Studies of hadron spectroscopy at Belle and Belle II

Stefan Wallner for the Belle and Belle II collaborations

(swallner@mpp.mpg.de)

Max Planck Institute for Physics

EPS-HEP 2025 July 9, 2025

MAX PLANCK INSTITUTE FOR PHYSICS

▶ B factories at KEK (Tsukuba/Japan): e^+e^- collider at $E_{\rm CM}$ around $\Upsilon(4S)$ mass

▶ B factories at KEK (Tsukuba/Japan): e^+e^- collider at $E_{\rm CM}$ around $\Upsilon(4S)$ mass

Belle at KEKB accelerator (1999–2010)

Collected integrated luminosity of about 1000 fb⁻¹

- $\begin{array}{c} \bullet \quad 711 \, \text{fb}^{-1} \text{ at } \Upsilon(4S) \\ \bullet \quad 6 \, \text{fb}^{-1} \text{ at } \Upsilon(1S) \end{array}$
- 25 fb⁻¹ at $\Upsilon(2S)$

▶ 3 fb⁻¹ at
$$\Upsilon(3S)$$

• 121 fb
$$^{-1}$$
 at $argamma(5S)$

 $\blacktriangleright \approx 100 \, \mathrm{fb}^{-1} \, \mathrm{off}$ - Υ/scan

The Belle and Belle II Experiments

▶ B factories at KEK (Tsukuba/Japan): e^+e^- collider at $E_{\rm CM}$ around $\Upsilon(4S)$ mass

Belle II at SuperKEKB accelerator (2019–)

Goals

- \blacktriangleright 50× Belle data-sample size by increasing luminosity
- Renewed detector, trigger, analysis techniques, ...

Run 1 (2019–2022)

Collected about $1/2 \times$ Belle data-sample size

- Run2 started in spring 2024
 - Upgraded detector
 - World-record luminosity: $5.1 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

▶ B factories at KEK (Tsukuba/Japan): e^+e^- collider at $E_{\rm CM}$ around $\Upsilon(4S)$ mass

Updated on 2025/01/03 14:53 JST

Hadron spectroscopy

• Explore the nature of the $\Upsilon(10753)$	[see A. Bondar's EPS-HEP talk]
• Search for $h_b(1P,2P)$ decays to $\Upsilon(1S), \chi_{bJ}$	(this talk)
\blacktriangleright Search for $P_{car{c}s}$ states in $arphi(1S,2S)$ decays	(this talk)
▶ Precision measurement of the B^0 and B^+ mass difference	(in progress)
• Search for resonances in $e^+e^- \rightarrow J/\psi h\bar{h}$ ($h = p, \pi, K$)	(in progress)
▶	

Search for $h_b(1P,2P)$ Decays to $\Upsilon(1S)$, χ_{bJ}

- Bottomonium: bound $b \bar{b}$ system
 - Quark spins S_j can couple to
 - $S_{b\bar{b}} = 0$ spin singlet
 - $S_{b\overline{b}} = 1$ spin triplet
 - Orbital angular momentum L
- Study transitions between bottomonia
 - Probe inner structure
 - Test effective field theories
- Transitions from spin-singlet to spin-triplet state suppressed by heavy-quark spin symmetry
- Suppression may be lifted by hadron loops
- $B[\Upsilon(3S) \to h_b(1P)\pi^0] \approx 10^{-3} \text{ (significance } 3.1\sigma)$ [BaBar PRD 84 (2011) 091101]
 - ▶ Prediction $\mathcal{B}[h_b(2P) \rightarrow \Upsilon(1S)\eta] \approx 10\%$ [Li and Voloshin PRD 86 (2012) 094013]

- Bottomonium: bound $b \bar{b}$ system
 - Quark spins S_j can couple to
 - $S_{b\bar{b}} = 0$ spin singlet
 - $S_{b\,\overline{b}} = 1$ spin triplet
 - \blacktriangleright Orbital angular momentum L
- Study transitions between bottomonia
 - Probe inner structure
 - Test effective field theories
- Transitions from spin-singlet to spin-triplet state suppressed by heavy-quark spin symmetry
- Suppression may be lifted by hadron loops
- $B[\Upsilon(3S) \to h_b(1P)\pi^0] \approx 10^{-3} \text{ (significance } 3.1\sigma)$ [BaBar PRD 84 (2011) 091101]
 - ▶ Prediction $\mathcal{B}[h_b(2P) \rightarrow \Upsilon(1S)\eta] \approx 10\%$ [Li and Voloshin PRD 86 (2012) 094013]

- Bottomonium: bound $b \bar{b}$ system
 - Quark spins S_j can couple to
 - ▶ $S_{b\bar{b}} = 0$ spin singlet
 - $S_{b\,\overline{b}} = 1$ spin triplet
 - \blacktriangleright Orbital angular momentum L
- Study transitions between bottomonia
 - Probe inner structure
 - Test effective field theories
- Transitions from spin-singlet to spin-triplet state suppressed by heavy-quark spin symmetry
- Suppression may be lifted by hadron loops
- $B[\Upsilon(3S) \to h_b(1P)\pi^0] \approx 10^{-3} \text{ (significance } 3.1\sigma)$ [BaBar PRD 84 (2011) 091101]
 - ▶ Prediction $\mathcal{B}[h_b(2P) \rightarrow \Upsilon(1S)\eta] \approx 10\%$ [Li and Voloshin PRD 86 (2012) 094013]

- Bottomonium: bound $b \bar{b}$ system
 - Quark spins S_j can couple to
 - ▶ $S_{b\bar{b}} = 0$ spin singlet
 - $S_{b\,\overline{b}} = 1$ spin triplet
 - \blacktriangleright Orbital angular momentum L
- Study transitions between bottomonia
 - Probe inner structure
 - Test effective field theories
- Transitions from spin-singlet to spin-triplet state suppressed by heavy-quark spin symmetry
- Suppression may be lifted by hadron loops
- $\mathcal{B}[\Upsilon(3S) \to h_b(1P)\pi^0] \approx 10^{-3} \text{ (significance } 3.1\sigma\text{)} \\ \text{[BaBar PRD 84 (2011) 091101]}$
 - ▶ Prediction $\mathcal{B}[h_b(2P) \rightarrow \Upsilon(1S)\eta] \approx 10\%$ [Li and Voloshin PRD 86 (2012) 094013]

Evidence of $h_b(2P) \rightarrow \Upsilon(1S)\eta$ Decay

[PRL 133 (2024) 26]

Measurement

► Full reconstruction in
$$\Upsilon(5S)$$
 decays (121 fb⁻¹)
 $\Upsilon(5S) \rightarrow Z_b^+ \pi^- \rightarrow h_b(2P) \pi^+ \pi^-$
 $\downarrow \Upsilon(1S) \eta$
 $\downarrow \downarrow \ell^+ \ell^-$

- ▶ Define signal in 2D plane $M_{\gamma\gamma}$ and $M_{\pi\pi}^{\rm rec}$
- Extract signal yield from 2D fit
- **Signal with** 3.5σ significance
- $\blacktriangleright \ \mathcal{B}[h_b(2P) \to \Upsilon(1S)\eta] = (7.1^{+3.7}_{-3.2} \pm 0.8) \times 10^{-3}$
 - $10 \times$ lower than expected based on $\mathcal{B}[\Upsilon(3S) \to h_b(1P)\pi^0]$
 - Disfavors large loop contributions
- ▶ No evidence for isospin violating decay: $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$

Evidence of $h_b(2P) \rightarrow \Upsilon(1S)\eta$ Decay

Measurement

► Full reconstruction in
$$\Upsilon(5S)$$
 decays (121 fb⁻¹)
 $\Upsilon(5S) \rightarrow Z_b^+ \pi^- \rightarrow h_b(2P) \pi^+\pi^-$
 $\downarrow \Upsilon(1S) \eta$
 $\downarrow \ell^+ \ell^-$

- ▶ Define signal in 2D plane $M_{\gamma\gamma}$ and $M_{\pi\pi}^{\rm rec}$
- Extract signal yield from 2D fit
- **>** Signal with 3.5σ significance
- $\mathcal{B}[h_b(2P) \to \Upsilon(1S)\eta] = (7.1^{+3.7}_{-3.2} \pm 0.8) \times 10^{-3}$
 - $10 \times$ lower than expected based on $\mathcal{B}[\Upsilon(3S) \to h_b(1P)\pi^0]$
 - Disfavors large loop contributions
- ▶ No evidence for isospin violating decay: $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$

Evidence of $h_b(2P) \rightarrow \Upsilon(1S)\eta$ Decay

Measurement

► Full reconstruction in
$$\Upsilon(5S)$$
 decays (121 fb⁻¹)
 $\Upsilon(5S) \rightarrow Z_b^+ \pi^- \rightarrow h_b(2P) \pi^+\pi^-$
 $\downarrow \Upsilon(1S) \eta$
 $\downarrow \ell^+ \ell^-$

- ▶ Define signal in 2D plane $M_{\gamma\gamma}$ and $M_{\pi\pi}^{\rm rec}$
- Extract signal yield from 2D fit
- **>** Signal with 3.5σ significance
- $\mathcal{B}[h_b(2P) \to \Upsilon(1S)\eta] = (7.1^{+3.7}_{-3.2} \pm 0.8) \times 10^{-3}$
 - $10 \times$ lower than expected based on $\mathcal{B}[\Upsilon(3S) \to h_b(1P)\pi^0]$
 - Disfavors large loop contributions
- ▶ No evidence for isospin violating decay: $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$

Motivation

- Search for spin-singlet to spin-triplet transitions $h_b(2P) \rightarrow \chi_{bJ}(1P)\gamma$ with J = 0, 1, 2
- Direct radiative M1 transition suppressed $(\mathcal{B} = 10^{-6} 10^{-5})$

[Godfrey Isgur PRD 32 (1985) 189]

May be enhanced by hadron loops (B = 10⁻²−10⁻¹) [K.-F. Guo et al. PLB 760 (2016) 417]

Motivation

- Search for spin-singlet to spin-triplet transitions $h_b(2P) \rightarrow \chi_{bJ}(1P)\gamma$ with J = 0, 1, 2
- Direct radiative M1 transition suppressed $(\mathcal{B} = 10^{-6} 10^{-5})$

[Godfrey Isgur PRD 32 (1985) 189]

May be enhanced by hadron loops (B = 10⁻²−10⁻¹) [K.-F. Guo et al. PLB 760 (2016) 417]

Search for $h_b(2P) \rightarrow \chi_{bJ}(1P)\gamma$

Measurement

Full reconstruction in $\Upsilon(5S)$ decays (121 fb⁻¹)

- 2D signal region
 - $M_{\rm rec}(\pi^+\pi^-)$ corresponding to $M(h_b(2P))$
 - $M(\mu\mu\gamma\gamma) M(\mu\mu\gamma_2)$ corresponding to $M(h_b(2P)) - M(\chi_{bJ}(1P))$

▶ Region of $\Upsilon_J(1D)$ signal from $\Upsilon(5S) \to \Upsilon_J(1D)\pi^+\pi^-$ excluded in analysis

Dedicated analysis ongoing

 $\rightarrow \mu^{\top} \mu$

Search for $h_b(2P) \rightarrow \chi_{bJ}(1P)\gamma$

Measurement

Full reconstruction in $\Upsilon(5S)$ decays (121 fb⁻¹)

- 2D signal region
 - $M_{\rm rec}(\pi^+\pi^-)$ corresponding to $M(h_b(2P))$
 - $M(\mu\mu\gamma\gamma) M(\mu\mu\gamma_2)$ corresponding to $M(h_b(2P)) - M(\chi_{bJ}(1P))$

▶ Region of $\Upsilon_J(1D)$ signal from $\Upsilon(5S) \rightarrow \Upsilon_J(1D)\pi^+\pi^-$ excluded in analysis

Dedicated analysis ongoing

 $\rightarrow \mu^{\top} \mu$

Results

- No events in signal region
- First upper limits on branching fraction
 - $\blacktriangleright \mathcal{B}[h_b(2P) \to \chi_{b0}(1P)\gamma] < 2.7 \times 10^{-1}$
 - $\blacktriangleright \ \mathcal{B}[h_b(2P) \to \chi_{b1}(1P)\gamma] < 5.4 \times 10^{-3}$
 - $\blacktriangleright \ \mathcal{B}[h_b(2P) \to \chi_{b2}(1P)\gamma] < 1.3 \times 10^{-2}$
- Upper limits consistent with predictions from relativistic quark-model
- Limits in the range sensitive to hadronic loops

Search for $P_{c\bar{c}s}(4459)^0$ and $P_{c\bar{c}s}(4338)^0$

- QCD allows for complex configurations than qq
 and qqq, so-called exotics
- LHCb, Belle, and others discovered a new zoo of exotics: Tetraquark (qqqqqq), pentaquark (qqqqqq)
- Pentaquarks with $c\bar{c}$ and strangeness $(P_{c\bar{c}s})$
 - $P_{c\bar{c}s}(4338)^0$ with 15σ significance
 - $P_{c\bar{c}s}(4459)^0$ with 3.1σ significance
 - Both in $P_{c\bar{c}s} \rightarrow J/\psi \Lambda$ decays

- Earyon and deuteron production in $\Upsilon(1S,2S)$ decays enhanced
 - \blacktriangleright World's largest samples at Belle: 6 fb⁻¹ at $\Upsilon(1S)$ [102M]; 25 fb⁻¹ at $\Upsilon(2S)$ [158M]
 - ⇒ Search of $\Upsilon(1S,2S) \rightarrow P_c X$ decays
 - ▶ No pentaquark signal in $\Upsilon(1S, 2S) \rightarrow P_{c\bar{c}}X \rightarrow (J/\psi p)X$ [arXiv:2403.04340]
 - Search for $P_{c\bar{c}s}$ in $\Upsilon(1S, 2S) \to P_{c\bar{c}s}X \to (J/\psi \Lambda)X$

- QCD allows for complex configurations than qq̄ and qqq, so-called exotics
- LHCb, Belle, and others discovered a new zoo of exotics: Tetraquark (qqqqqq), pentaquark (qqqqqq)
- Pentaquarks with $c\bar{c}$ and strangeness $(P_{c\bar{c}s})$
 - $P_{c\bar{c}s}(4338)^0$ with 15σ significance
 - $P_{c\bar{c}s}(4459)^0$ with 3.1σ significance
 - Both in $P_{c\bar{c}s} \rightarrow J/\psi \Lambda$ decays

- ▶ Baryon and deuteron production in $\Upsilon(1S, 2S)$ decays enhanced
 - \blacktriangleright World's largest samples at Belle: 6 fb⁻¹ at $\Upsilon(1S)$ [102M]; 25 fb⁻¹ at $\Upsilon(2S)$ [158M]
 - ⇒ Search of $\Upsilon(1S, 2S) \rightarrow P_c X$ decays
 - ▶ No pentaquark signal in $\Upsilon(1S, 2S) \rightarrow P_{c\bar{c}}X \rightarrow (J/\psi p)X$ [arXiv:2403.04340]
 - Search for $P_{c\bar{c}s}$ in $\Upsilon(1S, 2S) \to P_{c\bar{c}s}X \to (J/\psi \Lambda)X$

Measurement of $\Upsilon(1S, 2S) \rightarrow J/\psi \Lambda + X$

- \blacktriangleright 2D signal region in $M_{l^+l^-}$ and $M_{p\pi^-}$
- Subtract continuum background estimated from off-Y data
- Subtract background from 2D sidebands
 - False J/ψ or Λ
 - Combinatorial background

Measure the total inclusive branching fraction

 $\blacktriangleright \ \mathcal{B}[\Upsilon(1S) \to J/\psi \Lambda/\bar{\Lambda} + X] = (36.9 \pm 5.3 \pm 2.4) \times 10^{-6}$

• $\mathcal{B}[\Upsilon(2S) \to J/\psi \Lambda/\bar{\Lambda} + X] = (22.3 \pm 5.7 \pm 3.1) \times 10^{-6}$

Measurement of $\Upsilon(1S, 2S) \rightarrow J/\psi \Lambda + X$

- \blacktriangleright 2D signal region in $M_{l^+l^-}$ and $M_{p\pi^-}$
- Subtract continuum background estimated from off-Y data
- Subtract background from 2D sidebands
 - False J/ψ or Λ
 - Combinatorial background
- Measure the total inclusive branching fraction

$$\blacktriangleright \mathcal{B}[\Upsilon(1S) \to J/\psi \Lambda/\bar{\Lambda} + X] = (36.9 \pm 5.3 \pm 2.4) \times 10^{-4}$$

•
$$\mathcal{B}[\Upsilon(2S) \to J/\psi \Lambda/\bar{\Lambda} + X] = (22.3 \pm 5.7 \pm 3.1) \times 10^{-1}$$

$M(J/\psi \Lambda)$ Spectrum

- Measure yields in $M(J/\psi A)$ bins
- Enhancement near $P_{c\bar{c}s}(4459)^0$ mass
- \blacktriangleright Combined fit to arphi(1S) and arphi(2S) data
 - Background polynomial constrained by simultaneous fit to 2D sideband data
 - $\blacktriangleright P_{c\bar{c}s}(4459)^0$ mass and width constrained to LHCb measurement

$M(J/\psi \Lambda)$ Spectrum

- Measure yields in $M(J/\psi A)$ bins
- Enhancement near $P_{c\bar{c}s}(4459)^0$ mass
- \blacktriangleright Combined fit to $\varUpsilon(1S)$ and $\varUpsilon(2S)$ data
 - Background polynomial constrained by simultaneous fit to 2D sideband data
 - $\blacktriangleright P_{c\bar{c}s}(4459)^0$ mass and width constrained to LHCb measurement

$P_{c\bar{c}s}(4459)^0$

▶ $P_{c\bar{c}s}(4459)^0$ significance 3.3σ including systematic uncertainties

• $\mathcal{B}[\Upsilon(1S) \to P_{c\bar{c}s}(4459)^0_{,x} \to J/\psi \Lambda X] = (3.5 \pm 2.0 \pm 0.2) \times 10^{-6}_{,x}$

- $\mathcal{B}[\Upsilon(2S) \to P_{c\bar{c}s}(4459)^0 X \to J/\psi \Lambda X] = (2.9 \pm 1.7 \pm 0.4) \times 10^{-6}$
- First evidence for $\Upsilon(1S, 2S)$ decays to exotic state
- $M = 4471.7 \pm 4.8 \pm 0.6 \,\mathrm{MeV}/c^2$, $\Gamma = 22 \pm 13 \pm 3 \,\mathrm{MeV}/c^2$
 - From separate fit omitting LHCb mass and width constraints

[arXiv:2502.09951] accepted by PRL

[arXiv:2502.09951]

$P_{c \, \overline{c} s}(4338)^0$

No $P_{c\bar{c}s}(4338)^0$ signal observed

- $\blacktriangleright \ \mathcal{B}[\Upsilon(1S) \to P_{c\bar{c}s}(4338)^0 X \to J/\psi \Lambda X] < 1.8 \times 10^{-6}$
- $\mathcal{B}[\Upsilon(2S) \to P_{c\bar{c}s}(4338)^0 X \to J/\psi \Lambda X] < 1.6 \times 10^-$

$P_{c\bar{c}s}(4459)^0$

• $\mathcal{B}[\Upsilon(1S) \to P_{c\bar{c}s}(4459)^0 X \to J/\psi \Lambda X] = (3.5 \pm 2.0 \pm 0.2) \times 10^{-6}$

- $\mathcal{B}[\Upsilon(2S) \to P_{c\bar{c}s}(4459)^0 X \to J/\psi \Lambda X] = (2.9 \pm 1.7 \pm 0.4) \times 10^{-6}$
- First evidence for $\Upsilon(1S, 2S)$ decays to exotic state
- $M = 4471.7 \pm 4.8 \pm 0.6 \,\mathrm{MeV}/c^2$, $\Gamma = 22 \pm 13 \pm 3 \,\mathrm{MeV}/c^2$
 - From separate fit omitting LHCb mass and width constraints

[arXiv:2502.09951] accepted by PRL

[arXiv:2502.09951]

$P_{c\bar{c}s}(4338)^0$

▶ No $P_{c\bar{c}s}(4338)^0$ signal observed

$$\blacktriangleright \mathcal{B}[\Upsilon(1S) \to P_{c\bar{c}s}(4338)^0 X \to J/\psi \Lambda X] < 1.8 \times 10^{-6}$$

 $\blacktriangleright \mathcal{B}[\Upsilon(2S) \to P_{c\bar{c}s}(4338)^0 X \to J/\psi \Lambda X] < 1.6 \times 10^{-6}$

Summary

- Search bottomonium spin-singlet to spin-triplet transitions
 - First evidence for $h_b(2P) \rightarrow \Upsilon(1S)\eta$
 - Lower than expected from $\Upsilon(3S) \to h_b(1P)\pi^0$
 - Disfavors large hadronic loop contributions
 - ▶ No signal for $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$ and $h_b(2P) \rightarrow \chi_{bJ}(1P)\gamma$
- Evidence for $P_{c\bar{c}s}(4459) \rightarrow J/\psi \Lambda$ in inclusive $\Upsilon(1S,2S)$ decays

First evidence for $\Upsilon(1S,2S)$ decays to exotic state

Belle II restarts data taking in November 2025

Backup

7 The Belle and Belle II Experiments

 Unique environment for high-precision measurements and New Physics searches 8 Search for $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$

9 Search for $h_b(2P) \rightarrow \chi_{bJ}(1P)\gamma$

The Belle and Belle II Experiments

Unique environment for high-precision measurements and New Physics searches

The Belle and Belle II Experiments Unique environment for high-precision measurements and New Physics searches

- Same final-state allows us to also search for $h_b(2P) \rightarrow \Upsilon(1S) \pi^0$
- Isospin-violating transition strongly suppressed
- No event in signal region
 - $\blacktriangleright \ \mathcal{B}[h_b(2P) \to \Upsilon(1S)\pi^0] < 1.8 \times 10^{-3}$
- ▶ No event in signal region for $h_b(1P) \rightarrow \Upsilon(1S)\pi^0$
 - $\blacktriangleright \mathcal{B}[h_b(1P) \to \Upsilon(1S)\pi^0] < 1.8 \times 10^{-3}$

- Same final-state allows us to also search for $h_b(2P) \rightarrow \Upsilon(1S) \pi^0$
- Isospin-violating transition strongly suppressed
- No event in signal region
 - $\blacktriangleright \ \mathcal{B}[h_b(2P) \to \Upsilon(1S)\pi^0] < 1.8 \times 10^{-3}$
- ▶ No event in signal region for $h_b(1P) \rightarrow \Upsilon(1S)\pi^0$
 - $\blacktriangleright \ \mathcal{B}[h_b(1P) \to \Upsilon(1S)\pi^0] < 1.8 \times 10^{-3}$

 $\Upsilon(1S) \to \mu^+ \mu^-$ $\Upsilon(1S) \to e^+ e^-$

Search for $h_b(2P) \rightarrow \chi_{bJ}(1P)\gamma$

Measurement

Full reconstruction in
$$\Upsilon(5S)$$
 decays (121 fb⁻¹)
 $\Upsilon(5S) \rightarrow Z_b^+ \pi^- \rightarrow h_b(2P) \pi^+\pi^-$
 $\downarrow \chi_{bJ}(1P) \gamma$
 $\downarrow \Upsilon(1S) \gamma_2$
2D signal region
 $\downarrow \mu^+\mu^-$

- \blacktriangleright $M_{\rm rec}(\pi^+\pi^-)$ corresponding to $M(h_b(2P))$
- $M(\mu\mu\gamma\gamma) M(\mu\mu\gamma_2)$ corresponding to $M(h_{b}(2P)) - M(\chi_{bJ}(1P))$

 \blacktriangleright Region of $\Upsilon_I(1D)$ signal from

- Dedicated analysis ongoing
- Systematics studied in analog
 - Good agreement between real data and simulation

[PRD 111 (2025) 1

<u>Search</u> for $h_b(2P) \rightarrow \chi_{bJ}(1P)\gamma$

Measurement

Full reconstruction in
$$\Upsilon(5S)$$
 decays (121 fb⁻¹)
 $\Upsilon(5S) \rightarrow Z_b^+ \pi^- \rightarrow h_b(2P) \pi^+\pi^-$
 $\downarrow \chi_{bJ}(1P) \gamma$
 $\downarrow \Upsilon(1S) \gamma_2$
2D signal region
 $\downarrow \mu^+\mu^-$

- \blacktriangleright $M_{\rm rec}(\pi^+\pi^-)$ corresponding to $M(h_b(2P))$
- $M(\mu\mu\gamma\gamma) M(\mu\mu\gamma_2)$ corresponding to $M(h_b(2P)) - M(\chi_{bJ}(1P))$
- \blacktriangleright Region of $\Upsilon_I(1D)$ signal from $\Upsilon(5S) \to \Upsilon_{I}(1D)\pi^{+}\pi^{-}$ excluded in analysis
 - Dedicated analysis ongoing
- Systematics studied in analog
 - Good agreement between real data and simulation

[PRD 111 (2025) 1

<u>Search</u> for $h_b(2P) \rightarrow \chi_{bJ}(1P)\gamma$

Measurement

Full reconstruction in
$$\Upsilon(5S)$$
 decays (121 fb⁻¹)
 $\Upsilon(5S) \rightarrow Z_b^+ \pi^- \rightarrow h_b(2P) \pi^+\pi^-$
 $\downarrow \chi_{bJ}(1P) \gamma$
 $\downarrow \Upsilon(1S) \gamma_2$
2D signal region

- $M_{\rm rec}(\pi^+\pi^-)$ corresponding to $M(h_b(2P))$
- $M(\mu\mu\gamma\gamma) M(\mu\mu\gamma_2)$ corresponding to $M(h_b(2P)) - M(\chi_{bJ}(1P))$

 \blacktriangleright Region of $\Upsilon_I(1D)$ signal from $\Upsilon(5S) \to \Upsilon_{I}(1D)\pi^{+}\pi^{-}$ excluded in analysis

- Dedicated analysis ongoing
- Systematics studied in analog $\Upsilon(3S) \rightarrow \gamma \chi_{hI}(2P) \rightarrow \pi^+ \pi^- \gamma \gamma \mu^+ \mu^- \text{ decay}$
 - Good agreement between real data and simulation

[PRD 111 (2025) 1