EPS-HEP 2025

6-11 Jul 2025 PALAIS DU PHARO, Marseille, France

Searches for lepton-flavor violation in τ decays at Belle and Belle II

Laura Zani

on behalf of the Belle II collaboration

laura.zani@roma3.infn.it

Outline

- Motivation
- Experimental method
- Searching for Lepton Flavor Violation in τ decays
 - $\tau \rightarrow \ell \ell \ell$ at Belle II
 - ^ $\tau \rightarrow {\it l} K^{\scriptscriptstyle 0}{}_{\scriptscriptstyle S}$ at Belle + Belle II
 - [–] $\tau
 ightarrow \ell lpha$ at Belle II and Belle

• Outlook and conclusion

Marseille, 2025.07.07

Why τ decays?

τ pairs produced in the e⁺e⁻ collisions are a unique laboratory to test the Standard Model (SM) through precision measurements and search for non-SM physics!

• **High precision** measurements of SM properties: study of the hadronization, light lepton flavor universality [1], determination of mass [2], lifetime

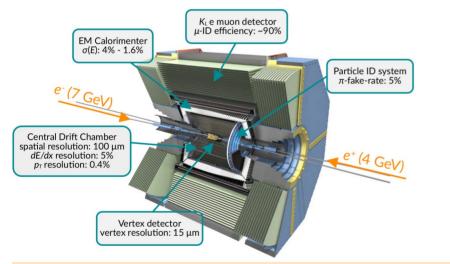
 \rightarrow systematically limited, understanding of the experiment performance and background description necessary to control of systematic sources

• World's leading sensitivities for direct searches, target rare or forbidden processes ($\tau^+ \rightarrow \mu^+ \mu^- \mu^+$, $\tau^+ \rightarrow \ell^+ V^0$, etc.) \rightarrow statistically limited, largest data sets + new techniques to increase signal efficiencies and reduce backgrounds

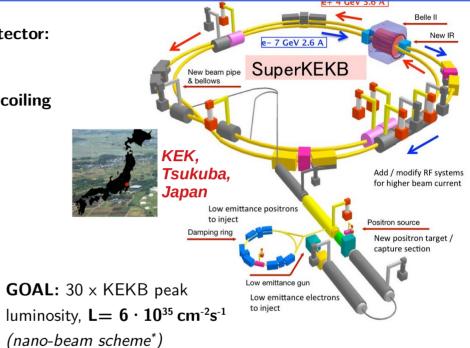
< fractions of **‰** level

[1] JHEP08(2024)205 [2] PRD 108 032006

Marseille, 2025.07.07 L.Zani for EPS2025 - LFV searches with τ at Belle and Belle II


Working at Barfactories

٠


• Clean environment at asymmetric energy e⁺e⁻ collider and hermetic detector:

 \rightarrow at $\surd s$ = 10.58 GeV: $\sigma_{_{bb}} \sim \sigma_{_{\tau\tau}} \sim$ 1 nb, B & T factory

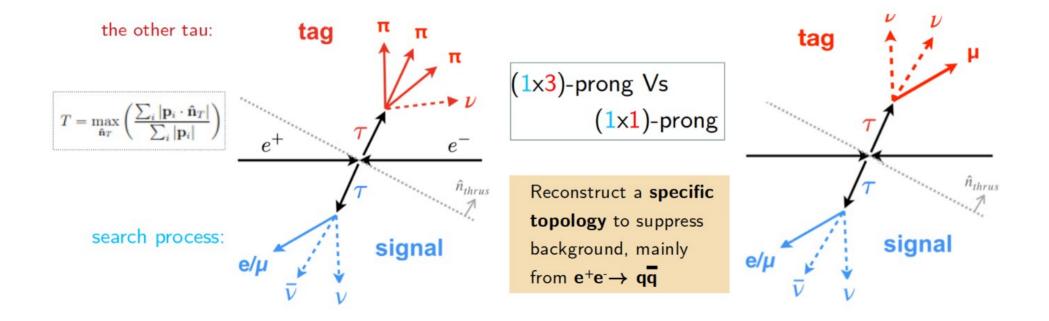
- \rightarrow known initial state + efficient reconstruction of neutrals ($\pi^{_0},\,\eta),$ recoiling system and missing energy
- \rightarrow specific **low-multiplicity triggers** (previously not available at Belle)

BELLE (1999-2010): 1 ab⁻¹, arXiv:1212.5342

• Collect 50 x Belle \rightarrow 50 ab⁻¹

1.3 billion τ pairs

BELLE II: Run 1 (2109-2022) + Run 2 (2024 – present) accumulated 0.6 ab⁻¹ and unique energy scan samples


Marseille, 2025.07.07

L.Zani for EPS2025 - LFV searches with τ at Belle and Belle II

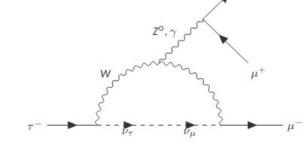
*https://arxiv.org/abs/0709.0451

Tau topologies and signatures

- Tau pairs in $e^+e^-\!\!\!\!\to \tau^+\tau^-$ events produced back-to-back in CM system
- Possible to separate them in two opposite hemispheres defined by the plane perpendicular to the thrust axis $n_{ au}$

Beyond SM searches

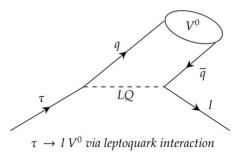
Lepton flavor violation

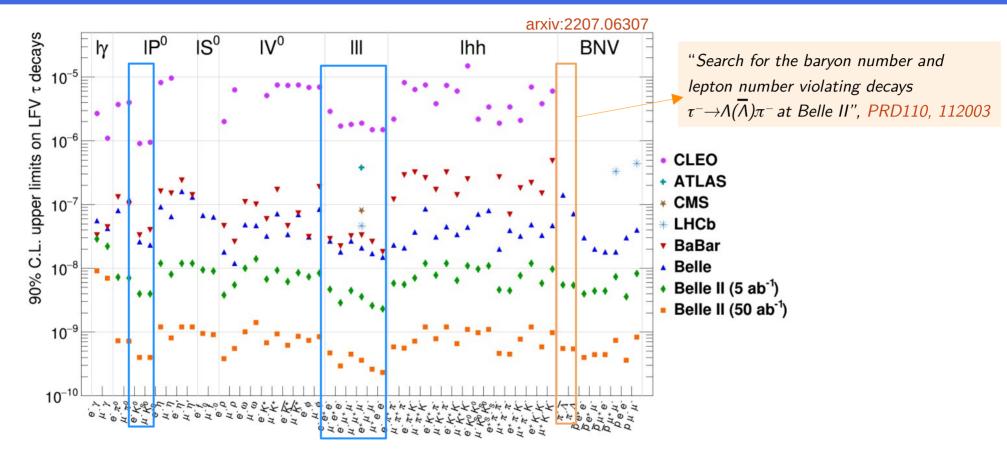

• Lepton Flavor Violation (LFV) in charged lepton decays is allowed via weak charged currents and neutrino oscillation, but immeasurably small

$$BR(\ell_1 \to \ell_2 \gamma)_{SM} \propto \left(\frac{\delta m_{\nu}^2}{m_W^2}\right)^2 \sim 10^{-54} \cdot 10^{-49}$$

 \rightarrow observation of LFV decays would be *per se* a proof of non-SM physics!

- Hints of lepton-flavor universality violation and deviation from SM predictions in rare B decays (B anomalies in $b \rightarrow c l v$, **T** Vs light leptons)
- Various new physics models predict LFV at observable rates

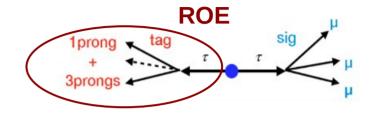

Physics Models	$\mathscr{B}(\tau^- \to \mu^- \mu^+ \mu^-)$
SM	10 ⁻⁵⁵
SM SM + Seesaw	10 ⁻¹⁰
SUSY + Higgs	10 ⁻⁸
SUSY + SO(10)	10 ⁻¹⁰
Non-universal Z'	10 ⁻⁸



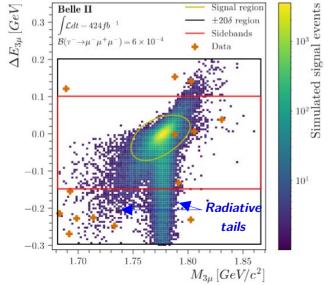
New interaction that violates flavor (Z' boson, leptoquark)

ightarrow Special role of the third family

LFV sensitivities


• Belle II expected to provide world's leading limits on many channels

Marseille, 2025.07.07


JHEP09(2024)062

Search for $\tau^+{\rightarrow}\mu^+\mu^-\mu^+$

- Motivated by new Z', charged Higgs models [1]
- Reconstruct signal in inclusive untagged approach \rightarrow new at Belle II [2]
- Reject *l*+*l*⁻(γ) and *l*+*l*-*l*+*l*⁻ processes with data driven selections + Boosted Decision Tree (BDT) classifier to suppress qq background exploiting signal and Rest Of Event (ROE) properties → final signal efficiency above 20% (~3 x Belle)

• Extract signal by Poisson counting in elliptical signal region in $\Delta E_{3\mu} = E_{3\mu} - \sqrt{(s)/2}$ and $M_{3\mu}$ plane

$$\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) = \frac{N_{\rm obs} - N_{\rm exp}}{\mathcal{L} \times 2\sigma_{\tau\tau} \times \varepsilon_{3\mu}}$$

- One event observed in 424 fb⁻¹ (expected 0.5 from data-driven estimate)
- Compute 90% CL upper limit with CLs method:

 $\mathsf{B}^{\scriptscriptstyle \mathrm{UL}}(au o \mu \mu \mu) = 1.9 imes 10^{ extsf{-8}}$

World's best

 Experiment
(Luminosity [fb⁻¹])
 $\mathscr{B}_{90}^{UL}(\tau \to \mu \mu \mu)$
[x 10⁻⁸]

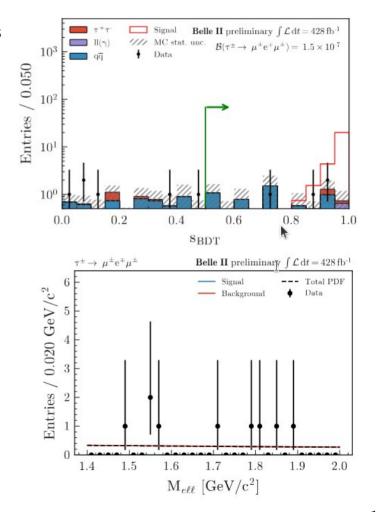
 Belle (782) °
 2.1

 CMS (131) b
 2.9

 LHCb (3) °
 4.6

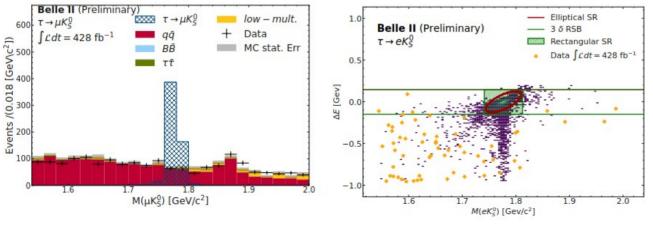
 Belle II (424)
 1.9

[a] Phys. Lett. B 687 (2010) 139 , [b] arXiv:2312.02371, [c] JHEP02(2015)121


[1] PRD.77.073010 [2] ArXiv: 2305.04759

Marseille, 2025.07.07

Extending the search to $\tau^- \rightarrow e^{\pm} \ell^{\mp} \ell'^{-}$


- Inclusive tagging applied, add 5 modes differentiating via lepton ID selectors
- Higher background contamination from $\ell^+\ell^-(\gamma)$ and $\ell^+\ell^-\ell^+\ell^-$ processes known to be mismodeled in simulation \rightarrow **data-driven BDT classifier**
 - $^-$ background training sample selected away from the signal region and rely on signal kinematics from simulation \rightarrow ϵ_{sig} \simeq 15 24 %
- Improve sensitivity extracting the signal from unbinned max likelihood fits to $M_{e\ell\ell}$ distributions \rightarrow use sidebands to extrapolate expected background yields
- No significant excess in 428 fb⁻¹ \rightarrow observed upper limits computed with CLs method are between 1.3-2.5 \times 10⁻⁸

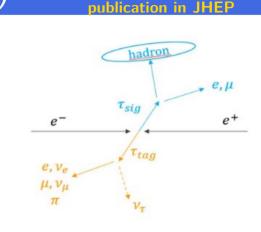
Most stringent		$N_{\rm exp}$	$N_{\rm obs}$	$C_{\rm bg}$	$\mathcal{B} imes 10^{-8}$	$\mathcal{B}_{\mathrm{exp}}^{UL} \times 10^{-8}$	$\mathcal{B}_{obs}^{UL} \times 10^{-8}$
to date for four	$e^-e^+e^-$	$6.1^{+4.3}_{-2.9}$	5	$0.52^{+2.64}_{-2.60}$	0	2.7	2.5
modes ★	$e^-e^+\mu^-$	$12.1_{-4.3}^{+5.7}$	12	$-0.40^{+1.67}_{-1.68}$	0	2.1	1.6
	$e^-\mu^+e^-$	$10.5^{+5.3}_{-4.3}$	17	$-2.90^{+1.48}_{-1.54}$	0	1.7	1.6
	$\mu^-\mu^+e^-$	$20.7^{+6.6}_{-5.5}$	18	$-2.50^{+1.45}_{-1.52}$	$0.48^{+0.90}_{-0.48}$	1.6	2.4 ★
	$\mu^- e^+ \mu^-$	$7.5^{+4.5}_{-3.2}$	9	$-0.34^{+1.93}_{-1.94}$	0	1.4	1.3 🔶

Search for $\tau \rightarrow \ell K_{S^0} (\ell = e, \mu)$

- It can constrain new physics models with leptoquark operators $\left[1
 ight]$
- First LFV search on the combined data set Belle (980 fb⁻¹) + Belle II (428 fb⁻¹) \rightarrow 1408 fb⁻¹
- Reconstruct in one-prong tag approach, use lepton ID to distinguish signal channels and tag sides, K_s candidate from two charged pions
- Data-driven selections against $\ell^+\ell^-(\gamma)$ and $\ell^+\ell^-\ell^+\ell^-$ processes + BDT trained on input features from tagside, event and signal K_s⁰ properties to suppress ee $\rightarrow q\bar{q} \rightarrow \epsilon_{sig} > 10\%$
- Signal yield from Poisson counting in elliptical signal region (SR) in M_{IKS} , $\Delta E = (E_{IKS} E_{beam})$
- Expected background extrapolated in SR from exponential fits to $M_{\mbox{\scriptsize IKs}}\, sideband$

[1] EPJ.C.10052-010-1482-4 [2] Phys.Lett.B, Vol. 692, 1 (2010)

Marseille, 2025.07.07

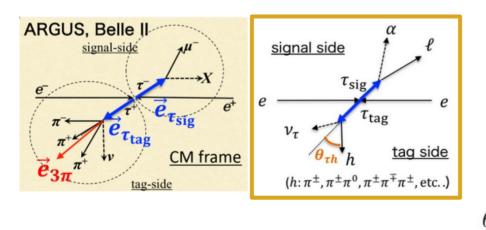

L.Zani for EPS2025 - LFV searches with τ at Belle and Belle II

Better performance in the electron channel due better particle ID

 No significant event found, set 90% CL world's best upper limits:

 $BF^{UL}(\tau \rightarrow e(\mu) K^{0}{}_{S}) < 0.8 (1.2) \times 10^{-8}$

Between 3.2(1.9) times more stringent than Belle [2], 671 fb⁻¹



arxiv:2504.15745

Accepted for

Invisible scalar boson in τ decays

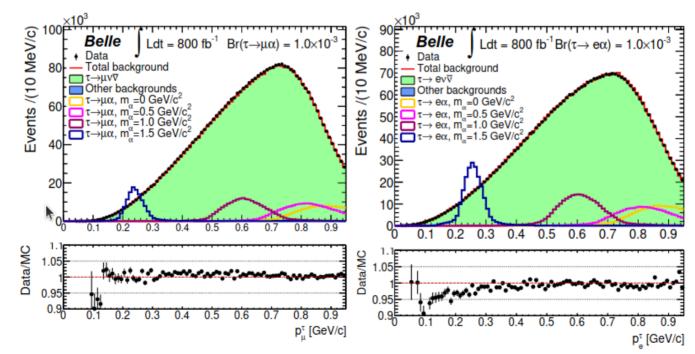
- τ decays to **new LFV bosons** (e.g., ALPs) predicted in many models [1]
- Search for the process $e^+e^- \rightarrow \tau_{_{sig}} (\rightarrow l\alpha) \tau_{_{tag}} (\rightarrow n\pi\nu)$, with l=e or l= μ
- Approximate $\mathbf{\tau}_{sig}$ pseudo-rest frame (ARGUS method [2]) as $E_{sig} \sim \sqrt{s/2}$ and $\hat{p}_{sig} \approx -\vec{p}_{\tau_{tag}}/|\vec{p}_{\tau_{tag}}|$
- Two-body decay: search a bump in the lepton momentum spectrum over irreducible background from $\tau_{_{SM}} \rightarrow I \nu \nu$

Marseille, 2025.07.07

 NEW at Belle (800 fb ⁻¹): enhance efficiency adding one-prong decays on the tag-side

• Improve estimate of au_{sig} direction by reconstructing opening angle between au_{sig} and the hadronic system, $heta_{ au h}$

$$\theta_{\tau h} = \arccos\left(\frac{|\vec{p}_{\tau_{\text{tag}}}^{\text{ c.m.}}|^2 + |\vec{p}_{h_{\text{tag}}}^{\text{ c.m.}}|^2 - (\sqrt{s}/2 - E_{h_{\text{tag}}}^{\text{ c.m.}})^2}{2|\vec{p}_{\tau_{\text{tag}}}^{\text{ c.m.}}||\vec{p}_{h_{\text{tag}}}^{\text{ c.m.}}|}\right)$$


[1] M. Bauer, et al. Phys. Rev. Lett. 124, 211803 (2020), [2] ARGUS Collaboration, Z. Phys. C 68, 25 (1995)

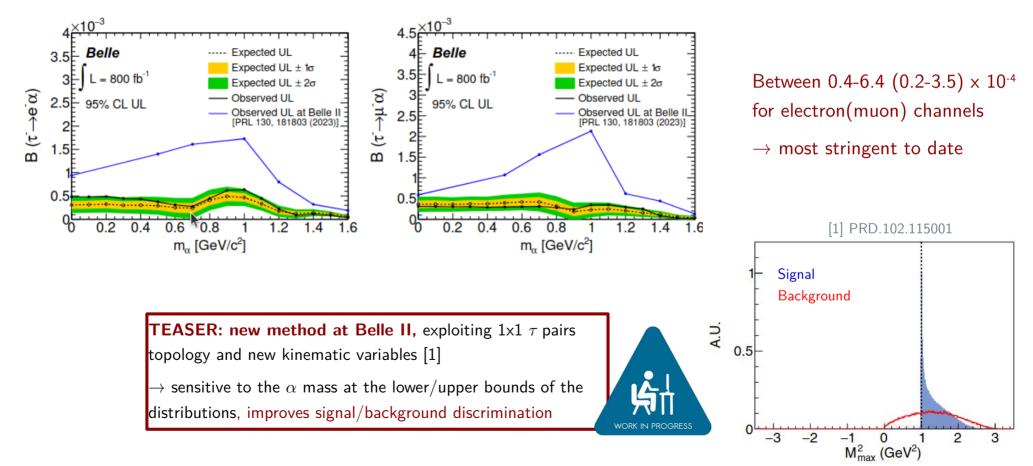
L.Zani for EPS2025 - LFV searches with τ at Belle and Belle II

Belle II (63 fb ⁻¹): PRL 130 (2023) 181803 New at Belle: arxiv:2503.22195v2

Invisible boson in τ decays at Belle

- Require the τ_{sig} aligned with the hadronic system ($|\theta_{\tau h}| < 4$) improves the signal lepton momentum p_{ℓ} resolutions \rightarrow **better sensitivity** in the final fits
- Selections independent from the α mass: $\epsilon_{\mbox{\tiny sig}}$ ranges in [0.3 -1.5]%
 - $^-$ validated on control samples in data and simulation using $\tau\!\rightarrow\!\pi\,\pi^0\,\nu$ events

Marseille, 2025.07.07


L.Zani for EPS2025 - LFV searches with τ at Belle and Belle II

arxiv:2503.22195v2

NEW!

Invisible boson at Belle: results

• No significant excess found in 736 × 10⁶ τ pairs \rightarrow set 95% CL upper limits on BF($\tau_{_{sig}} \rightarrow I\alpha$)

Marseille, 2025.07.07

L.Zani for EPS2025 - LFV searches with τ at Belle and Belle II

arxiv:2503.22195v2

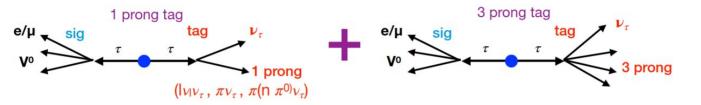
NEW!

Summary and outlook

- Study of LFV in τ decays ongoing at Belle II \rightarrow Run 2 started, with more data possible to improve almost all LFV channels
- New strategies to boost signal efficiency keeping the background under control applied to $\tau \rightarrow \mu \mu \mu$ and $\tau^- \rightarrow e^{\pm} \ell^{\mp} \ell'^{-}$, JHEP09(2024)062
- Increase the available statistics by combining Belle and Belle II data set, first combined analysis for $\tau \to \ell K_{S^0}$, arxiv:2504.15745
- Plans to enhance analysis performance exploiting improved particle identification and multivariate techniques

→ Expected world's best sensitivities!

Thanks for your attention!



Marseille, 2025.07.07

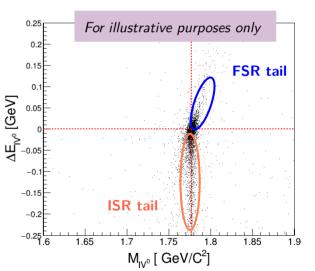
Search for $\tau \to \ell V^0$ at Belle:

strategy

• Previous search at Belle on 854 fb⁻¹ exploiting one-prong tag [1]

Full Belle data set of 980 fb⁻¹ \rightarrow 9.05 x 10⁸ tau pairs

JHEP06(2023)118


• Signal side: reconstruct lepton and V⁰ \in [ρ , ϕ , ω , K*] from invariant mass windows around M_{V0}

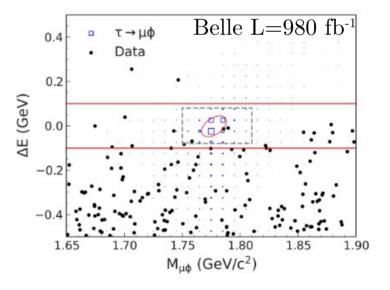
- Use particle identification (PID) variables, likelihood ratios to identify(veto) leptons and hadrons

- Tag side: reconstruct 1 or 3-prong decays
- Exploit kinematics of the signal as *neutrinoless* decays
 - $M_{\ensuremath{\text{IV0}}\xspace}$ expected to peak at known tau mass
 - $\Delta E_{IV0} = E^*_{sig} \sqrt{s/2}$ peaks at 0 \rightarrow up to initial/final state radiation (ISR, FSR) effects
- * Count in elliptical signal region (SR) in $\Delta E_{\text{IV0}}\,\text{and}\,\,M_{\text{IV0}}$ plane

[1] Phys. Lett. B 699 (2011) 251

Marseille, 2025.07.07

L.Zani for EPS2025 - LFV searches with τ at Belle and Belle II


<u>Search for</u> $\tau \rightarrow \ell V^0$ at Belle:

background suppression and yields extraction

- Backgrounds mimic the presence of neutrinos in the tag side (detector inefficiencies), wrong PID in the signal side \rightarrow exploit topology and tag kinematics to reject low-multiplicity: $e^+e^- \rightarrow e^+e^-(\gamma)$, $e^+e^- \rightarrow \mu\mu(\gamma)$, $e^+e^- \rightarrow e^+e^- \parallel$
- Further suppress $\tau \to 3\pi \nu$ and ee $\to q \overline{q}$ with BDT
 - use missing momentum and V^{0} properties, and $event\ tag$ categorical variables
- Estimate expected background in SR from sideband interpolation
 - Model the shape from hadron enhanced data samples scaled to sideband
 - $^-$ Integrate over the elliptical SR area

\rightarrow Count number of observed events in data inside SR

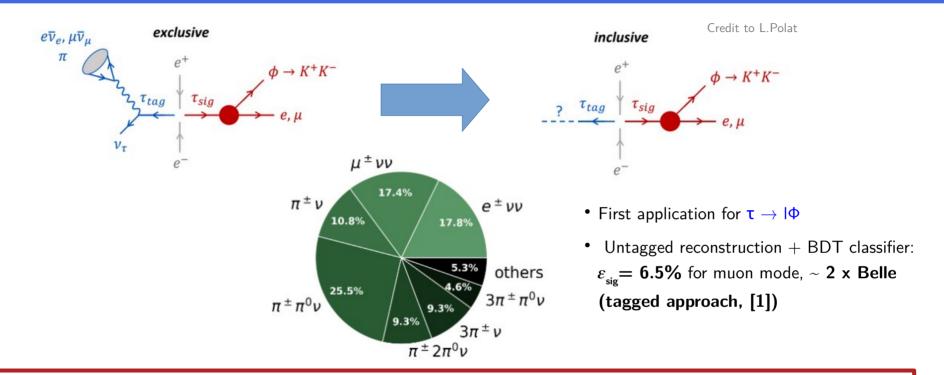
• Dominant systematic uncertainties from tracking and PID (negligible impact compared to the **statistical** one)

JHEP06(2023)118

(b) $\tau \to \mu \phi$

Search for $\tau \rightarrow \ell V^0$ at Belle:

results


• No significant excess observed \rightarrow set ULs at 90% CL

Mode	ε (%)	$N_{ m BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	$\mathcal{B}_{\rm obs}~(\times 10^{-8})$
$\tau^\pm \to \mu^\pm \rho^0$	7.78	0.95 ± 0.20 (stat.) ± 0.15 (syst.)	4.6	0	< 1.7
$\tau^{\pm} \rightarrow e^{\pm} \rho^0$	8.49	$0.80 \pm 0.27 (stat.) \pm 0.04 (syst.)$	4.4	1	< 2.2
$\tau^\pm \to \mu^\pm \phi$	5.59	$0.47 \pm 0.15 (stat.) \pm 0.05 (syst.)$	4.8	0	< 2.3
$\tau^\pm \to e^\pm \phi$	6.45	$0.38 \pm 0.21 (stat.) \pm 0.00 (syst.)$	4.5	0	< 2.0
$\tau^{\pm} \rightarrow \mu^{\pm} \omega$	3.27	$0.32 \pm 0.23 (stat.) \pm 0.19 (syst.)$	4.8	0	< 3.9
$\tau^\pm \to e^\pm \omega$	5.41	$0.74 \pm 0.43 (stat.) \pm 0.06 (syst.)$	4.5	0	< 2.4
$\tau^{\pm} ightarrow \mu^{\pm} K^{*0}$	4.52	$0.84 \pm 0.25 (stat.) \pm 0.31 (syst.)$	4.3	0	< 2.9
$\tau^\pm \to e^\pm K^{*0}$	6.94	$0.54 \pm 0.21 (stat.) \pm 0.16 (syst.)$	4.1	0	< 1.9
$\tau^{\pm} \rightarrow \mu^{\pm} \overline{K}^{*0}$	4.58	$0.58 \pm 0.17 (stat.) \pm 0.12 (syst.)$	4.3	1	< 4.3
$\tau^\pm \to e^\pm \overline{K}{}^{*0}$	7.45	$0.25 \pm 0.11 (stat.) \pm 0.02 (syst.)$	4.1	0	< 1.7

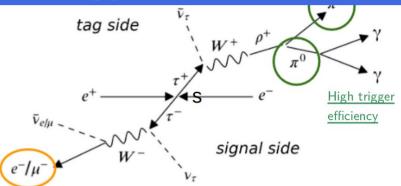
Average 30% improvement from both increased statistics (+ 124 fb⁻¹) and improved analysis (+ 9% efficiency)

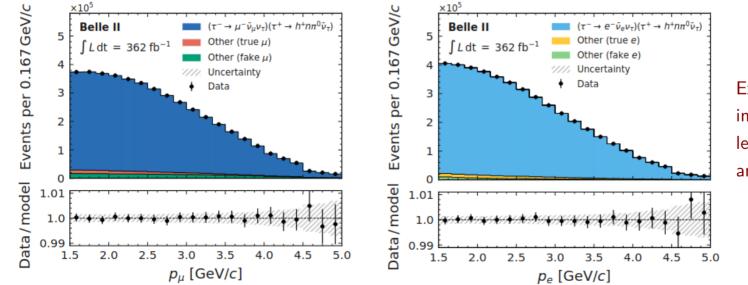
Marseille, 2025.07.07

New untagged approach for LFV decays

→ Increase signal efficiency: reconstruct signal side, no requirement on the tag side (untagged reconstruction)
 - Exploit signal and event features in BDT classifiers to suppress background

· · ·

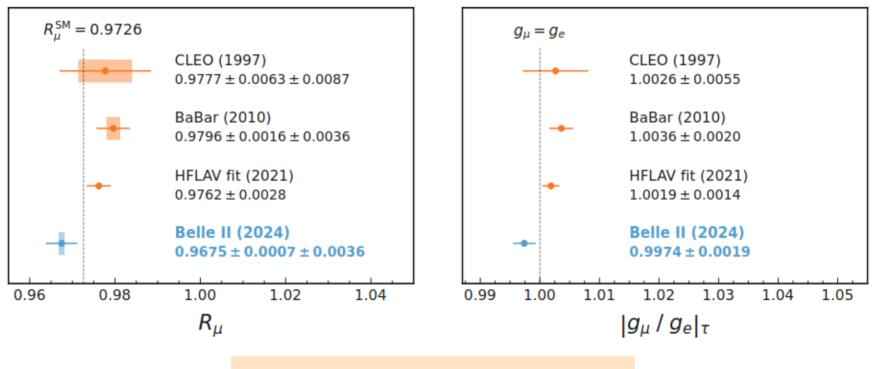

[1]arxiv: 2301.03768


Marseille, 2025.07.07

JHEP08(2024)205

R_{μ} measurement strategy

- Select 1x1-prong decays, with one charged hadron + $n\pi^{\scriptscriptstyle 0}$ on the tag side
- Rely on lepton ID to select signal side (muon or electron)
- Use neural network to isolate signal (94% purity, 9.6% efficiency)
- Extract R_{μ} with **template** fit to the lepton momentum distributions

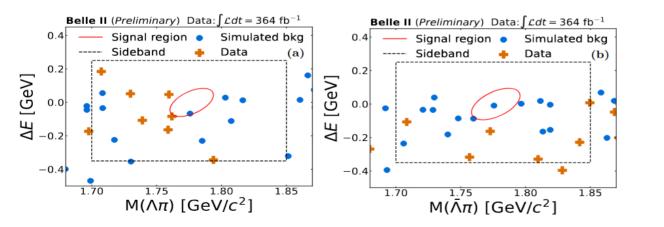


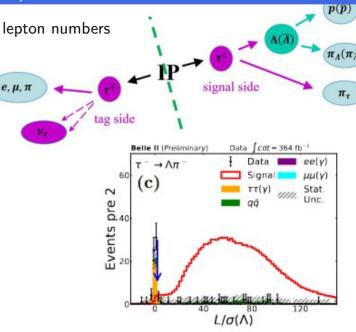
Experimental challenge: instability of R_{μ} in function of lepton ID selection and polar angle

Marseille, 2025.07.07

R_{μ} results at Belle II

• Most precise test of μ -e universality in τ decays from a single measurement, systematically limited by lepton ID (0.32%)


 \rightarrow consistent with SM expectation at 1.4 σ


Marseille, 2025.07.07

PRD110, 112003

Search for $\tau^{-} \rightarrow \Lambda(\overline{A}) \pi^{-}$

- Baryon number violation required for explaining matter-antimatter asymmetry. Baryon and lepton numbers conserved in the SM, might be violated in beyond SM scenarios.
- * Previous limits 90% CL of order 10-7 at Belle (154 fb $^{\text{-1}})$ [1]
- Reconstruct events with four tracks and total null charge: use Λ flight significance (L/ σ) and gradient BDT selector to reject $e^+e^- \rightarrow \tau^+\tau^-$ background and continuum qq
- Poisson counting experiment technique in elliptical signal regions in $M_{{\it A}\pi}$ and $\Delta E=E^*_{_{sig}}-\sqrt[]{s/2}$ plane
- Final signal efficiencies of 9.5% (9,9%) for $\tau \rightarrow \Lambda(\overline{\Lambda})\pi^-$ with 1 (0.5) expected events

 No event observed in 364 fb⁻¹, set world's best upper limits at 90% CL:

$$3 \ (\tau
ightarrow \Lambda \pi) < 4.7 imes 10^{-8}$$

$$\beta \ (\tau \rightarrow \overline{\Lambda}\pi) < 4.3 \times 10^{-8}$$