European Physical Society Conference on High Energy Physics Palais Du Pharo – Marseille

Measurements of semileptonic and leptonic B decays at Belle and Belle II

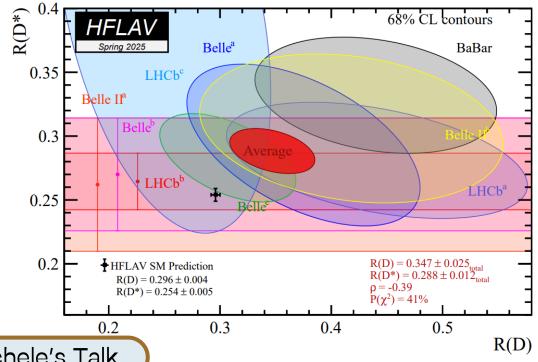
Giovanni Gaudino* on behalf of the Belle II Collaboration 2025, 8th July

Motivations of (Semi)leptonic B decays

Lepton-Flavor Universality tests

SM Precision Measurements

Electroweak Penquins


- In the Standard Model (SM), the W boson couples equally to $au, \mu, e o Lepton-Flavor Universality (LFU)$
- Semileptonic B decays are sensitive to new physics beyond SM
- Ratio measurements provide stringent LFU tests: branching fractions, angular asymmetry, etc.
 - \checkmark Normalization ($|V_{xb}|$) cancels
 - ✓ Part of theoretical, experimental uncertainties cancels

$$R(H_{\tau/\ell}) = \frac{B(B \to H\tau\nu)}{B(B \to H\ell\nu)}$$

$$H = D^{(*)}, X, \pi, \dots$$

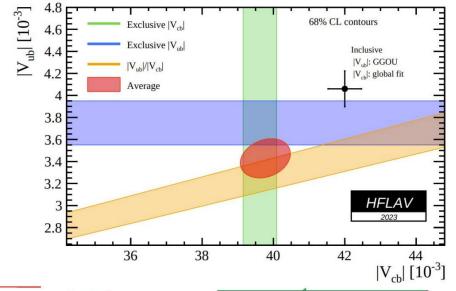
$$\ell = e, \mu$$

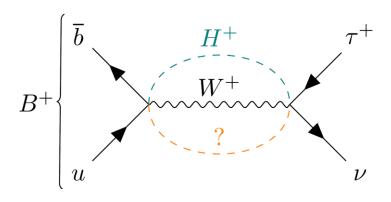
Tension of $R\left(D_{ au/\ell}^{(*)}\right)$ with SM ~3 σ

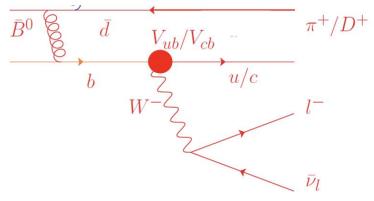
Covered by Michele's Talk

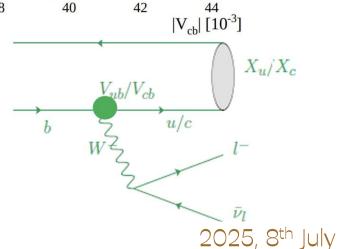
2025, 8th July

Motivations of (Semi)leptonic B decays


Lepton-Flavor Universality tests


SM Precision Measurements

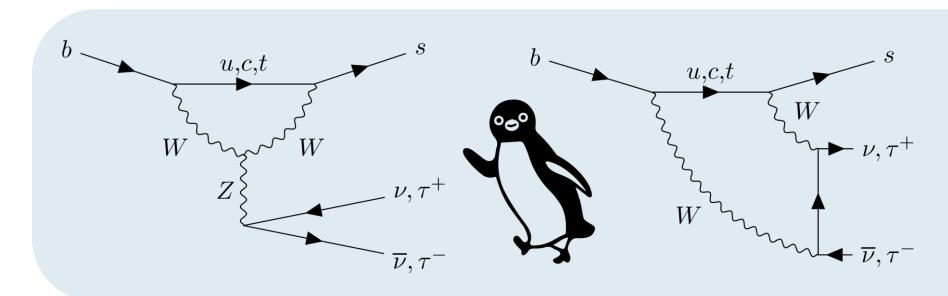

Electroweak Penquins


- $|V_{ub}|$ and $|V_{cb}|$ important to **constrain** CKM Unitarity
- Precisely measured with semileptonic B decays

$$\left[egin{array}{c} d' \ s' \ b' \end{array}
ight] = \left[egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight] \left[egin{array}{c} d \ s \ b \end{array}
ight]$$

Giovanni Gaudino

Motivations of (Semi)leptonic B decays


Lepton-Flavor Universality tests

SM Precision Measurements

Electroweak Penquins

- Flavor-changing neutral currents are not possible at tree level in the **Standard Model (SM)**
- Branching fractions predicted in the range 10^{-7} – 10^{-4} with 5–30% uncertainties (dominated by soft QCD effects).
- Highly sensitive to potential non-SM contributions.

Covered by Valerio's Talk

Standard Model
Feynman diagram of
Penguins with missing
energy

Giovanni Gaudino 2025, 8th July

The Belle (II) experiment

e- 7 GeV 2.6 A

New beam pipe SuperKEKB

SuperKEKB

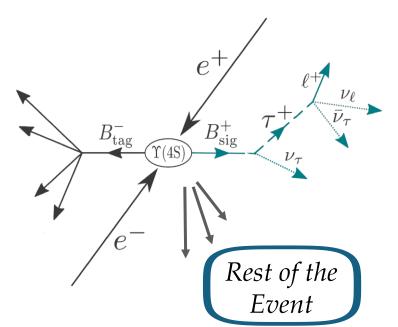
- e^+e^- collider with energies 4~GeV and 7~GeVoperating around $\Upsilon(4S)$ resonance.
- Achieved world-record peak (December 2024) Luminosity of $L = 5.1 \times 10^{34} cm^{-2} s^{-1}$

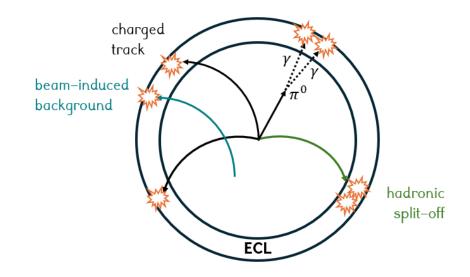
Belle II

- Nearly 4π detector coverage
- Tracking, PID and photon reconstruction capabilities
- Similar performance for electrons and muons
- Well-suited to measure decays with **missing energy**, $oldsymbol{\pi^0}$ in the final state. **inclusive** measurement
- From 2019 2024, $500 \, fb^{-1}$ of data was collected.

RUN1: Data at $\Upsilon(4S)$: $365 \, fb^{-1}$, about $\mathbf{4} \times \mathbf{10^8} \, \boldsymbol{B} \, \overline{\boldsymbol{B}}$ – total: $424 \, fb^{-1}$ Statistics similar to BaBar and about half of Belle

Belle II-chan




$B \rightarrow \tau \nu$ with hadronic tag

Event Reconstruction

One B meson is fully reconstructed using a multivariate algorithm, Full Event Interpretation (FEI) with Hadronic Tagging.

- 1. \mathcal{O}_{FEI}
- 2. $\Delta E = E_B^* \sqrt{s}/2$
- 3. $M_{bc}c^2 = \sqrt{s/4 (p_B^*c)^2}$

Rest of the Event:

It is crucial to reject fake photons in the ECL from background Sum of all the cleaned clusters energy $ightarrow E_{ECL}^{extra}$.

Missing Quantities:

We build the missing part of each event using also the information of the Rest of Event:

$$p_{miss} = p_{beams} - p_{B_{tag}} - p_{track} - p_{ROE}$$

We will use the **Extra ECL Energy** and the **missing mass squared** to extract the signal yield 2025, 8th July

Giovanni Gaudino

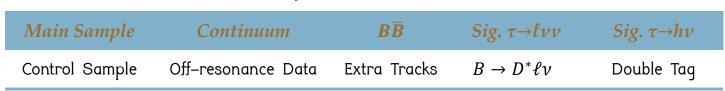
Signal Selection Strategy

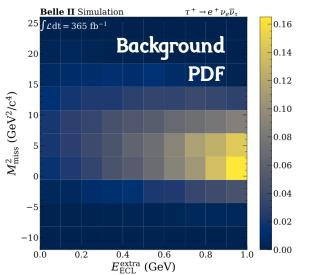
Continuum $B\overline{B}$ $p(B) \approx 0.3 \text{ GeV/c}$ $e^{+}e^{-} \rightarrow \tau^{+}\tau^{-}$ $e^{+}e^{-} \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$

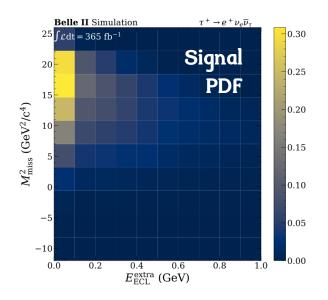
Continuum Suppression

MVA: 2 BDTs trained, one for leptonic and one for hadronic τ^+ decays. Features = only variables not correlated with our fit variables. Plots in the backup.

Signal Enhancement


 $e^+e^- \rightarrow q\overline{q} \quad (q \in \{u, d, s, c\})$

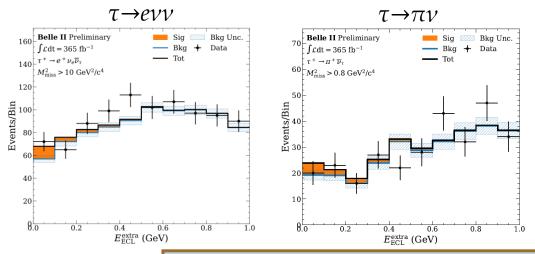

The selection optimization is done performing maximum likelihood fits $M_{miss}^2 \ vs \ E_{ECL}^{extra}$ on simulation *PDFs*.


Other important variable to enhance the signal:

• Momentum of the $\pi/
ho$ (higher than the background)

Validation via control samples

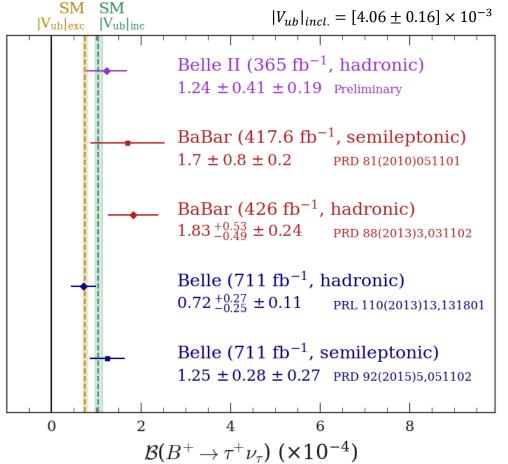
Result


Branching Fraction Extraction

3.0\sigma with respect to background-only hypothesis.

Main Systematics: MC Statistics (13%), Fit Variables PDF (5.5%), PDG Branching Fraction (4.1%)

Assuming the SM, and using $f_B=190.0\pm1.3$ MeV from Lattice QCD:


$$|V_{ub}| = (4.41^{+0.74}_{-0.89}) \times 10^{-3}$$

Submitted to PRD: arXiv:2502.04885

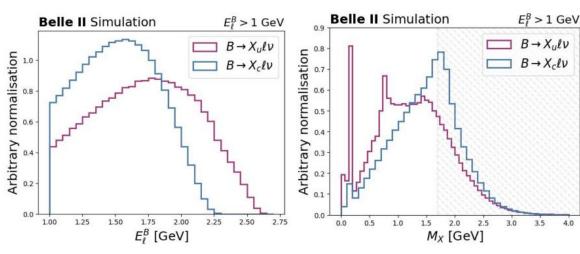
$$|V_{ub}|_{excl.} = [3.43 \pm 0.12] \times 10^{-3}$$

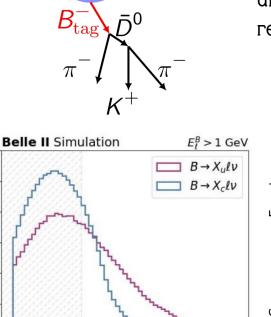
$$|V_{ub}|_{incl.} = [4.06 \pm 0.16] \times 10^{-3}$$

$$\mathcal{B}(B^+ \to \tau^+ \nu) = (1.24 \pm 0.41(\text{stat.}) \pm 0.19(\text{syst.})) \times 10^{-4}$$

Giovanni Gaudino

2025, 8th July

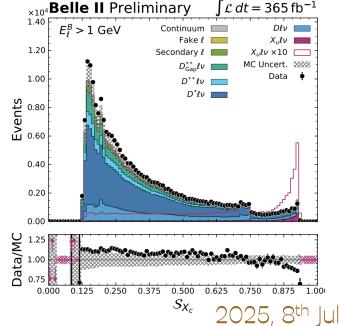



$|V_{ub}|$ from inclusive $B \rightarrow X_u \ell \nu$ decays

(New at EPS25)

Dataset Reconstruction

- B_{tag} reconstructed in hadronic decay channels (Had. Tag)
- Reconstructed lepton (electron or muon)
- Neutrino characterised as missing energy
- **Hadronic system X** characterised from rest-of-event
- 3 main kinematical variables to suppress $X_c \ell \nu$:
 - 1. $E_{\ell}\left(B\right)$: lepton energy (in B_{sig} rest-frame)
 - 2. M_X : mass of hadronic system
 - 3. Q^2 : momentum transferred

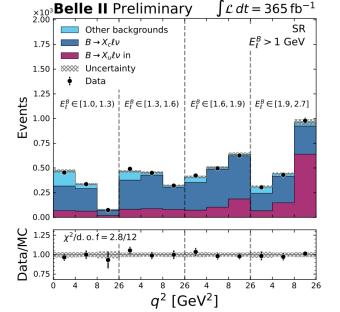


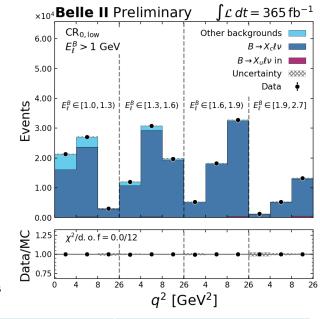
 q^2 [GeV²]

 $\Upsilon(4S)$

Background Suppression

- Continuum suppression via a NN using Event Geometry variables
- $X_c\ell\nu$ suppression via a NN using the kinematics of $B \to X_c\ell\nu$ decays and low-momentum π properties to reject $B \to D^*\ell\nu$ decays.




Giovanni Gaudino

Arbitrary normalisation

Signal Extraction Strategy

- Binned template fit with pyhf, cabinetry
 - Constrained source-wise nuisance parameters
 - Parameter of interest (POI): signal strength
- 3 templates:
 - 1. $X_u \ell \nu$ template: signal events that pass the considered phase-space cuts on reconstruction and generator level
 - 2. Main background: $B \rightarrow X_c \ell \nu$
 - 3. Other backgrounds (fake/secondary leptons + continuum)
- Simultaneous Fit with the control sample, to correct the shape of the $X_c\ell\nu$ background

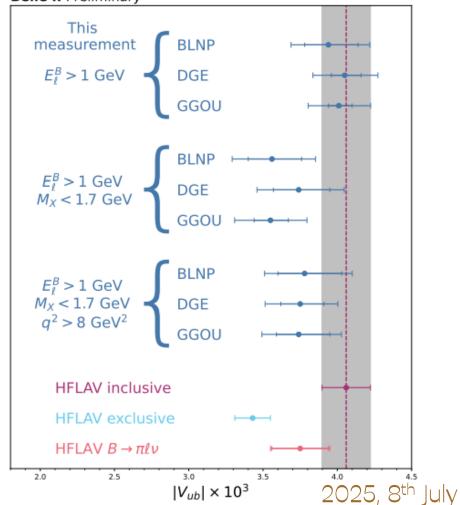
3 Different Fits in the 3 different phase spaces to extract the signal strength, and then determine V_{ub}

Phase Space	Fit Variables
$E_{\ell}^{B} > 1 \; GeV$	E_ℓ^B : q^2
$E_{\ell}^{B} > 1 \; GeV$ $M_{X} < 1.7 \; GeV$	E_{ℓ}^{B} : q^{2}
$E_\ell^B > 1~GeV$ $M_X < 1.7~GeV$ $q^2 > 8~GeV^2$	E_ℓ^B

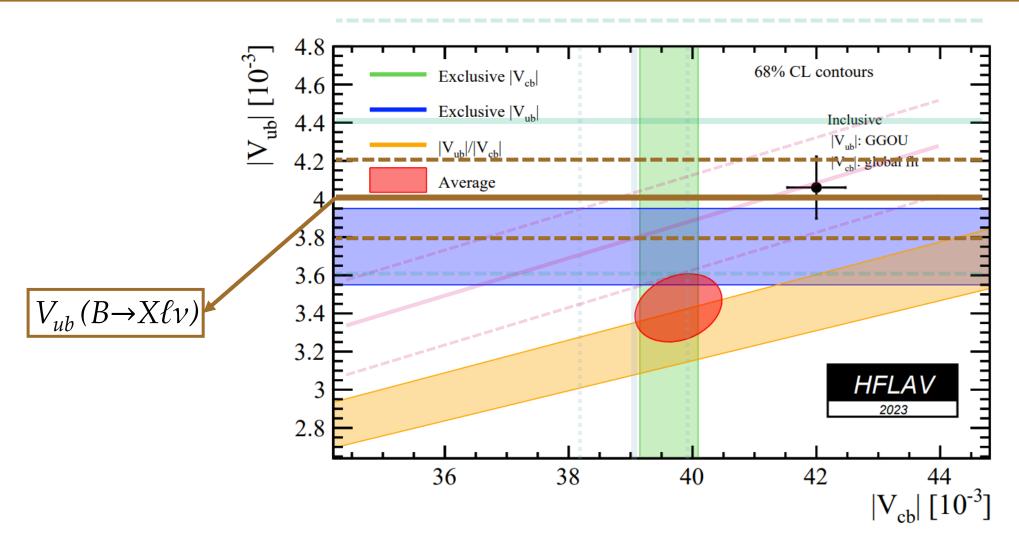
Result

The broadest phase-space region, where inclusive $B \rightarrow X_u \ell \nu$ theoretical predictions are most reliable, is defined by a selection $E_{\ell}(B) > 1 \; GeV$.

$$\Delta \mathcal{B}(B \to X_u \ell \nu) = (1.54 \pm 0.08 \pm 0.12) \times 10^{-3}$$


The obtained value of $\lceil V_{ub} \rceil$ using a partial decay rate predicted by the **GGOU framework** is

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\tau_B \Delta \Gamma(B \to X_u \ell \nu)}} \quad |V_{ub}| = (4.01 \pm 0.11 \pm 0.16^{+0.09}_{-0.07}) \times 10^{-3}$$

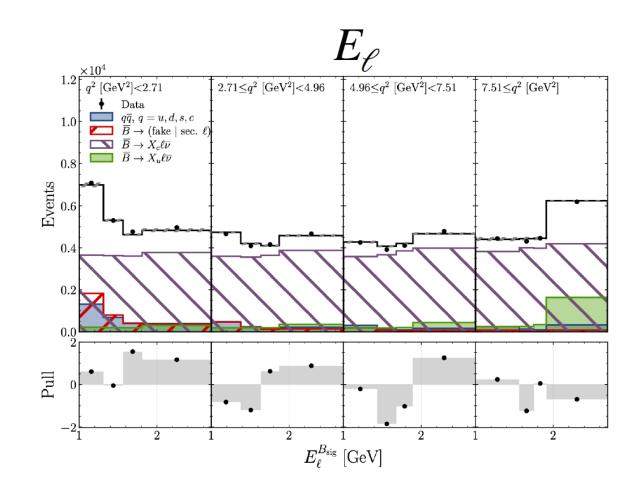

- **Compatible** with the average value obtained from measurements using $B o \pi \ell \nu$ decays within uncertainties
- **Exceeds** the HFLAV exclusive average
- Measurement is **competitive** with other measurements

BLNP: <u>Phys. Rev. D 72, 073006</u> DGE: <u>JHEP 01, 097 (2006)</u> GGOU: <u>JHEP 10, 058 (2007)</u>

Belle II Preliminary

First Hints of the future picture

Giovanni Gaudino 2025, 8th July



$|V_{ub}|/|V_{cb}|$ from inclusive $B \rightarrow X \ell \nu$ decays

Dataset Reconstruction

Dataset and Tagging: Belle dataset of $711 \, fb^{-1}$ Apply improved Belle II hadronic tagging algorithm

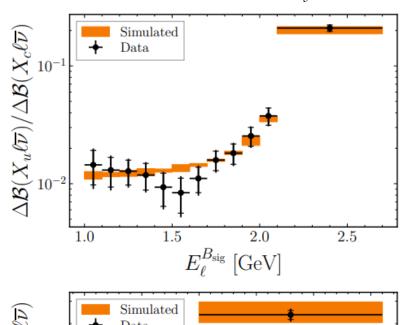
- K^+ or K_S reconstruction to tag a $b{\to}c$ decay
 - N(K) > 0 signal depleted sample for $X_c \ell \nu$ decays
 - N(K) = 0 signal enhanced sample to extract signal yields
- Inclusive D^* reconstruction to veto $b \rightarrow c$
 - Reconstructing **soft pion** and **high** M_{miss}^2
- 1D fit to E_ℓ in **u**-depleted sample to get $N^{Xc\ell v}$
- 2D fit to $E_\ell \times q^2$ in u-enhanced sample to get $N^{Xu\ell\nu}$

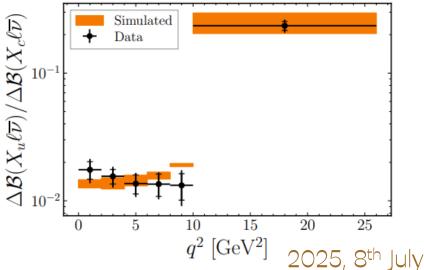
Giovanni Gaudino

Result

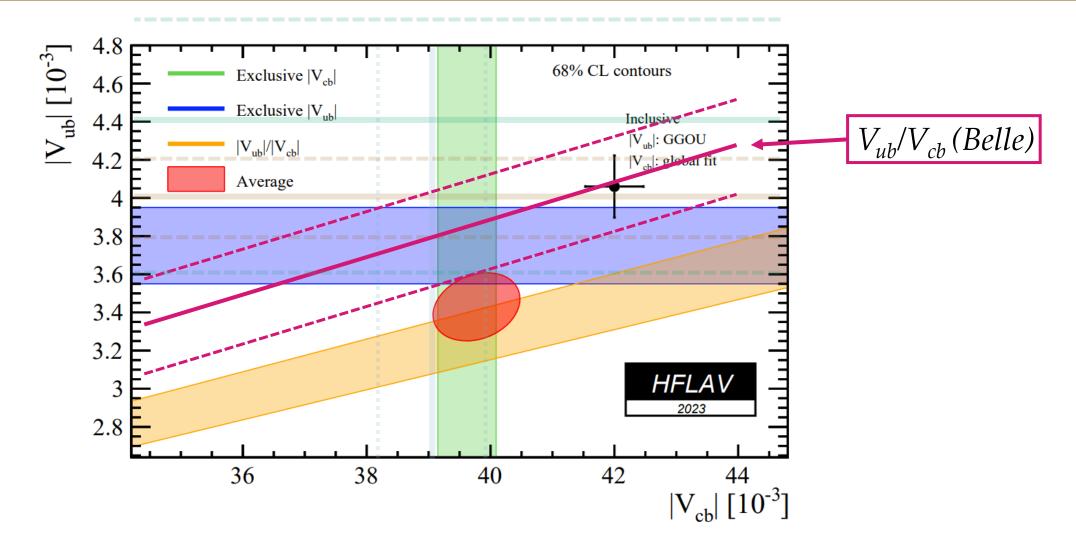
Phys. Rev. D 111, 092016

- Unfold $B \rightarrow X_{\nu} \ell \nu \& B \rightarrow X_{c} \ell \nu$ yields
- Take ratio and correct for efficiency to form differential ratios


$$\frac{|V_{ub}|}{|V_{cb}|} = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu) \Delta \Gamma(B \to X_c \ell \nu)}{\Delta \mathcal{B}(B \to X_c \ell \nu) \Delta \Gamma(B \to X_u \ell \nu)}} \frac{\text{Theory decay rates:}}{\Delta \Gamma^{\text{GGOU}}(B \to X_u \ell \nu) = 58.5^{+2.7}_{-2.3} \text{ ps}^{-1}} \Delta \Gamma^{\text{BLNP}}(B \to X_u \ell \nu) = 61.5^{+6.4}_{-5.1} \text{ ps}^{-1}} \Delta \Gamma^{\text{Kin}}(B \to X_c \ell \nu) = 29.7 \pm 1.2 \text{ ps}^{-1}}$$


 $|V_{ub}|/|V_{cb}|$ with partial Branching Fraction:

$$\frac{|V_{ub}|}{|V_{cb}|}^{\text{BLNP}} = \left(9.81 \pm 0.42_{\text{stat.}} \pm 0.38_{\text{syst.}} \pm 0.51_{\Delta\Gamma(B \to X_u \ell \nu)} \pm 0.20_{\Delta\Gamma(B \to X_c \ell \nu)}\right) \times 10^{-2}$$


$$\frac{|V_{ub}|}{|V_{cb}|}^{\text{GGOU}} = \left(10.06 \pm 0.43_{\text{stat.}} \pm 0.39_{\text{syst.}} \pm 0.23_{\Delta\Gamma(B \to X_u \ell \nu)} \pm 0.20_{\Delta\Gamma(B \to X_c \ell \nu)}\right) \times 10^{-2}$$

$$\pm 0.23_{\Delta\Gamma(B \to X_u \ell \nu)} \pm 0.20_{\Delta\Gamma(B \to X_c \ell \nu)}\right) \times 10^{-2}$$

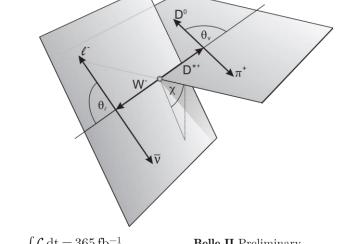
First Hints of the future picture

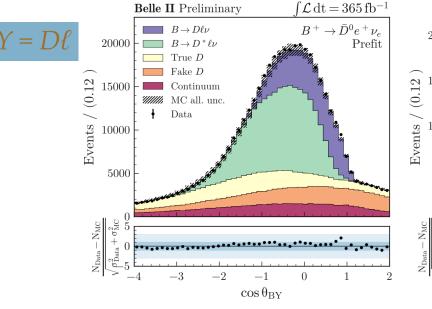
Giovanni Gaudino 2025, 8th July

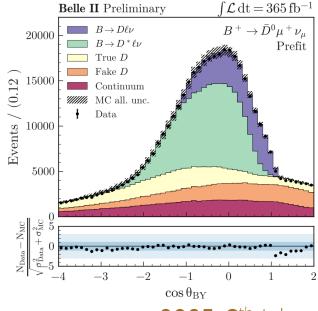
$|V_{cb}|$ from $B \rightarrow D\ell\nu$

Introduction

Analysis Workflow


- Candidate $B \rightarrow D\ell\nu$ are formed from $\ell(e, \mu)$ and a D $(D \rightarrow K\pi, D \rightarrow K\pi\pi)$
- Exploit $isospin\ symmetry\$ to analyze B^0 and B^+ decays simultaneously and reduce experimental uncertainties.
- Signal variable using available kinematic constant


$$\cos \theta_{BY} = \frac{2 E_{\text{Beam}} E_Y - m_B^2 - m_Y^2}{2 |\vec{p}_B| |\vec{p}_Y|}$$


$$w = \frac{m_B^2 + m_D^2 - q^2}{2 m_B m_D}$$

- $B \rightarrow D^* \ell \nu$
- Continuum events $e^+e^- \rightarrow q\overline{q}$

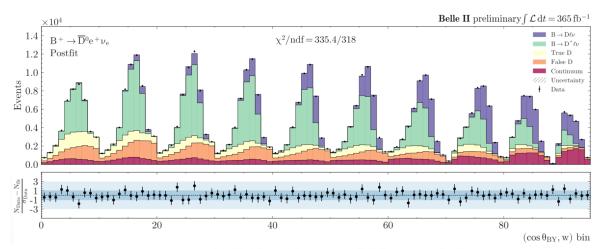
2025, 8th July

Result

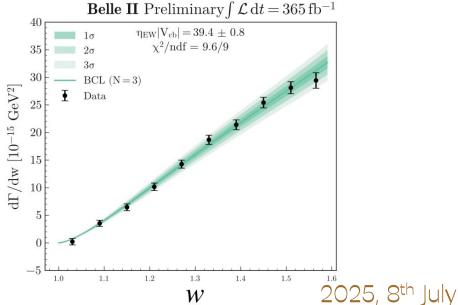
Submitted to PRD: arXiv:2506.15256

Signal Extraction

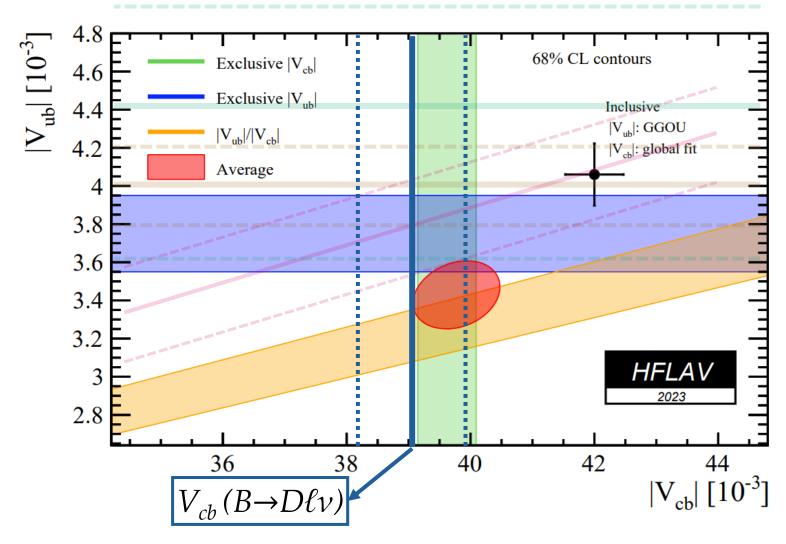
The branching fractions of each of the two modes were measured with a fit on $cos\theta_{BY}$ in bins of w.


$$\mathcal{B}(B^0 \to D^- \ell^+ \nu_{\ell}) = (2.06 \pm 0.05 \,(\text{stat.}) \pm 0.10 \,(\text{sys.}))\%$$

 $\mathcal{B}(B^+ \to \bar{D}^0 \ell^+ \nu_{\ell}) = (2.31 \pm 0.04 \,(\text{stat.}) \pm 0.09 \,(\text{sys.}))\%$


$|V_{cb}|$ extraction

Fit differential decay rates using *Bourrely-Caprini-Lellouch* (*BCL*) [*PhysRevD.82.099902*] parameterization of form factor


$$|V_{cb}|_{BCL} = (39.2 \pm 0.4 \text{ (stat.)} \pm 0.6 \text{ (sys.)} \pm 0.5 \text{ (th.)}) \times 10^{-3}$$

Most precise measurement to date using $B \to D \ell \nu$ decays

First Hints of the future picture

Giovanni Gaudino 2025, 8th July

Conclusions

Semileptonic and Leptonic B decays provide key tests of the Standard Model and are sensitive to New Physics.

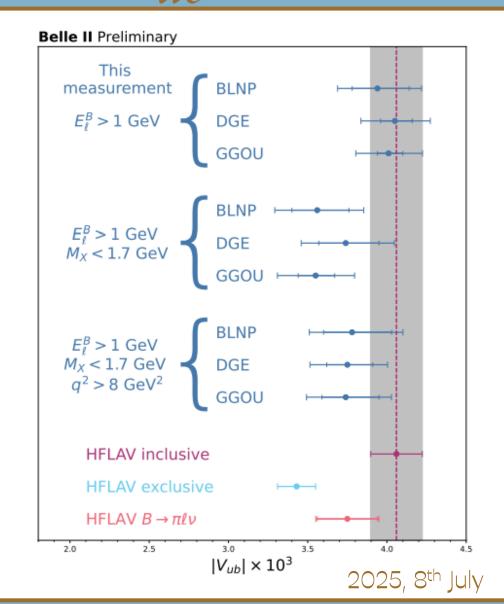
We presented in this talk:

- New measurement of $B{ o} au
 u$ with hadronic tagging.
- Improved extraction of $|V_{ub}|$ from $B{\to}X_u\ell\nu$ decays. New at EPS
- $|V_{ub}|/|V_{cb}|$ from inclusive $B{ o}X\ell
 u$ decays
- Precise determination of $|V_{cb}|$ from $B{ o}D\ell
 u$ decays.

Stay tuned for more exciting results from Belle II people!

That's all! Thanks for the attention

Backup



$|V_{ub}|$ from inclusive $B \rightarrow X_u \ell \nu$ decays

(New at EPS25)

Discussion about $|V_{ub}|$

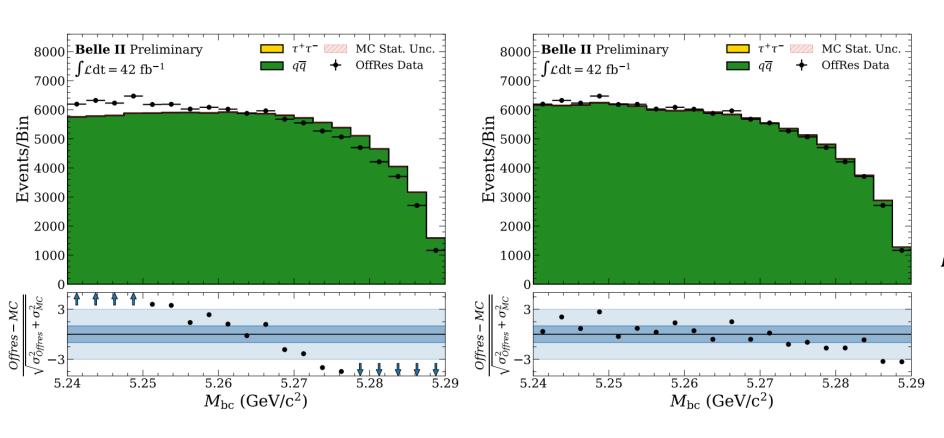
- \bullet Our measurement agrees with inclusive $|V_{ub}|$ average but finds slightly lower values
- Our nominal value agrees with $|V_{ub}|$ from $B \to \pi l v$ HFLAV average
- ullet Our nominal value disagrees with exclusive $|V_{uh}|$ average
 - \bullet The $|V_{ub}|/|V_{cb}|$ ratios from LHCb pull down the exclusive average
- New information to include in averages
 - This measurement
 - Measurement from exclusive $B \to \rho/\omega \ l \ v$
 - Measurement of inclusive $|V_{ub}|/|V_{cb}|$ ratio
- It will be interesting to see how the picture evolves in the next few years

Branching Fractions

- Branching fractions taken from HFLAV
 - The inclusive B \rightarrow Xu l v BF is taken separately for B+/BO from the PDG
- $B \to X_c \ell v$ computed assuming isospin symmetry
- The inclusive $B \to X_c \ell v$ Branching Fraction doesn't match the sum of exclusive ones
- The gap is filled with $B \to D^* \eta \ell v$ decays

	B ((%)
Decay mode	B^{+}	B^0
Incl. $B \to X_u \ell \nu$	0.192 ± 0.024	0.176 ± 0.022
$B o \pi \ell \nu$	0.0078 ± 0.0003	0.0150 ± 0.0006
$B \to \rho \ell \nu$	0.0158 ± 0.0011	0.0294 ± 0.0021
$B o \omega \ell \nu$	0.0119 ± 0.0009	-
$B o \eta \ell \nu$	0.0035 ± 0.0004	-
$B o \eta' \ell \nu$	0.0024 ± 0.0007	
Incl. $B \to X_c \ell \nu$	11.05 ± 0.16	10.27 ± 0.15
$B o D\ell u$	2.27 ± 0.06	2.11 ± 0.05
$B \to D^* \ell \nu$	5.27 ± 0.12	4.90 ± 0.11
$B \to D^1 \ell \nu$	0.64 ± 0.10	0.59 ± 0.10
$B \to D_0^* \ell \nu$	0.13 ± 0.19	0.12 ± 0.18
$B \to D_1' \ell \nu$	0.28 ± 0.04	0.26 ± 0.04
$B \to D_2^* \ell \nu$	0.32 ± 0.03	0.30 ± 0.03
$B \to D_s K \ell \nu$	0.03 ± 0.01	-
$B \to D_s^* K \ell \nu$	0.03 ± 0.02	-
$B \to D\eta \ell \nu$	0.90 ± 0.90	0.86 ± 0.86
$B o D^* \eta \ell \nu$	0.90 ± 0.90	0.86 ± 0.86
$B \to D\pi\pi\ell\nu$	0.07 ± 0.09	0.07 ± 0.08
$B \rightarrow D^* \pi \pi \ell \nu$	0.22 ± 0.10	0.20 ± 0.10

Systematics Budget


	Relative uncertainty (%)		
Uncertainty source	Fit 1	Fit 2	Fit 3
DFN parameters	4.4	4.5	5.7
$DFN \rightarrow BLNP$	0.2	0.8	1.3
γ_S	1.7	2.1	2.1
$B \to \pi \ell \nu$ form factors	0.3	0.3	0.3
$B \to \rho \ell \nu$ form factors	0.3	0.3	0.2
$B \to \omega \ell \nu$ form factors	0.1	0.1	0.1
$B \to \eta/\eta' \ell \nu$ form factors	< 0.1	< 0.1	< 0.1
$B^{\pm} \to X_u \ell \nu$ branching fractions	0.9	0.6	0.5
$B^0 \to X_u \ell \nu$ branching fractions	0.6	0.5	0.5
$B \to D_{\text{Broad}}^{**}$ form factors	0.5	0.1	0.2
$B \to D_{\text{Narrow}}^{**}$ form factors	0.1	< 0.1	< 0.1
$B \to D/D^* \ell \nu$ form factors	< 0.1	< 0.1	< 0.1
$B^{\pm} \to X_c \ell \nu$ branching fractions	0.7	0.5	0.2
$B^0 \to X_c \ell \nu$ branching fractions	0.6	0.2	0.1
D decay branching fractions	0.1	0.3	0.1
SR $X_c \ell \nu$ normalisation	1.6	3.5	3.4
$\operatorname{CR} X_c \ell \nu$ normalisation	1.0	1.1	0.4
Other backgrounds normalisation	0.3	N/A	N/A
X_u fragmentation	0.3	4.4	3.9
$N_{\Upsilon(4S)}$	1.4	1.4	1.4
FEI	1.3	1.3	1.4
π_s	0.4	0.2	0.3
ℓ identification	0.7	0.7	0.6
$f^{\pm/00}$	0.6	0.7	0.6
Continuum calibration	0.2	0.2	0.2
Tracking	0.3	0.3	0.3
K_S^0 efficiency	0.1	0.1	< 0.1
K^{\pm} ID	< 0.1	< 0.1	< 0.1
Simulated data statistics	1.1	1.1	0.8
Fit bias	2.6	2.3	1.8
Composition uncertainty	1.3	5.7	0.2
$B \to X_c \ell \nu$ overestimation correction	2.6	0.4	1.3
Total systematic	7.8	10.5	9.7
Statistical	5.4	5.6	4.5
Total	9.5	11.9	10.7

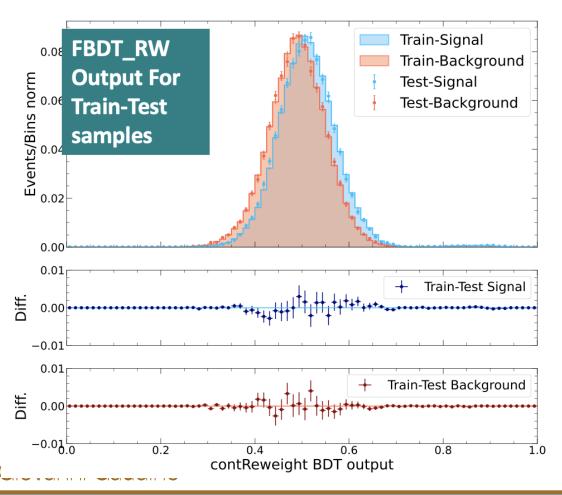
$B \rightarrow \tau \nu$ with hadronic tag

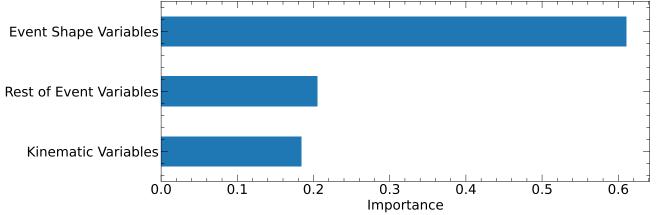
Continuum reweighting BDT

We enhance MC simulation accuracy by adjusting events using multivariate analysis (MVA) to identify and correct data–MC differences. We use a Fast Boosted Decision Tree (FBDT) classifier for reweighting. Calibration involves 200/fb of continuum MC events and all off–resonance data (42/fb).

<u>FastBDT: A speed-optimized and cache-friendly implementation of stochastic gradient-boosted</u> decision trees for multivariate classification

$$\Delta E_{off} = \left(\frac{E_{on}}{E_{off}}\right) E_B^* - \frac{E_{on}}{2}$$


$$M_{bc,off} = \sqrt{\frac{E_{on}^2}{4} - \frac{E_{on}^2}{E_{off}^2}} p_B^{*2}$$


Variables distributions before and after the correction

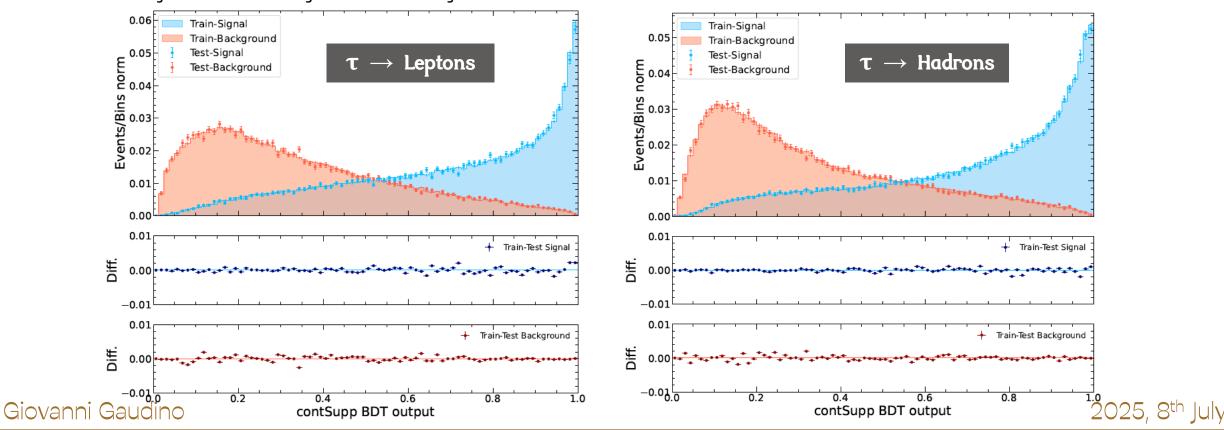
Continuum reweighting BDT

We train a FastBDT using Off-Res data as "Signal" and MC continuum as "Background" to correct the MC shape to Off-Res data.

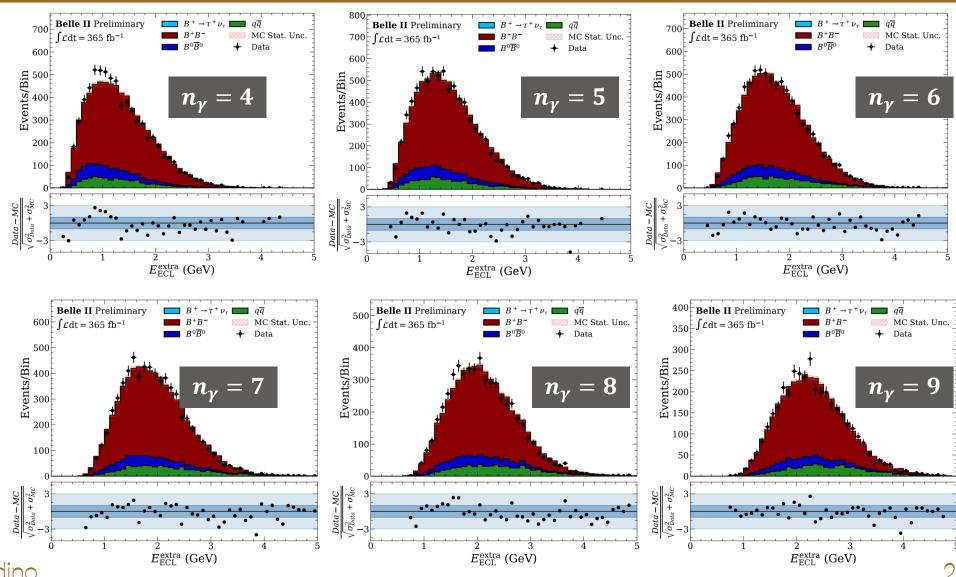
• 1.3M events, Train/Test sample 80%/20%

The discriminator output is transformed in an event-by-event weight to correct MC shape:

$$w_i = \frac{\mathcal{O}_{CR,i}}{1 - \mathcal{O}_{CR,i}}$$

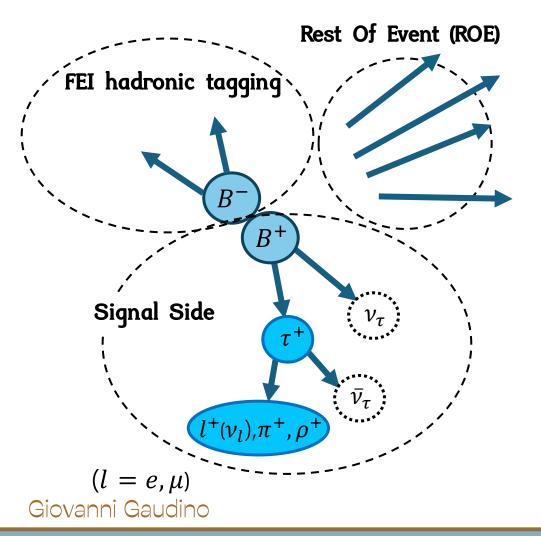

2025, 8th July

Continuum reweighting BDT

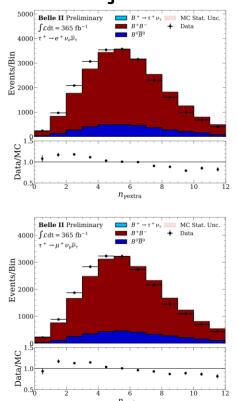

To suppress continuum, we train 2 FastBDT, one for Leptons and one for Hadrons, using MC continuum as "Signal" and MC $B\overline{B}$ as "Background".

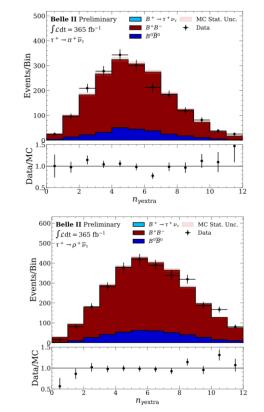
In the training, the weights from continuum reweighting are used.

- 300K events, Train/Test sample 80%/20%
- Signal/Background events ratio = 1
- Features = only variables with good Data/MC agreement and less correlated with our fit variables.



Study of Extra Clusters


Extra Tracks Control Sample

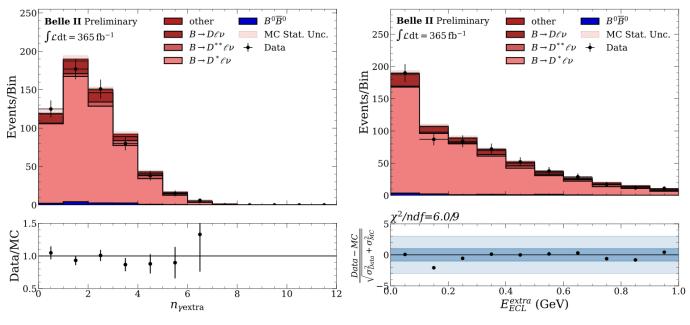

For the main channel, we require no charged tracks in the ROE. In this control samples, $N_{ROE\ Tracks} > 1$

same background composition but no signal events.

We apply same reconstruction and selection as for the main analysis.

$B \rightarrow D^* \ell \nu$ control sample

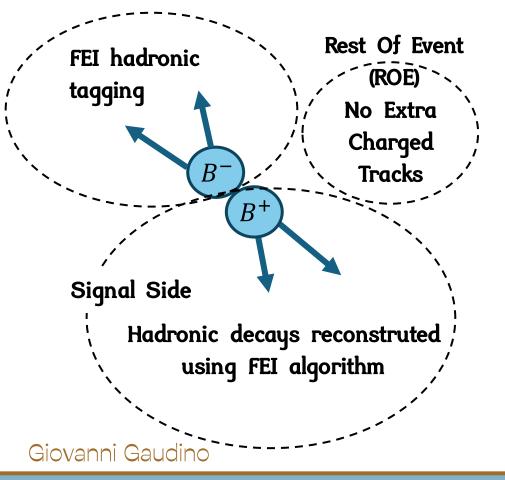
In this control sample we have is one lepton and the D^{*0} is fully reconstructed through hadronic decays. $ightarrow E^{extra}_{ECL}$ peaks at 0.

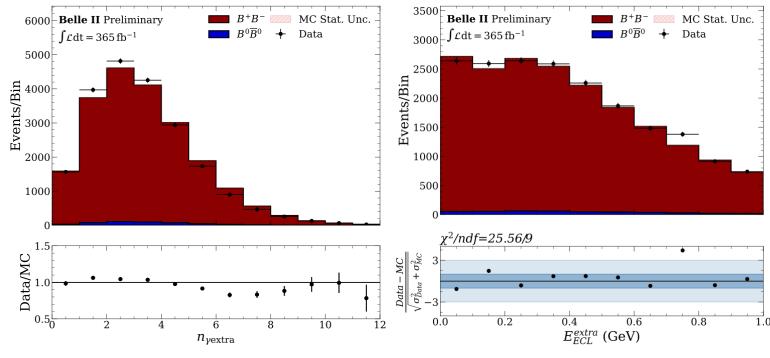

 D^* decays

- $D^* \rightarrow D\gamma$
- $D^* \rightarrow D\pi^0$

D decays

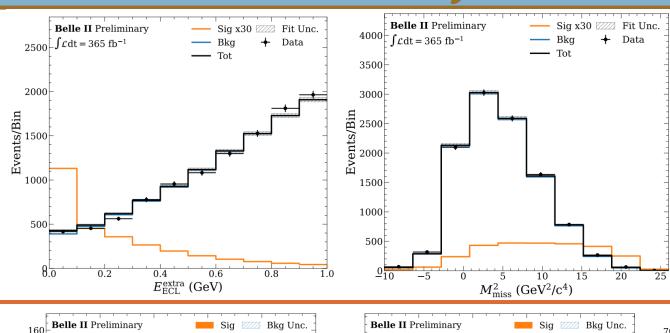
- $D \rightarrow K\pi$
- $D \rightarrow K\pi\pi\pi$
- $D \rightarrow K_S \pi \pi$


We apply same reconstruction and selection as for the main analysis.


We also check the agreement of signal selection efficiency in data and MC and find a Data/MC ratio equal to $0.96\pm0.04 \rightarrow$ no further efficiency correction is applied.

Double Tag Control Sample

We reconstruct the two B candidates using the hadronic tagging FEI alogritm. As for the haronic signal channel, the decay is fully reconstructed.


We apply same reconstruction and selection as for the main analysis.

Systematics Budget

Source	Syst.		
Simulation statistics	13.3%	It is expected to reduce using more simulations.	
Fit variables PDF corrections	5.5% →	It is expected to reduce with increasing luminosity	
Decays branching fractions in MC	4.1%	and better modeling of ECL photons in MC simulations.	
Tag B^- reconstruction efficiency	2.2%		
Continuum reweighting	1.9%	The effect of each source on the final result is estimated by fluctuating the assumptions several times and propagating the effect on the PDF shapes, generating in this way a set	
π^0 reconstruction efficiency	0.9%		
Continuum normalization	0.7%		
Particle identification	0.6%	of alternative PDFs.	
umber of produced $\Upsilon(4S)$ 1.5%		NA/hon uncontainties do not affect the signal violds	
Fraction of B^+B^- pairs	2.1%	When uncertainties do not affect the signal yields, they are propagated directly to the BR.	
Tracking efficiency	0.2%		
Total	15.5%		

After Fit Plots

 $140 - \int \mathcal{L} dt = 365 \text{ fb}^{-1}$

 $\tau^+ \rightarrow \mu^+ \nu_u \overline{\nu}_{\tau}$

 $120 M_{\text{miss}}^2 > 10 \text{ GeV}^2/\text{c}^4$

─ Bkg + Data

 $E_{\mathrm{ECL}}^{\mathrm{extra}}$ (GeV)

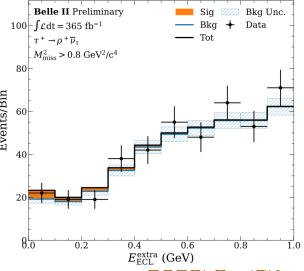
 $\int \mathcal{L} dt = 365 \text{ fb}^{-1}$

 $M_{\rm miss}^2 > 10 \; {\rm GeV^2/c^4}$

140 $\tau^+ \rightarrow e^+ \nu_e \overline{\nu}_{\tau}$

120

Events/Bin


20

Each includes the au^+ branching fractions and crossfeed as predicted by MC and calibrated on control samples.

	$\epsilon(10^{-4})$	$\epsilon({f 10^{-4}})$ Belle
e^+	7.3	3.0
μ^+	7.6	3.1
π^+	3.4	1.8
$ ho^+$	3.1	3.4

Five free parameters: four background yields and one common branching fraction.

 E_{ECL}^{extra} and M_{miss}^2 2D PDFs from the MC calibrated on the control samples.

── Bkq + Data

0.8

 $E_{\mathrm{ECL}}^{\mathrm{extra}}$ (GeV)