}$

[LHCb-PAPER-2025-026] (In preparation)

Results

CP-averaged longitudinal polarization fractions

 $f_L^{\text{avg}} \equiv \frac{|A_0|^2 + |\bar{A}_0|^2}{\sum_{\lambda \in \{0, \|, \bot\}} (|A_\lambda|^2 + |\bar{A}_\lambda|^2)} = 0.721 \pm 0.027 \text{(stat)} \pm 0.030 \text{(syst)}$

- Using likelihood-ratio test, significance of CP violation for
 - $B^+ \rightarrow \rho K^{*+}$ decay is above 9σ taking systematics into account

First observation of *CP* violation in this decay

 $\mathcal{A}_{CP}^{\text{dir}} \equiv \frac{\sum_{\lambda \in \{0, \|, \bot\}} (|\bar{A}_{\lambda}|^2 - |A_{\lambda}|^2)}{\sum_{\lambda \in \{0, \|, \bot\}} (|\bar{A}_{\lambda}|^2 + |A_{\lambda}|^2)} = 0.506 \pm 0.062 \text{(stat)} \pm 0.025 \text{(syst)}$ $(\bar{A}_{\lambda} \text{ for } B^-, A_{\lambda} \text{ for } B^+)$

CP asymmetries for magnitude, phase and polarization

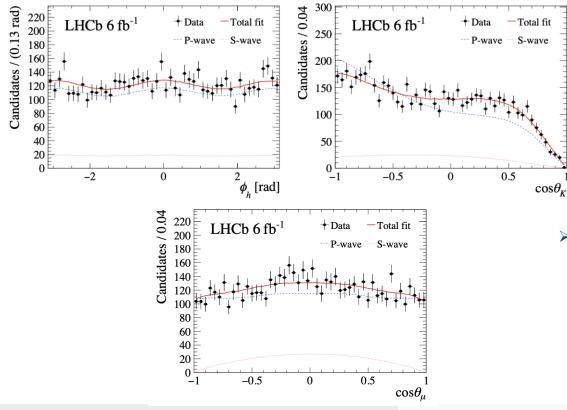
 $\begin{aligned} \mathcal{A}_{CP}(|A_0|^2) &\equiv \frac{|\bar{A}_0|^2 - |A_0|^2}{|\bar{A}_0|^2 + |A_0|^2} = 0.666 \pm 0.081 \pm 0.048, \\ \Delta_{CP}(\delta_0) &\equiv \bar{\delta}_0 - \delta_0 &= 0.774 \pm 0.172 \pm 0.078 \\ \mathcal{A}_{CP}(f_L) &\equiv \frac{\bar{f}_L - f_L}{\bar{f}_L + f_L} &= 0.241 \pm 0.083 \pm 0.050 \end{aligned}$

Yanxi Wu (PKU & Cambridge)

Direct CP asymmetry

$B \rightarrow VV$ and charmless decays at LHCb

[arXiv: 2506.22090]


- $B_s^0 \rightarrow J/\psi \overline{K}^*(892)^0$ decay is mediated by $b \rightarrow c \overline{c} d$ transition
 - Measuring its *CP* asymmetry can help to constrain penguin effects, improving the prediction and interpretation of the *CP*-violating phase $\phi_s^{c\bar{c}s}$ [Phys. Rev. D60 (1999) 073008]
- $B_s^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\overline{K}^{*0}(\rightarrow K^-\pi^+)$ has been measured by LHCb using Run1 data [JHEP 11 (2015) 082]
- This is an updated analysis using Run2 data

CPV and polarisation measurements in $B_s^0 o J/\psi \overline{K}^{*0}$

- Contributions in angular analysis
 - P-wave $J/\psi \overline{K}^{*0}$: $A_0, A_{\parallel}, A_{\perp}$
 - S-wave $J/\psi(K\pi)$: A_S
- Angular fit results

Yanxi Wu (PKU & Cambridge)

- Results after combining Run 1 and Run 2
- > CPV and polarization measurements

$$\begin{aligned} A_k^{CP} &= \frac{\overline{\Gamma}_k - \Gamma_K}{\overline{\Gamma}_k + \Gamma_K}, f_k = \frac{\Gamma_k^{\text{avg}}}{\Gamma_0^{\text{avg}} + \Gamma_\parallel^{\text{avg}} + \Gamma_\perp^{\text{avg}}}, \text{ where } \Gamma_k^{\text{avg}} = (\overline{\Gamma}_k + \Gamma_K)/2 \\ f_0 &= 0.528 \pm 0.011 \,(\text{stat}) \pm 0.009 \,(\text{syst}), \\ f_\parallel &= 0.205 \pm 0.012 \,(\text{stat}) \pm 0.005 \,(\text{syst}), \\ A_0^{CP} &= 0.021 \pm 0.026 \,(\text{stat}) \pm 0.007 \,(\text{syst}), \\ A_\parallel^{CP} &= -0.073 \pm 0.060 \,(\text{stat}) \pm 0.007 \,(\text{syst}), \\ A_\perp^{CP} &= 0.057 \pm 0.049 \,(\text{stat}) \pm 0.014 \,(\text{syst}). \end{aligned}$$

- The most precise determinations to date of the angular parameters
- *CP* asymmetries are consistent with zero within uncertainties
- > Branching fraction measurement
 - Normalization channel: $B^0 \rightarrow J/\psi K^{*0}$
 - $\mathcal{B}(B_s^0 \to J/\psi \bar{K}^{*0}) = (4.13 \pm 0.12 \pm 0.07 \pm 0.14 \pm 0.45) \times 10^{-5}$

Stat. Syst. Hadronization Norm. fraction channel

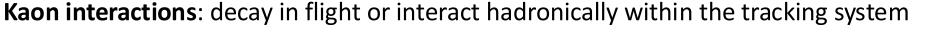
Preliminary!

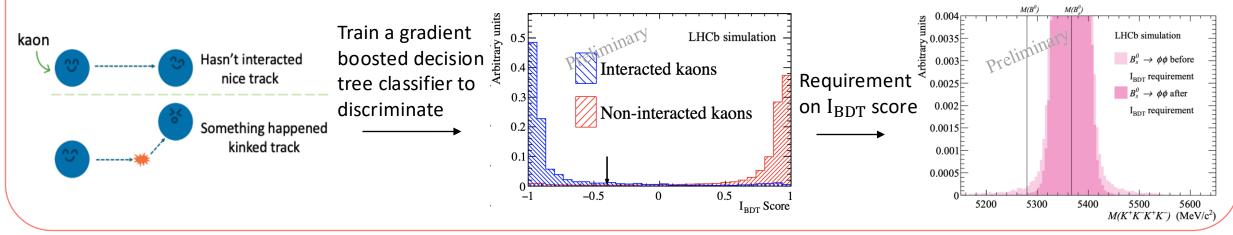
- $B^0 \rightarrow \phi \phi$ decay proceeds via a $\overline{b}d \rightarrow s\overline{s}$ annihilation heavily suppressed and not observed yet
 - At least one loop, Cabibbo suppressed, and Okubo–Zweig–Iizuka (OZI) suppressed
- Theoretical predictions for the branching fraction lie in the range $(0.5-5) \times 10^{-8}$
 - Branching fraction may be enhanced by long-range contributions or new physics models
- The most stringent limit to date is set by LHCb [JHEP 12 (2019) 155]
 - $\mathcal{B}(B^0 \to \phi \phi) < 2.7 \times 10^{-8}$ at 90% confidence level
- This work uses full Run1 and Run2 data
 - Double the statistics from the previous LHCb study
 - More detailed understanding of background sources allows to reduce the background significantly

Search for the decay $B^0 \rightarrow \phi \phi$

misID $B^0 \to \phi K^{*0}$

Preliminary!


Partially reconstructed


 $B^{+,0} \rightarrow \phi K^*$

■ Backgrounds to control in $B^0 \to \phi(\to K^+K^-)\phi(\to K^+K^-)$ candidates Combinatorial background $\int \Lambda_b(\Xi_b) \to pK\phi$

Background

 $B_s \rightarrow \phi \phi$ tail smears into signal region

Yanxi Wu (PKU & Cambridge)

 $B \rightarrow VV$ and charmless decays at LHCb

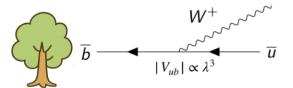
Search for the decay $B^0 \rightarrow \phi \phi$

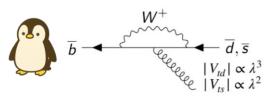
Preliminary!

Consistent with the background-only hypothesis at the level of 1.9σ (10 MeV/c² LHCb 2015 - 2018 Candidates / (10 MeV/c LHCb 2011 - 2012 + Data + Data 6 fb⁻ $3 \, \text{fb}^{-1}$ Total fit andidates / Signal yields: Compare with Combinatoria Run1: 2.6 ± 1.5 theoretical Run2: 10.5 ± 6.3 predictions • 10^{-1} 10-Excluded at 90% C.L. (2025) LHCb S. Bar-Shalom et al., (2003) $9 \, \text{fb}^{-1}$ 10^{-2} 10^{-2} C.-D. Lu et al., (2005) 5200 5400 5600 5200 5400 5600 $M(K^{+}K^{-}K^{+}K^{-})$ (MeV/c²) Beneke et al., (2007) $M(K^{+}K^{-}K^{+}K^{-})$ (MeV/c²) Y. Li, (2014) -T. Zou et al., (2015) D,-C. Yan et al., (2022) • CL_s method for setting an upper limit - value Observed CL_s Aleksan and Oliver, (2022) Expected CL_s Expected $CL_s \pm 1\sigma$ Expected $CL_s \pm 2\sigma$ 0.8 $\mathcal{B}(B^0 \to \phi \phi) < 1.3 \ (1.4) \times 10^{-8}$ LHCb 9 fb^{-1} at 90% (95%) confidence level 0.6 0.4 supersedes the previous LHCb limit, 0.2 improving by a factor of two. 5% CI 2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.21.4 $\mathcal{B}(B^0 \to \phi \phi)/10^{-8}$ 1.6 $\mathcal{B}(B^0 \to \phi \phi) \times 10^{-8}$

Mass fit results

Yanxi Wu (PKU & Cambridge)

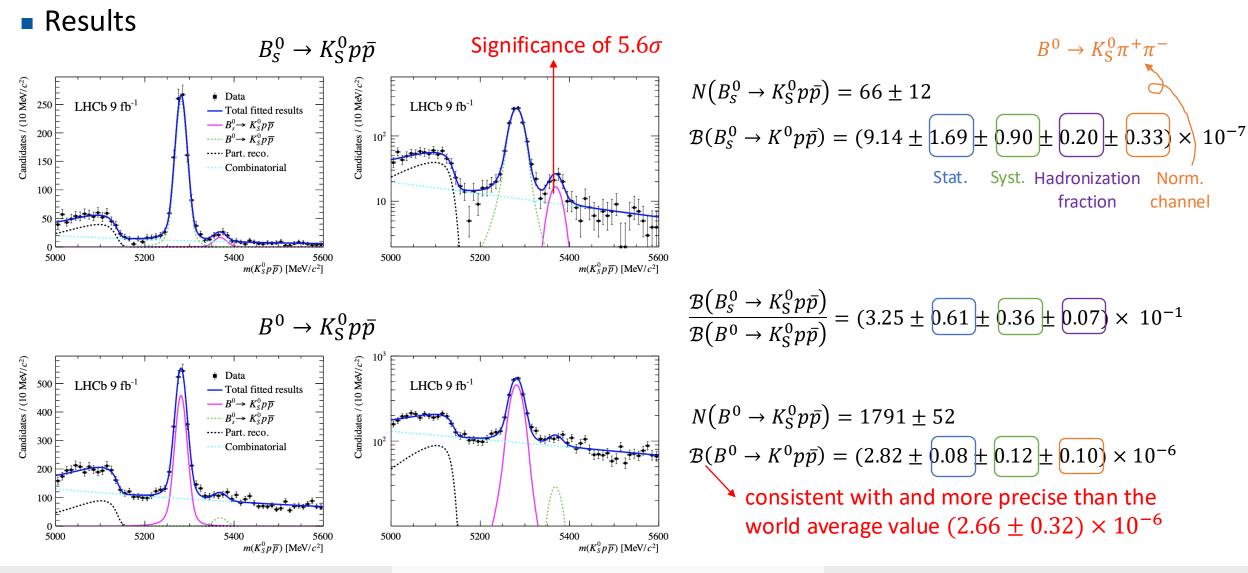

 $B \rightarrow VV$ and charmless decays at LHCb


Searches for new decay modes and branching fraction measurements in charmless decays

- Observation of the decay $B_s^0 \to K^0 p \bar{p}$ and measurement of the $B_{(s)}^0 \to K^0 p \bar{p}$ branching fractions [arXiv: 2504.21269]
- First observation of the charmless baryonic decay $B^+ \rightarrow \bar{\Lambda} p \bar{p} p$ [LHCb-PAPER-2025-032] (In preparation)

Introduction to charmless decays

- * *B*-hadron decays without charm or charmonium contributions in final states
- Suppressed in the Standard Model (SM)
- Proceed through $b \rightarrow u$ tree and $b \rightarrow s, d$ penguin transitions
 - have comparable magnitudes and a relative weak phase
 - Interference can give rise to CP violation in decay
- Multi-body decays also have rich resonance structures
- Provide inputs and tests for theoretical models
- Search for New Physics (NP)
 - Branching fractions and *CP* violations can differ from SM predictions
 - NP particles can contribute to penguin loops and additional sources of CP violation



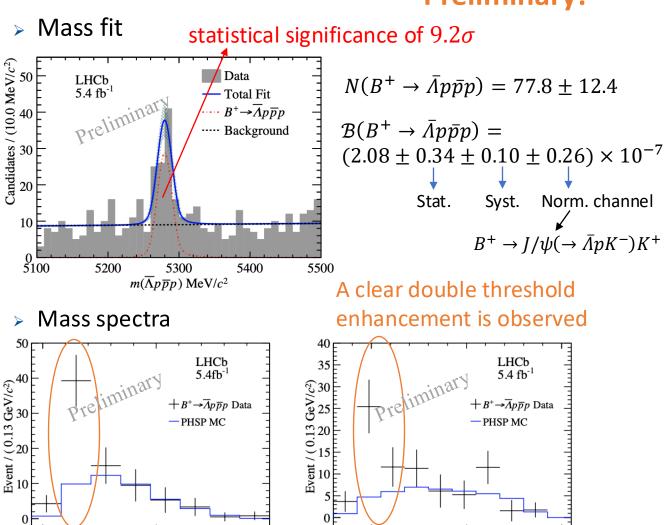
Observation of $B_s^0 \to K^0 p \bar{p}$ and BF measurements of $B_{(s)}^0 \to K^0 p \bar{p}$

- $B^0_{(s)} \to K^0 p \bar{p}$ decays proceed via both penguin and tree-level diagrams
 - Penguin: $b \to q\bar{q}s$ and $b \to q\bar{q}d$, spectator quarks are d and s (where q = u, d)
 - Tree-level: $b \rightarrow u$
- Threshold enhancement in $p\bar{p}$ mass distribution
 - Indicating the involvement of nontrivial intermediate states that influence the decay dynamics
- Branching fraction measurements are essential for testing and refining theoretical model
 - Relative branching fractions of $B^0 \to K^0 p \bar{p}$ and $B^0_s \to K^0 p \bar{p}$ decays provide precise tests of flavour symmetries
 - $\mathcal{B}(B^0 \to K^0 p \bar{p})$ has been measured by Belle and BaBar, $B_s^0 \to K^0 p \bar{p}$ is yet to be observed
- Search for $B_s^0 \to K^0 p \bar{p}$ and measure branching fractions of $B_{(s)}^0 \to K^0 p \bar{p}$ decays using full Run 1 and Run 2 data collected by LHCb

Observation of $B_s^0 \to K^0 p \bar{p}$ and BF measurements of $B_{(s)}^0 \to K^0 p \bar{p}$

Yanxi Wu (PKU & Cambridge)

 $B \rightarrow VV$ and charmless decays at LHCb


[arXiv: 2506.22090]

Observation of charmless baryonic decay $B^+ \rightarrow \bar{\Lambda} p \bar{p} p^{[LHCb-PAPER-2025-032]}$

Preliminary!

- Search for $B^+ \rightarrow \bar{\Lambda} p \bar{p} p$ decay
 - A purely baryonic 4-body decay
 - Theoretical prediction: $\mathcal{B}(B^+ \to \bar{\Lambda}p\bar{p}p) =$ (7.4^{+0.6}_{-0.2} ± 0.03^{+3.6}_{-2.6}) × 10⁻⁷ [Phys. Lett. B 845 (2023)138158]
- Explore the mass spectra
 - Double threshold enhancement of two baryon–antibaryon pairs $(\bar{\Lambda}p)$ and $(\bar{p}p)$
 - Benefit the study of baryonium-like bound states such as the *X*(1835) and *X*(2085)
- This analysis uses 2016-2018 LHCb data
- > *CP* asymmetry

$$A_{CP} = (5.4 \pm 15.6(\text{stat}) \pm 2.4(\text{syst}))\%$$

2000

3000

Yanxi Wu (PKU & Cambridge)

2000

2500

 $m(\overline{\Lambda}p)$ MeV/ c^2

7/7/2025

3000

 $\frac{2500}{m(\overline{p}p_{II})}$ MeV/ c^2

- LHCb provides a rich environment to study the dynamics of B decays
- Recent results on $B \rightarrow VV$ and charmless decays (shown in this talk)
 - $B^+ \rightarrow \rho^0 K^{*+}$: first observation of CPV in this decay, precise measurement of polarisation
 - $B_s^0 \rightarrow J/\psi \overline{K}^{*0}$: updated precise measurements of BF, CPV and polarisation
 - $B^0 \rightarrow \phi \phi$: improve upper limit of BF by a factor of two
 - $B^0_{(s)} \to K^0 p \bar{p}$: observation of $B^0_s \to K^0 p \bar{p}$ and precise measurement of BF of $B^0_{(s)} \to K^0 p \bar{p}$
 - $B^+ \rightarrow \bar{\Lambda} p \bar{p} p$: observation of this purely baryonic decay, measure BF and CPV
- Many new results with high precision from LHCb using Run 1 and Run 2 data
 - Provide crucial inputs for testing and refining theoretical models
 - More analyses using Run 3 data are on the way, with largely increased statistics and higher efficiency

Thanks!

BackUp

CPV and polarisation measurements in $B^+ \rightarrow \rho^0 K^{*+}$

[LHCb-PAPER-2025-026]

Preliminary!

- Previous study: by BaBar
 - Branching fraction $\mathcal{B}(B^+ \rightarrow \rho^0 K^{*+}) = (4.6 \pm 1.0 \pm 0.4) \times 10^{-6}$
 - Longitudinal polarization $f_L = 0.78 \pm 0.12 \pm 0.03$
 - Direct *CP* asymmetry $A_{CP} = 0.31 \pm 0.13 \pm 0.03$
- Definition of f_L
 - $B^+: f_L = |A_0|^2 / \Sigma_{\lambda \in \{0, \|, \bot\}}(|A_\lambda|^2), B^-: \overline{f_L} = |\overline{A_0}|^2 / \Sigma_{\lambda \in \{0, \|, \bot\}}(|\overline{A_\lambda}|^2)$
 - *CP*-average: $f_L^{\text{avg}} \equiv \frac{|A_0|^2 + |\bar{A}_0|^2}{\Sigma_{\lambda \in \{0, \|, \bot\}} (|A_\lambda|^2 + |\bar{A}_\lambda|^2)}$, *CP*-asymmetry: $\mathcal{A}_{CP}(f_L) \equiv \frac{\bar{f}_L f_L}{\bar{f}_L + f_L}$
- Triple Product Asymmetries (TPA)
 - To study the CP violation between interferences of two amplitudes
 - A nonzero TPA can either be due to a *CP*-violating phase (*true*) or a *CP*-conserving phase induced by final-state interactions (*fake*) [Eur. Phys. J. C 81 (2021) 806, Phys. Rev. D 84 (2011) 096013]

$$\mathcal{A}_{true}^{(1)} \equiv -\frac{2\sqrt{2}}{\pi} \frac{\Im(A_{\perp}A_{0}^{*} \mp \bar{A}_{\perp}\bar{A}_{0}^{*})}{\sum_{\lambda \in \{0, \parallel, \perp\}} (|A_{\lambda}|^{2} + |\bar{A}_{\lambda}|^{2})}, \underbrace{\mathsf{Measured}}_{\mathsf{to be}} \qquad \mathcal{A}_{true}^{(1)} = -0.110 \pm 0.024 \pm 0.009, \underbrace{\mathsf{4.3\sigma}}_{\mathsf{true}} = -0.155 \pm 0.019 \pm 0.005, \underbrace{\mathsf{4.3\sigma}}_{\mathsf{true}} = -0.155 \pm 0.024 \pm 0.009, \underbrace{\mathsf{4.3\sigma}}_{\mathsf{true}} = -0.005 \pm 0.012 \pm 0.0006, \underbrace{\mathsf{4.3\sigma}}_{\mathsf{true}} = -0.005 \pm 0.000, \underbrace{\mathsf{4.3\sigma}}_{\mathsf{true}} = -0.005 \pm 0.000, \underbrace{\mathsf{4.3\sigma}}_{\mathsf{true}} = -0.005 \pm 0.000, \underbrace{\mathsf{4.3\sigma}}_{\mathsf{true}} = -0.000, \underbrace{\mathsf{4.3\sigma}}_$$

• Angular basis functions $G_k(\Omega)$ and the corresponding amplitude products a_k

Index k	Amplitude product a_k	Angular function $G_k(\Omega_{hel})$
1(0)	$ A_0 ^2$	$rac{9}{16\pi}\cos^2 heta_K(1-\cos^2_{ heta_\mu})$
$2 \; (\parallel)$	$ A_{\parallel} ^2$	$rac{9}{32\pi}(1-\cos^2 heta_K)(1-(1-\cos^2_{ heta_\mu})\cos^2\phi_h)$
$3~(\perp)$	$ A_{\perp} ^2$	$rac{9}{32\pi}(1-\cos^2 heta_K)((1-\cos^2_{ heta_\mu})\cos^2\phi_h+\cos^2_{ heta_\mu})$
4	$\mathcal{I}m(A_{\parallel}^{*}A_{\perp})$	$rac{9}{16\pi}(1-\cos^2 heta_K)(1-\cos^2_{ heta_\mu})\sin(2\phi_h)$
5	$\mathcal{R}e(A_0^*A_\parallel)$	$rac{9\sqrt{2}}{16\pi}\cos heta_K\cos_{ heta_\mu}\sqrt{(1-\cos^2 heta_K)(1-\cos^2_{ heta_\mu})}\cos\phi_h$
6	${\cal I}m(A_0^*A_\perp)$	$rac{9\sqrt{2}}{16\pi}\cos heta_K\cos_{ heta_\mu}\sqrt{(1-\cos^2 heta_K)(1-\cos^2_{ heta_\mu})}\sin\phi_h$
7~(S)	$ A_S ^2$	$rac{3}{16\pi}(1-\cos^2_{ heta_\mu})$
8	$\mathcal{R}e(A_S^*A_\parallel)$	$rac{3\sqrt{6}}{16\pi}\cos_{ heta_{\mu}}\sqrt{(1-\cos^2 heta_K)(1-\cos^2_{ heta_{\mu}})}\cos\phi_h$
9	${\cal I}m(A_S^*A_\perp)$	$rac{3\sqrt{6}}{16\pi}\cos_{ heta_{\mu}}\sqrt{(1-\cos^2 heta_K)(1-\cos^2_{ heta_{\mu}})}\sin\phi_h$
10	$\mathcal{R}e(A_S^*A_0)$	$rac{3\sqrt{3}}{8\pi}\cos heta_K(1-\cos^2_{ heta_\mu})$

CPV and polarisation measurements in $B_s^0 \rightarrow J/\psi \overline{K}^{*0}$

[arXiv: 2506.22090]

• Run2 results

$$\begin{split} \mathcal{B}(B^0_s \to J/\psi \overline{K}^{*0}) &= (4.07 \pm 0.15 \,(\text{stat}) \pm 0.07 \,(\text{syst}) \pm 0.13 \,(\frac{f_d}{f_s}) \pm 0.45 \,(\mathcal{B}_{B^0})) \times 10^{-5}. \\ f_0 &= 0.534 \,\pm \, 0.012 \,(\text{stat}) \,\pm \, 0.009 \,(\text{syst}), \\ f_{\parallel} &= 0.211 \,\pm \, 0.014 \,(\text{stat}) \,\pm \, 0.005 \,(\text{syst}). \\ \end{split}$$

$$\begin{split} A^{CP}_0 &= 0.014 \,\pm \, 0.029 \,(\text{stat}) \,\pm \, 0.007 \,(\text{syst}), \\ A^{CP}_{\parallel} &= -0.055 \,\pm \, 0.065 \,(\text{stat}) \,\pm \, 0.007 \,(\text{syst}), \\ A^{CP}_{\perp} &= \, 0.060 \,\pm \, 0.057 \,(\text{stat}) \,\pm \, 0.016 \,(\text{syst}). \end{split}$$

• Run1 results

$$\begin{split} \mathcal{B}(B^0_s \to J/\psi\,\overline{K}^{*0}) &= (4.14 \pm 0.18(\mathrm{stat}) \pm 0.26(\mathrm{syst}) \pm 0.24(f_d/f_s)) \times 10^{-5} \\ f_0 &= 0.497 \pm 0.025 \,\,(\mathrm{stat}) \pm 0.025 \,\,(\mathrm{syst}) \\ f_{\parallel} &= 0.179 \pm 0.027 \,\,(\mathrm{stat}) \pm 0.013 \,\,(\mathrm{syst}) \\ A^{CP}_0(B^0_s \to J/\psi\,\overline{K}^{*0}) &= -0.048 \pm 0.057 \,\,(\mathrm{stat}) \pm 0.020 \,\,(\mathrm{syst}) \\ A^{CP}_{\parallel}(B^0_s \to J/\psi\,\overline{K}^{*0}) &= 0.171 \pm 0.152 \,\,(\mathrm{stat}) \pm 0.028 \,\,(\mathrm{syst}) \\ A^{CP}_{\perp}(B^0_s \to J/\psi\,\overline{K}^{*0}) &= -0.049 \pm 0.096 \,\,(\mathrm{stat}) \pm 0.025 \,\,(\mathrm{syst}) \,, \end{split}$$