

Mixing and CP violation with D mesons at Belle and Belle II

L. Massaccesi on behalf of the Belle II collaboration July 8, 2025 – EPS-HEP, Marseille

Mixing in charm

- ► Mixing smaller in charm than in beauty and strange sectors ► $x = \frac{M_1 - M_2}{\Gamma} \sim 4 \times 10^{-3}$, $y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma} \sim 6.5 \times 10^{-3}$ (1,2 are for the mass eigenstates)
- Experimentally established in 2007
- World average has O(10%) uncertainty on x and y
 While we have O(0.1%) in K and B systems
- May be enhanced by new physics contributions
 - Unique probe for new physics models where up-type quarks have a special role

⇒ Interest for precise $D^0 - \overline{D}^0$ mixing measurements

CP violation in charm

- CP violation is way smaller in charm than in beauty sector
 - Max $O(10^{-3})$ in the standard model, but may be enhanced by new physics
- ► CPV only observed in one channel, by one experiment, in 2019
 - ► <u>LHCb</u> in $\Delta A_{CP}(D^0 \to K^+K^-, \pi^+\pi^-) = (-1.5 \pm 0.3) \times 10^{-3}$ & $A_{CP}(D^0 \to K^+K^-) = (0.7 \pm 0.6) \times 10^{-3} \Rightarrow a^d(D^0 \to \pi^+\pi^-) = (2.3 \pm 0.6) \times 10^{-3}$
 - Not yet clear if compatible with SM: non-perturbative QCD may affect predictions
- Need for measurements in different decay channels & by other experiments
 - Especially singly Cabibbo-suppressed
 - Largest CPV in the SM due to the relative phase between tree and penguin diagrams
 - The most sensitive to new physics contributions

The Belle and Belle II experiments

- ► Asymmetric e⁺e⁻ collider experiments collecting data at (or near) the Y (4S) resonance
 - ▶ Belle (1999-2010) collected 980 fb⁻¹
 - ▶ Belle II (2019-present) collected 575 fb^{-1}
 - ▶ Run 1 (2019-2022) \rightarrow 428 fb⁻¹ [USED IN THE WORK | SHOW]
 - ▶ Run 2 (2024-present) \rightarrow 147fb⁻¹
- Belle II improvements compared to Belle
 - Much better vertexing and neutrals reconstruction
 - Larger acceptance
 - Designed for higher instantaneous luminosity
- Belle & Belle II collaborations have joined
 - Belle data can be analysed with Belle II software

Vertex detector ertex resolution: 15 µm

Belle and Belle II as "charm factories"

Charmed hadrons produced at B factories...

- ▶ ... promptly from $e^+e^- \rightarrow c\bar{c}$ processes
 - ▶ Cross section larger than $e^+e^- \rightarrow \Upsilon(4S)!$
 - Continuum production with fragmentation particles
- ▶ ... through the decay of B mesons
 - But carrying additional production asymmetry

Physics process	Cross section [nb]
$\Upsilon(4S)$	1.110 ± 0.008
$uar{u}(\gamma)$	1.61
$dar{d}(\gamma)$	0.40
$sar{s}(\gamma)$	0.38
$car{c}(\gamma)$	1.30
From the Belle II Physics Book	

Flavor tagging at B factories

\mathbf{D}^* tagging

- \blacktriangleright When D^0 and $\overline{D}{}^0$ have common final state, use $D^{*+} \rightarrow D^0 \pi^+$
- ► Strong decay ⇒ charge of tag ("slow") pion identifies the flavor

Most common choice

- ▶ Powerful background discrimination with $\Delta M = M(D^*) M(D^0)$
- \blacktriangleright Efficiency ~25%, but very small mistag rate

Charm Flavor Tagger (CFT)

- ▶ New method developed at Belle II PRD 107, 112010
- \blacktriangleright BDT using rest-of-event particles, such as K^{\pm}/μ from the other charmed hadron & fragmentation
 - Trained on simulation, calibrated on data

Signal

Belle II Preliminary Ldt = 428 fb

148

 $\Delta M [MeV/c^2]$

150

Example ΔM

from $D^0 \rightarrow \pi^+ \pi^- \pi^0$

 D^{*+}

Rest of event

(ignored)

candidates / bin

Belle II simulation

-0.25

 $\leftarrow \overline{D}^0$

-1.00 - 0.75 - 0.50

Candidates

0.5

 $D^0 \rightarrow$

0.25

0.50

0.75

142

144

146

Challenge for CP asymmetry measurements

Correction of experimental asymmetries

 $\frac{N(D^{0}) - N(\overline{D}^{0})}{N(D^{0}) + N(\overline{D}^{0})} \simeq A_{CP} + A_{production} + A_{detection}^{D^{0}} + A_{detection}^{tag}$ **Detector-induced** asymmetries Observed yields Measure on control channel What we measure & correct if needed What we want to measure Forward-backward $e^+e^- \rightarrow c\bar{c}$ asymmetry Time-integrated asymmetry (odd in $\cos \theta_{CM}$ of the D mesons, independent on the final state) Γ = decay-time integrated rate + asymmetry from $B \rightarrow D...$ decays (reject these D with momentum cut)

Outline

Today, I present 6 analyses:

- ► Mixing in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$
- ► A_{CP} in $D^0 \rightarrow K^0_S K^0_S$ (×2)
- $\blacktriangleright A_{CP} \text{ in } D^+ \rightarrow \pi^+ \pi^0 \text{ and in } D^0 \rightarrow \pi^0 \pi^0$
- ► A_{CP} in $D^0 \rightarrow \pi^+ \pi^- \pi^0$ [NEW]

Mixing in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

First model-independent result at a B-factory experiment PRD 111, 112011

Mixing in $D^0 \to K^0_S \pi^+ \pi^-$

- Measure mixing parameters x and y
- Split Dalitz plot into iso- $\Delta\delta$ (strong phase) bins, determined by BESIII
 - Model-independent measurement

Results $x = (4.0 \pm 1.7 \pm 0.4) \times 10^{-3}$ $y = (2.9 \pm 1.4 \pm 0.3) \times 10^{-3}$

<u>Improved</u> previous model-dependent determination <u>by Belle</u> by 20%/14%

World average <u>from HFLAV</u>

 $x = (0.41 \pm 0.04)\%$ $y = (0.65 \pm 0.02)\%$

$A_{CP} \text{ in } D^0 \to K^0_S K^0_S$

<u>Two analyses</u> with two different flavor tagging techniques <u>PRD 111, 012015</u> & <u>arXiv:2504.15881</u> [ACCEPTED BY PRD]

$$D^0 \rightarrow K^0_S K^0_S - Strategy$$

1) With $D^{*+} \rightarrow D^0 \pi^+$ flavor tagging <u>PRD 111, 012015</u>

- ► Main background is $D^0 \rightarrow K_S^0 \pi^+ \pi^-$
- Use K_S^0 flight distance significance $S_{min} = \log(\min(L_1/\sigma_1, L_2/\sigma_2))$ to discriminate this background
- Asymmetry extraction with 2D fit to M(D^{*+}) and S_{min}
- ▶ Control channel $D^0 \rightarrow K^+K^-$ used to correct detection and production asymmetries

Candidates per 0.2 MeV/ c^2

Asymmetry

2) With charm flavor tagger (CFT) arXiv:2504.15881

- Tagging method based on rest-ofevent (*i.e.* non-signal) particles
- \blacktriangleright BDT+S_{min} to suppress background $(D^0 \rightarrow K_S^0 \pi^+ \pi^- \text{ still main bkg.})$
- Asymmetry extraction with 2D fit to $M(D^0)$ and CFT output
- Completely independent sample: events from the other analysis are removed to ease result combination

BELLE

Belle TI

 $D^0 \rightarrow K^0_S K^0_S - Results$

1) With $D^{*+} \rightarrow D^0 \pi^+$ flavor tagging <u>PRD 111, 012015</u> 2) With charm flavor tagger (CFT) arXiv:2504.15881

- Combined Belle & Belle II result $A_{CP} = (-1.4 \pm 1.3 \pm 0.1)\%$ with about 7k candidates
- Combined Belle & Belle II result A_{CP} = (1.3 ± 2.0 ± 0.2)% with about 20k candidates (and much more background)

CFT adds new, previously-unused data Combined D*-tagged + CFT result $A_{CP} = (-0.6 \pm 1.1 \pm 0.1)\%$ <u>World's best determination</u>

A_{CP} in $D^+ \rightarrow \pi^+ \pi^0$

No CPV expected in the SM in this channel arXiv:2506.07879 [SUBMITTED TO PRDL]

$D^+ \rightarrow \pi^+ \pi^0 - Strategy$

▶ <u>No CPV expected</u> in SM

- △I=3/2 transition ⇒ only 1 amplitude
 ⇒ no CPV (interference needed)
- Fit $M(D^+)$ to measure asymmetry
- ► Fit the D⁺ from D^{*+} separately
 - Different backgrounds and purity, so separate fits improve precision
- Measure both production and detection asymmetries on control channel D⁺ → π⁺K⁰_S
 Correcting for K⁰−K
 ⁰ mixing and
 - regeneration in detector material

Candidates per 7 MeV/c²

symmetry

$D^+ \rightarrow \pi^+ \pi^0 - \text{Results}$

- $A_{CP} = (-1.8 \pm 0.9 \pm 0.1)\%$
- <u>30% improvement</u> (stat.) w.r.t. previous measurement by <u>Belle</u>, with only half the luminosity
 - Due to much higher purity at Belle II
 - Also 2 × improvement on systematics w.r.t. <u>Belle</u>, and 7 × w.r.t. <u>LHCb</u>
 - Despite very conservative systematics: kinematic differences between signal and control channel not equalized, but assigned as systematic

Candidates per 7 MeV/ c^2

symmetry

A_{CP} in $D^0 \rightarrow \pi^0 \pi^0$

Allows to constrain the origin of the $D^0 \rightarrow \pi^+\pi^-$ asymmetry arXiv:2505.02912 [ACCEPTED BY PRD]

$D^0 \rightarrow \pi^0 \pi^0$ – Motivation

- ► Improve precision of isospin sum rule R
- ► Allows to constrain the origin of the asymmetry in $D^0 \rightarrow \pi^+ \pi^-$
 - ▶ If $R \neq 0$, CPV arises in $\Delta I = 1/2$ transitions
 - ► If R = 0 and CPV is observed in at least one of the three channels, then it arises in $\Delta I = 3/2$ transitions \Rightarrow physics beyond the standard model

$$R = \frac{A_{CP}^{\text{dir}}(D^0 \to \pi^+ \pi^-)}{1 + \frac{\tau_{D^0}}{\mathcal{B}_{+-}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^0}} - \frac{2}{3} \frac{\mathcal{B}_{+0}}{\tau_{D^+}}\right)} + \frac{A_{CP}^{\text{dir}}(D^0 \to \pi^0 \pi^0)}{1 + \frac{\tau_{D^0}}{\mathcal{B}_{00}} \left(\frac{\mathcal{B}_{+-}}{\tau_{D^0}} - \frac{2}{3} \frac{\mathcal{B}_{+0}}{\tau_{D^+}}\right)}{1 - \frac{3}{2} \frac{\tau_{D^+}}{\mathcal{B}_{+0}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^0}} + \frac{\mathcal{B}_{+-}}{\tau_{D^0}}\right)}$$

 $D^0 \rightarrow \pi^0 \pi^0 - Strategy$

- ► D^0 flavor tagged through the strong $D^{*+} \rightarrow D^0 \pi^+$ decay
- \blacktriangleright Measure signal asymmetry with 2D fit in M_{D^0} and $\Delta M_{D^*,D^0}$
 - Large combinatorial background from the 4 photons
 - Use BDT trained on cluster properties and kinematics to suppress it

$D^0 \rightarrow \pi^0 \pi^0 - Experimental asymmetries$

▶ Split $\cos \theta_{CM} \ge 0$ to correct forward-backward production asymmetry

- Then take arithmetic average asymmetry of the two bins
- > Production asymmetry simplifies because it is odd in $\cos \theta_{CM}$ of the D^0
- Subtract detection asymmetries measured on $D^0 \rightarrow K^- \pi^+$ samples
 - Most comes from tagging, A^{tag π}_{detection}
 Tagged D⁰ → Kπ has A_{production} + A^{D⁰→Kπ}_{detection} + A^{tag π}_{detection}
 Untagged D⁰ → Kπ has A_{production} + A^{D⁰→Kπ}_{detection}
 ⇒ Use A^{tag π}_{detection} = A_{tagged} A_{untagged}
- \blacktriangleright Same strategy used also for $D^0 \to \pi^+\pi^-\pi^0$

$D^0 \rightarrow \pi^0 \pi^0 - \text{Results}$

- $A_{CP} = (0.30 \pm 0.72 \pm 0.20)\%$
 - ▶ 15% less precise than <u>Belle</u>, but <u>with half the sample</u>
- ▶ Update of isospin sum rule $R = (1.5 \pm 2.5) \times 10^{-3}$
 - <u>20% improvement on world average</u> (by HFLAV)

$A_{CP} \text{ in } D^0 \rightarrow \pi^+ \pi^- \pi^0$

Dalitz-plot integrated, almost CP-even final state ($\rho\pi$ -dominated) [<u>New</u> for this conference] [to be submitted to PRD]

$D^0 \to \pi^+\pi^-\pi^0 - Strategy$

Dalitz-plot integrated measurement

- Almost CP-even final state, dominated by $\rho^{\pm}\pi^{\mp}$ and $\rho^{0}\pi^{0}$ resonances
- ► Large branching ratio ~1.5%
- ► D⁰ flavor tagged through $D^{*+} \rightarrow D^0 \pi^+$

► Asymmetry with 2D fit to M_{D^0} and ΔM

- Large background from γs and <u>relaxed</u> <u>selections w.r.t to previous measurements</u> <u>to increase statistics</u>
- \blacktriangleright Split in 8 symmetric bins of $\cos\theta_{CM}$ to correct production asymmetry
- Detection asymmetries from $D^0 \rightarrow K\pi$

candidates / bin

*

[%]

$D^0 \to \pi^+\pi^-\pi^0 - \text{Results}$

$\blacktriangleright A_{\rm CP} = (0.29 \pm 0.27 \pm 0.13)\%$

- No asymmetry
- Compatible with previous measurements (<u>BABAR</u>, <u>Belle</u>)
- <u>34% improvement</u> (stat.) w.r.t. world's best (BABAR)
 - With <u>only 10% more intergated</u> <u>luminosity</u> (428 fb⁻¹ vs. 385 fb⁻¹)
- ► Also syst. improved (by 24%)
 - Dominated by residual distribution mismodeling and D⁰ reconstruction asymmetry (estimated on MC)

Conclusions

Summary

Today showed

- First A_{CP} determinations from (Belle +) Belle II, including 3 world's bests
- First model-independent charm mixing determination at a B factory
- ▶ Improvement on isospin rule determination for $D \rightarrow \pi \pi$
- Belle II has a strong potential for charm physics
 - Especially for CPV with neutrals in the final state
 - ▶ But also in charmed baryons and rare decays (see Marko's talk)
 - A larger data sample is coming \Rightarrow all these results will improve in the future
 - For now, additional precision is gained by using the Belle dataset
 - ▶ Also many systematics can be improved in the future (e.g. with larger MC, ...)
- Run 2 resumes in November @ world-record instantaneous luminosity
 Many more results yet to come

Thanks for your attention!

Backup – Charm perspectives at Belle II

Currently in the work

Several A_{CP} measurements in D^+ and D_s^+ channels

• With η , Ω , K_S^0 in the final state

► A_{CP} measurement, amplitude analyses with charmed baryons (Ξ_c, Λ_c)

Being considered for the future

► Amplitude analysis or Dalitz-plot dependent A_{CP} in $D^0 \rightarrow \pi^+ \pi^- \pi^0$?

$$\mathsf{Backup}-\mathsf{D}^0\to\mathsf{K}^0_S\pi^+\pi^-$$

- \blacktriangleright Measure mixing parameters x and y
- Split Dalitz plot into iso-Δδ (strong phase) bins, determined by BESIII
 - Determine time-dependent decay rate asymmetry in each bin separately
 - Hypothesis: no CPV
 - ► ⇒ <u>Model independent measurement</u>
- ► Background separation with 2D fit to M_{D^0} and the released energy $Q(D^* \rightarrow D^0 \pi)$, restrict to peak region in next steps

Backup – Belle II performance

Backup – Isospin sum rule inputs

$$R = \frac{A_{CP}^{dir}(D^{0} \to \pi^{+}\pi^{-})}{1 + \frac{\tau_{D^{0}}}{\mathcal{B}_{+-}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^{0}}} - \frac{2}{3}\frac{\mathcal{B}_{+0}}{\tau_{D^{+}}}\right)} + \frac{A_{CP}^{dir}(D^{+} \to \pi^{+}\pi^{0})}{1 - \frac{3}{2}\frac{\tau_{D^{+}}}{\mathcal{B}_{+0}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^{0}}} + \frac{\mathcal{B}_{+-}}{\tau_{D^{0}}}\right)} + \frac{A_{CP}^{dir}(D^{0} \to \pi^{0}\pi^{0})}{1 + \frac{\tau_{D^{0}}}{\mathcal{B}_{00}} \left(\frac{\mathcal{B}_{+-}}{\tau_{D^{0}}} - \frac{2}{3}\frac{\mathcal{B}_{+0}}{\tau_{D^{+}}}\right)}$$

$$A_{CP}^{dir}(D^{0} \to \pi^{+}\pi^{-}) = 0.0013 \pm 0.0014$$

$$A_{CP}^{dir}(D^{0} \to \pi^{+}\pi^{0}) = 0.004 \pm 0.013$$

$$A_{CP}^{dir}(D^{0} \to \pi^{0}\pi^{0}) = 0.000 \pm 0.006$$

$$\mathcal{B}_{+-} = \mathcal{B}(D^{0} \to \pi^{+}\pi^{-}) = (1.454 \pm 0.024) \times 10^{-3}$$

$$\mathcal{B}_{+0} = \mathcal{B}(D^{0} \to \pi^{+}\pi^{0}) = (1.247 \pm 0.033) \times 10^{-3}$$

$$\mathcal{B}_{00} = \mathcal{B}(D^{0} \to \pi^{0}\pi^{0}) = (8.26 \pm 0.25) \times 10^{-4}$$

 $\tau_{D^0} = (4.103 \pm 0.010) \times 10^{-1} \text{ ps}$

July 8, 2025 $au_{D^+} = 1.033 \pm 0.005 \ \mathrm{ps}$

Backup – Charm flavor tagger (CFT)

- ▶ 75% of D^0 s are <u>not</u> from $D^* \rightarrow D^0 \pi$
- Use charge of tracks from rest of event (not used for the signal decay)
- ▶ Return $q = \pm 1$ (flavor) & $\omega \in [0,1]$ (wrong tag probability)
- ▶ Define dilution $r = 1 2\omega$, use it to measure A_{CP}
 - Train it on MC, calibrate it on data using self-tagging decays
- ▶ Improvement equivalent to +50% sample size w.r.t. D* tag alone
 - ▶ Efficiency 99.97%, mistag rate $19\% \Rightarrow$ effective efficiency 38%

RD 107, 1120.