

Measurements of lepton-flavour

universality in semileptonic B decays at Belle II

Michele Mantovano* on behalf of the Belle II Collaboration

HELMHOLTZ *michele.mantovano@desy.de

Lepton-flavour universality in semileptonic *B* decays Motivation

- W boson couples equally to e, μ, τ in the SM \rightarrow Lepton Flavour Universality (LFU).
- Non-SM contributions (H^+ , LQ, SUSY...) can generally violate LFU.
- Different ways to investigate LFU with semileptonic B decays:

1. Asymmetries in $B \rightarrow D^* \ell \nu$ angular distributions.

- 2. Ratio of rates suppress most theoretical and experimental uncertainties. Persistent anomaly observed between τ and light lepton ratios, e.g. $R(D_{\tau/\ell}^{(*)}) = \frac{\mathscr{B}(B \to D^{(*)}\tau\nu)}{\mathscr{B}(B \to D^{(*)}\ell\nu)}$.
- In this talk, I will focus only on the latter.

$R(D_{\tau/\ell}^{(*)})$ and $R(X_{\tau/\ell})$ measurements at Belle II Overview

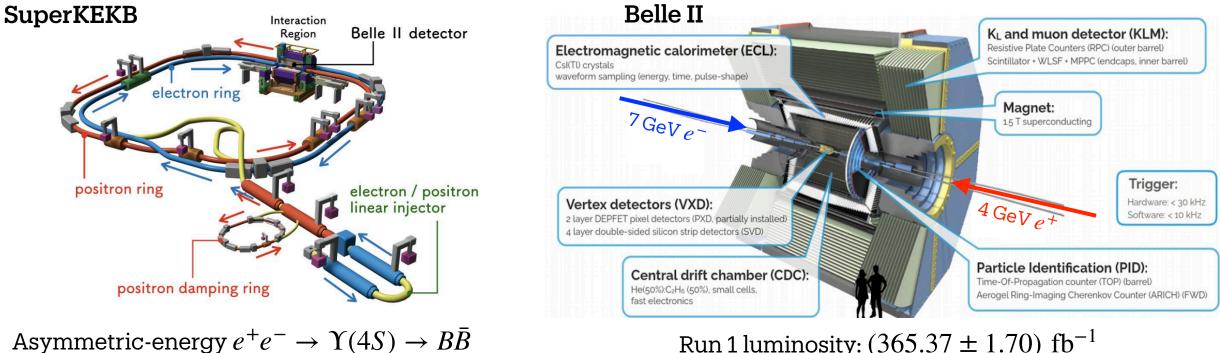
Various Belle II measurements of the ratio between τ and ℓ BRs in both exclusive and inclusive *B* decay:

- $R(D^*_{\tau | \ell})$ with hadronic *B* tagging using 189 fb⁻¹ [PRD 110, 072020]
- $R(D_{\tau/\ell}) R(D^*_{\tau/\ell})$ measurements using 365 fb⁻¹ [arXiv.2504.11220, submitted to PRD]

First result using semileptonic B tagging.

First combined $R(D_{\tau/\ell}) - R(D^*_{\tau/\ell})$ Belle II measurement.

• $R(X_{\tau/\ell})$ with hadronic *B* tagging using 189 fb⁻¹ [PRL 132, 211804]


Belle II experiment

Centre-of-mass energy= 10.58 GeV

World record inst. luminosity= $5.1 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

Experimental setup

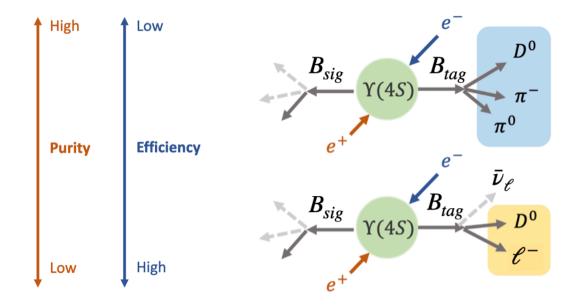
Belle (II) ideally suited to study decay with missing energy: hermetic detector, at-threshold $B\bar{B}$ production with precisely known energy.

Run 1 luminosity: (365.37 ± 1.70) fb⁻¹ First Run 2 collision: 20 Feb 2024, 22:12 JST Between 2019-2024, ~575 fb⁻¹ collected.

Dealing with missing energy

Reconstruction techniques

The measurements discussed in this talk are based on two different methods to deal with non-signal


side *B* meson (B_{tag}):

1. Hadronic tagging:

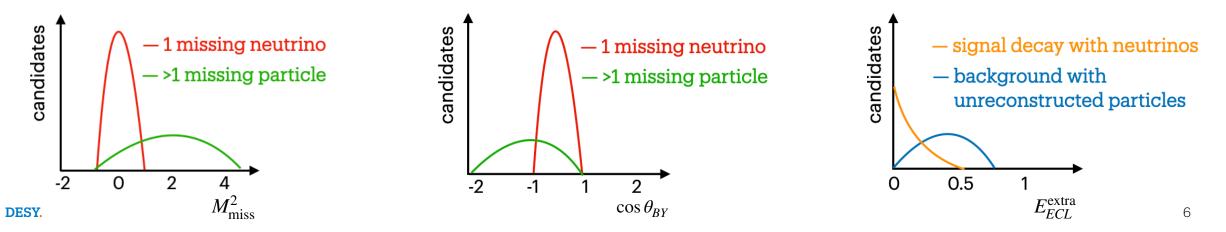
reconstruct B_{tag} by hadronic decay modes.

2. Semileptonic tagging:

reconstruct B_{tag} by semileptonic decay modes.

Reconstruction efficiency is $\mathcal{O}(0.1\%)$ and $\mathcal{O}(1\%)$ for the hadronic and semileptonic tagging, respectively.

Dealing with missing energy


Fit variables

Fully reconstruct the partner B meson in hadronic/semileptonic decay modes. Match remaining particles with signal decay. Identify invisible particles using:

1. Missing mass of undetected particles $M_{miss}^2 = (p_{e^+e^-} - p_{visible})^2$.

2. Use available kinematic constraint
$$\cos \theta_{BY} = \frac{2E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y|^*}$$
 with $Y = D\ell$ system.

3. Residual energy in the calorimeter E_{ECL}^{extra} .

$R(D^*_{\tau/\ell})$ with hadronic B tagging

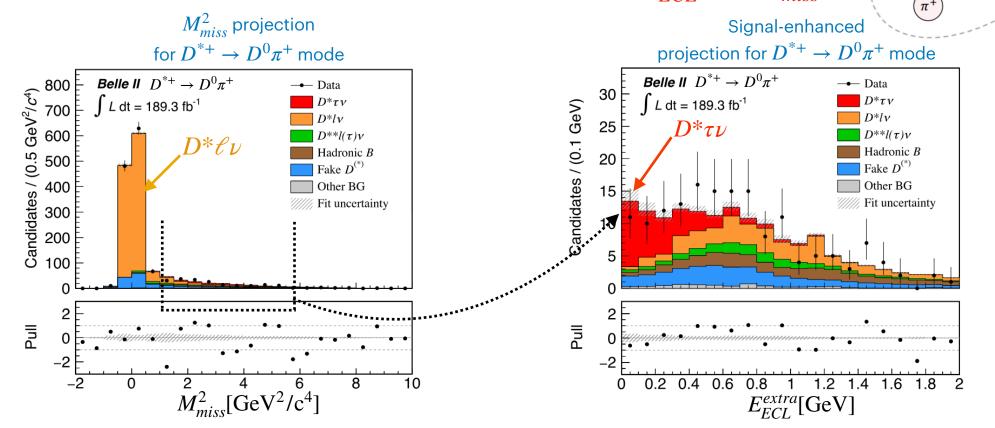
PRD 110, 072020

Signal side

Tag side

 (π_{slow}^+)

 π^+

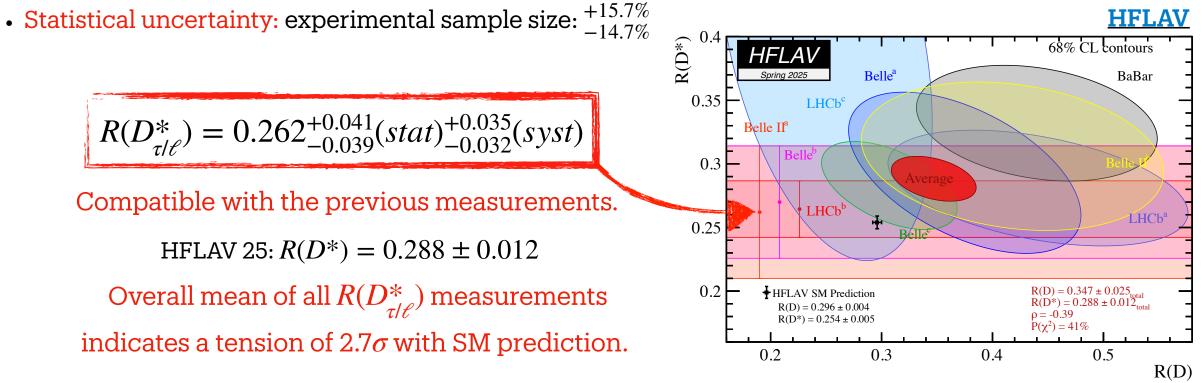

 $(K^{-\nu})$

 B^0

$R(D^*_{\tau/\ell})$ with hadronic B tagging Strategy

DESY.

- Measure $R(D^*_{\tau/\ell})$ by reconstructing $D^{*+} \to D^0 \pi^+, D^+ \pi^0$ and $D^{*0} \to D^0 \pi^0$. Identify lepton from $\tau \to \ell \bar{\nu} \nu$.
- Extract signal/normalisation yields using a 2D likelihood fit to E_{ECL}^{extra} and M_{miss}^2 .



$R(D^*_{\tau/\ell})$ with hadronic B tagging Results

• Main challenge: validate modelling of background fit templates.

Data-driven validation of background and signal model based on studies of control regions.

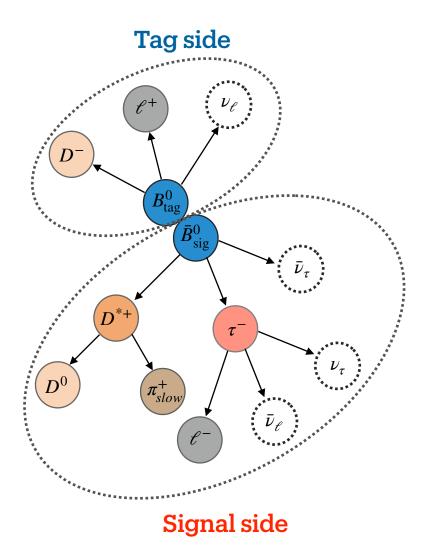
• Main sources of systematic unc.: PDF shapes: $^{+9.1\%}_{-8.3\%}$, MC statistics: $^{+7.5\%}_{-7.5\%}$, $\mathscr{B}(B \rightarrow D^{**}\ell\nu)$: $^{+4.8\%}_{-3.5\%}$

 $R(D_{\tau/\ell}) - R(D^*_{\tau/\ell})$ semileptonic *B* tagging

arXiv.2504.11220 submitted to PRD

$R(D_{\tau/\ell}) - R(D^*_{\tau/\ell})$ semileptonic B tagging Reconstruction

• First $R(D^{(*)})$ Belle II measurement using semileptonic *B* tagging.

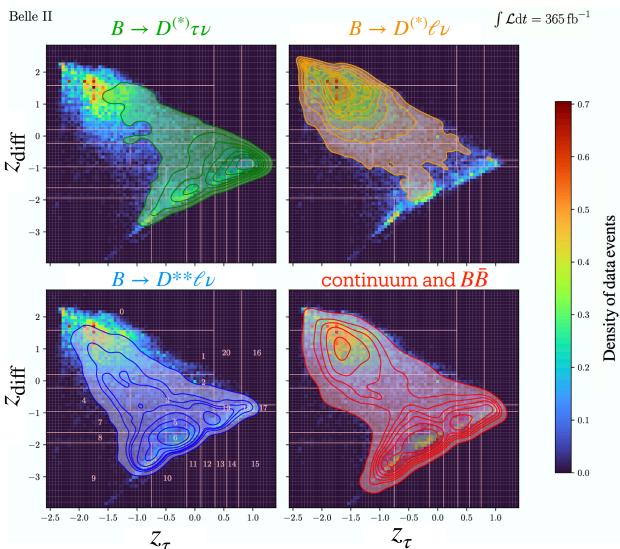

Reconstruct $B_{\text{tag}} \to D\ell \nu_{\ell}$ and $B_{\text{tag}} \to D^*\ell \nu_{\ell}$.

- Reconstruct B_{sig} candidates in $D^+\ell^-$ and $D^{*+}\ell^-$ final states not associated with the B_{tag} candidate.
- Identify signal τ decays from $\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau$.
- *D* mesons reconstructed in multiple hadronic decays on both sides:

Tag side: 26 decay modes

Signal side: 13 decay modes

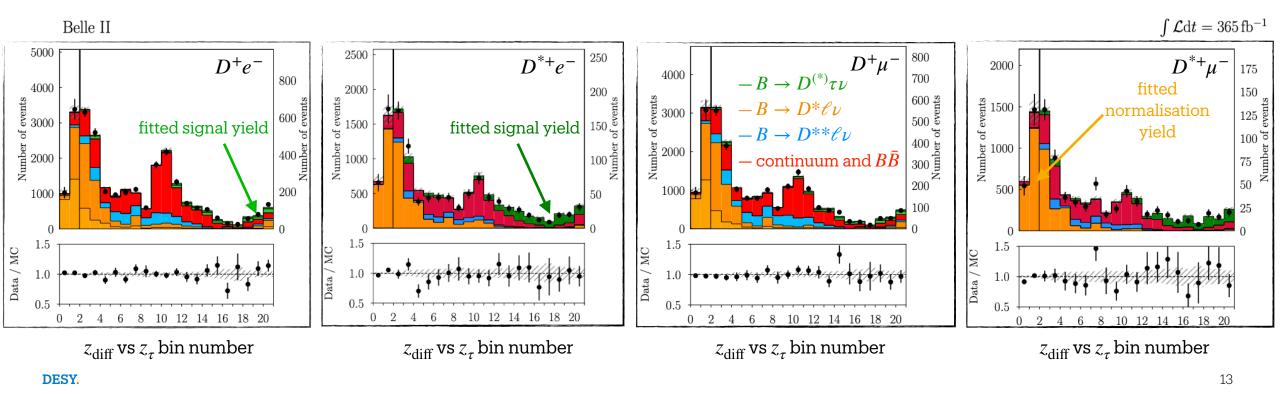
• Require $\cos \theta_{BY}^{\text{tag}} \in [-1.75, 1.1]$ and $\cos \theta_{BY}^{\text{sig}} \in [-15, 1.1]$.


arXiv.2504.11220 submitted to PRD

$R(D_{\tau/\ell}) - R(D^*_{\tau/\ell})$ semileptonic B tagging Strategy

- BDT used to separate the events in 3 different types:
 - 1. Semitauonic signal events: $B \to D^{(*)} \tau \nu$.
 - 2. Semileptonic events: $B \to D^{(*)} \ell \nu$ and $B \to D^{**} \ell \nu$.
 - 3. Background events: continuum and $B\overline{B}$.
- BDT trained on five input variables: the most

discriminating variables are $\cos \theta_{BY}$ and E_{ECL}^{extra} .


- Each event is assigned a BDT score: $z_{\tau}, z_{\ell}, z_{bkg}$. Define $z_{diff} = z_{\ell} - z_{bkg}$.

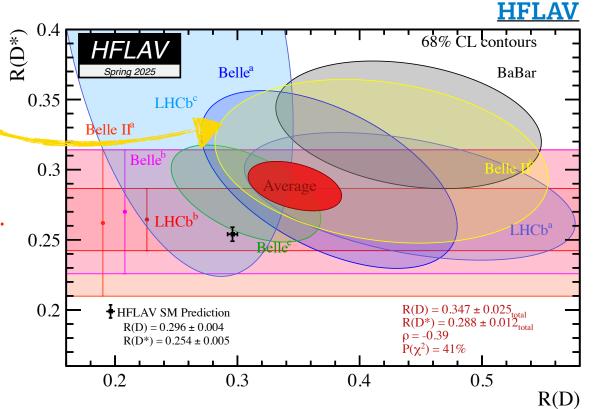
Good separation of all three event types.

$R(D_{\tau/\ell}) - R(D^*_{\tau/\ell})$ semileptonic B tagging Fit extraction

- Extract signal and normalisation yields using a 2D binned likelihood fit of z_{τ} and z_{diff} .
- The fit is performed over 4 separate channels: D^+e^- , $D^+\mu^-$, $D^{*+}e^-$, $D^{*+}\mu^-$.
- 10 fit parameters: 2 for the signal, 2 for the normalisation and 6 for the background.

14

$R(D_{\tau/\ell}) - R(D^*_{\tau/\ell})$ semileptonic B tagging Results

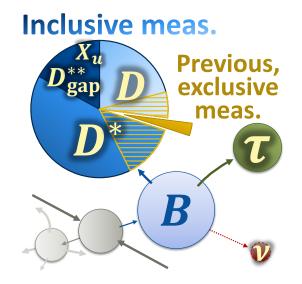

- Main sources of syst. unc. $\frac{R(D^*_{\tau/\ell})}{R(D_{\tau/\ell})}$: MC statistics: $\frac{4.7\%}{8.0\%}$, $\mathscr{B}(B \to D^{**}\ell\nu)$: $\frac{0.1\%}{6.4\%}$, Muon eff. [misID]: $\frac{0.1\%}{5.1\%}$ [$\frac{0.9\%}{2.9\%}$].
- Statistical uncertainty $\frac{R(D^*_{\tau/\ell})}{R(D_{\tau/\ell})}$: experimental sample size: $\frac{11.0\%}{18.0\%}$.

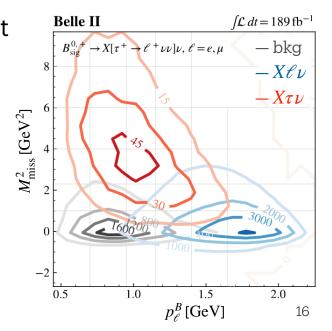
 $R(D_{\tau/\ell}^{*+}) = 0.306 \pm 0.034(stat) \pm 0.018(syst)$ $R(D_{\tau/\ell}^{+}) = 0.418 \pm 0.074(stat) \pm 0.051(syst)$

The tension between the LFU-sensitive quantities $R(D_{\tau/\ell}) - R(D^*_{\tau/\ell})$ and SM predictions increases to 3.8 σ .

$$R(D_{e/\mu}^{*+}) = 1.08 \pm 0.04(stat) \pm 0.02(syst)$$
$$R(D_{e/\mu}^{*+}) = 1.07 \pm 0.05(stat) \pm 0.02(syst)$$

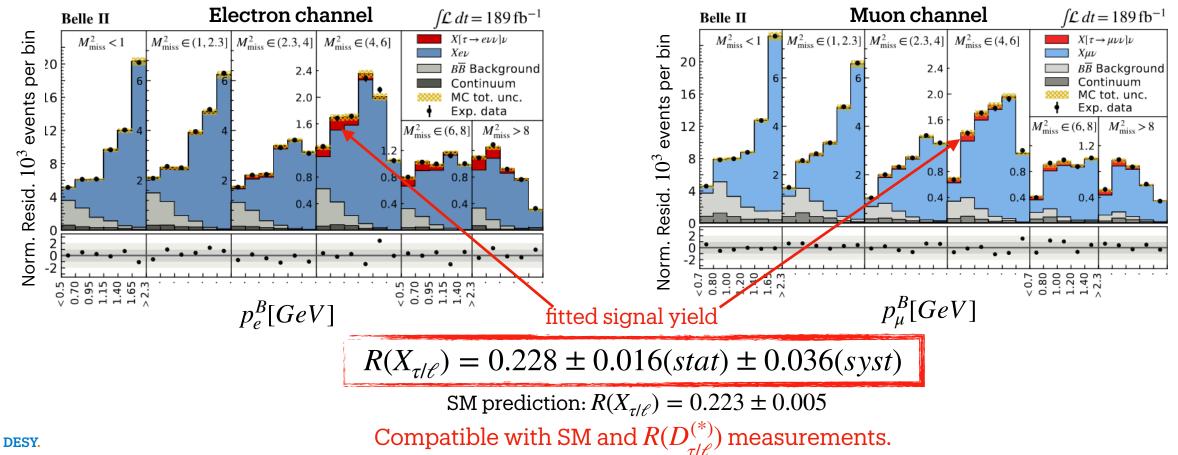
Consistent with the SM within 1.6σ – 1.2σ respectively.


$R(X_{\tau/\ell})$ with hadronic *B* tagging


$R(X_{\tau/\ell})$ with hadronic B tagging Strategy

- Measure $R(X_{\tau/\ell})$ by combining events with $B_{tag} + \ell$.
 - Remaining particles attributed to X.
- Innovative and complementary measurement w.r.t. $R(D^{(*)})$ potentially more precise with different sources of systematics.
- Extract signal and normalisation yields using a simultaneous 2D likelihood fit to lepton momentum p_l^B (*B* rest frame) and M_{miss}^2 .

 $B \rightarrow X \tau \nu$ and $B \rightarrow X \ell \nu$ well separated in the 2D plane.


• Main challenge: modelling the X system. Corrections based on comparison of simulation with control regions.

$R(X_{\tau/\ell})$ with hadronic B tagging $_{\rm Results}$

- Main sources of systematic unc.: $X_c \ell \nu M_X$ shape: 7.1%, $\mathscr{B}(B \to X \ell \nu)$:7.7%, $X_c \tau(\ell) \nu$ form factors: 7.8%
- Statistical uncertainty: experimental sample size: 7.1%

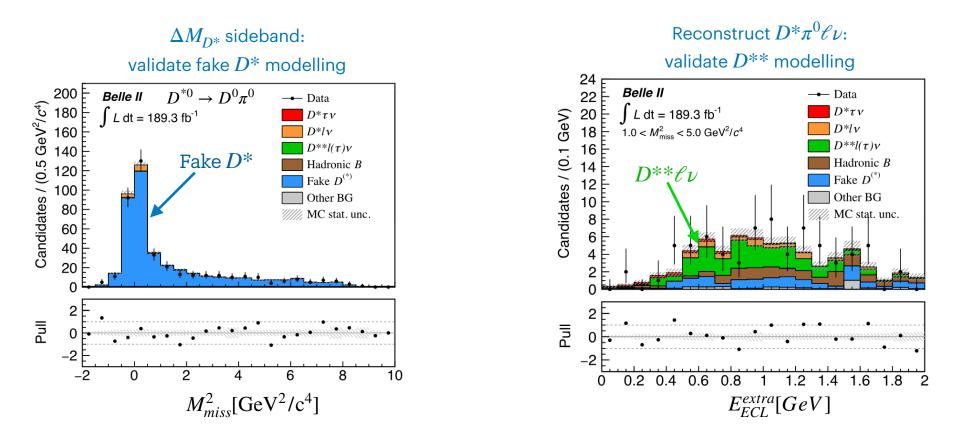
Summary

• Various Belle II measurements of the ratio between τ and ℓ' BRs in both exclusive and inclusive semileptonic *B* decay were presented in this talk: the results are compatible with the previous measurements and consistent with SM predictions.

• Including the new combined $R(D_{\tau/\ell}) - R(D^*_{\tau/\ell})$ result from Belle II using semileptonic B tagging, the

tension between the LFU-sensitive observables $R(D_{\tau/\ell}) - R(D^*_{\tau/\ell})$ and SM predictions increases to 3.8 σ .

• Many other $R(D_{\tau/\ell}^{(*)})$ measurements from Belle II are on the way: expected higher precision using the


full collected data set. Some systematic uncertainties could also be reduced with improved modelling.

Backup

$R(D^*_{\tau/\ell})$ with hadronic B tagging Modelling validation

• Main challenge: validate modelling of background fit templates.

Data-driven validation of background and signal model based on studies of control regions.

All the major sources of background are well described in the sideband regions.

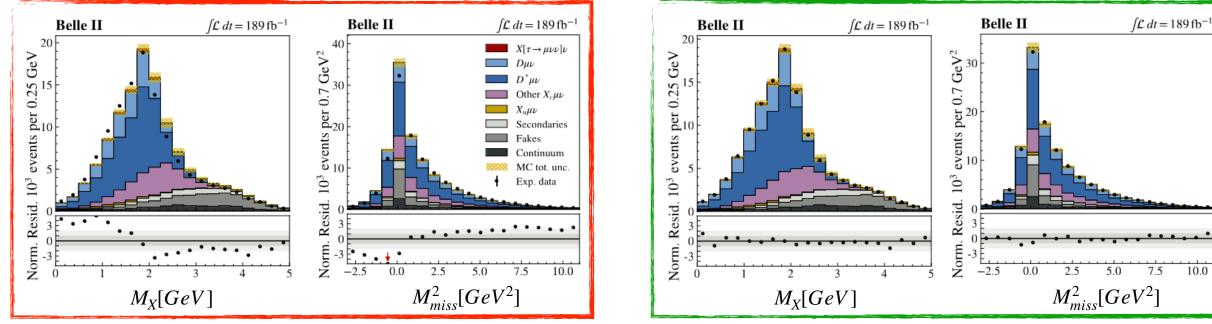
$R(D^*_{\tau/\ell})$ with hadronic B tagging Systematic uncertainties

Fractional contributions to the total uncertainty of $R(D^*_{\tau/\ell})$.

Source	Uncertainty
PDF shapes	+9.1% -8.3%
Simulation sample size	+7.5% -7.5%
$\bar{B} \to D^{**} \ell^- \bar{\nu}_{\ell}$ branching fractions	-7.5% +4.8% -3.5%
Fixed backgrounds	+2.7% -2.3%
Hadronic B decay branching fractions	+2.1% -2.1%
Reconstruction efficiency	+2.0% -2.0%
Kernel density estimation	+2.0% -0.8%
Form factors	+0.5% -0.1%
Peaking background in ΔM_{D^*}	-0.1% +0.4% -0.4%
$\tau^- \rightarrow \ell^- \nu_\tau \bar{\nu}_\ell$ branching fractions	+0.2% -0.2%
$R(D^*)$ fit method	-0.2% +0.1% -0.1%
Total systematic uncertainty	-0.1% +13.5% -12.3%

arXiv.2504.11220 submitted to PRD

$R(D_{\tau/\ell}) - R(D^*_{\tau/\ell})$ semileptonic B tagging Systematics uncertainties


Fractional contributions to the total uncertainty of $R(D_{\tau/\ell}) - R(D^*_{\tau/\ell})$.

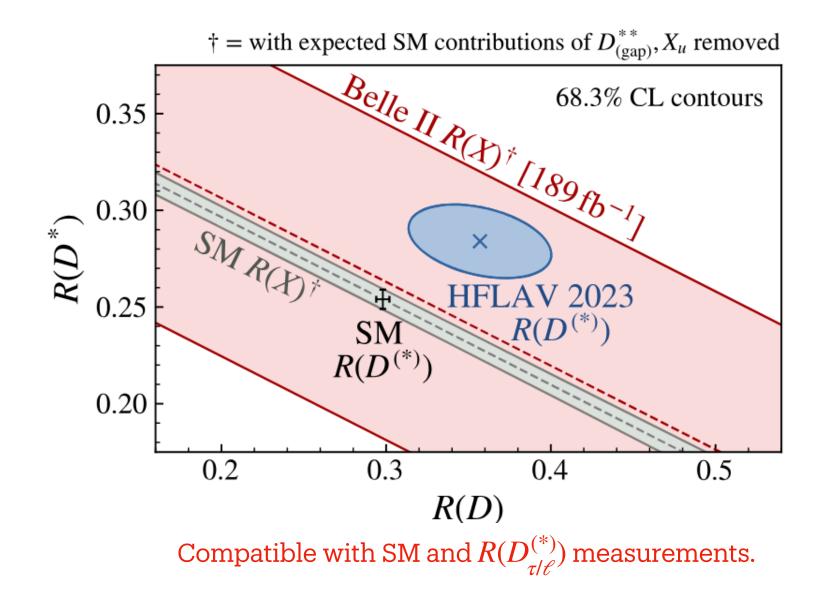
Systematic Uncertainty	$\Delta \mathcal{R}(D^+)$	$\Delta \mathcal{R}(D^{*+})$	-		
Additive			Multiplicative		
MC sample size	0.033~(8.0%)	0.014~(4.7%)	$\overline{B} ightarrow D^{(*)} \ell ar{ u}_\ell \ / \ au ar{ u}_ au \ { m FFs}$	0.009(2.1%)	0.011 (3.5%
$\operatorname{Gap} \mathcal{B}$	0.027~(6.4%)	0.001~(0.1%)	MC sample size	0.007 (1.7%)	0.004 (1.2%
LID efficiency (μ)	0.022~(5.1%)	0.001~(0.1%)	LID efficiency (e)	0.001 (0.2%)	
Fake rates (e)	0.012~(2.9%)	0.003~(0.9%)	$\mathcal{B}(au^- o \ell^- \overline{ u}_\ell u_ au)$	0.001 (0.2%)	
$\pi^{\pm} \text{ from } D^* \to D\pi$	0.003~(0.7%)	0.001~(0.1%)	LID efficiency (μ)	0.001 (0.1%)	
Continuum fraction	0.002~(0.6%)	0.001~(0.2%)	Tracking efficiency	0.001 (0.1%)	
$\overline{B} ightarrow D^{(*)} \ell ar{ u}_\ell \ / \ au ar{ u}_ au \ { m FFs}$	0.002~(0.5%)	0.002~(0.7%)	π^{\pm} from $D^* \to D\pi$		
Gap FFs	0.002~(0.5%)	0.001~(0.2%)		- (-)	0.001 (0.2%)
$\mathcal{B}(\overline{B} o D^{**} \ell \bar{\nu}_{\ell})$	0.002~(0.5%)	$0.001 \ (0.1\%)$	Total Multiplicative Uncertainty	0.012~(2.8%)	0.011 (3.7%
$\overline{B} \to D^{**} \ell \bar{\nu}_{\ell}$ FFs	0.001 (0.3%)	0.001 (0.2%)	Total Syst. Uncertainty	0.051~(12%)	0.018~(6.2%
BDT modeling	0.001~(0.3%)	0.001~(0.2%)	Total Stat. Uncertainty	0.074 (18%)	0.034 (11%)
LID efficiency (e)	0.001~(0.1%)	0.001~(0.2%)	Total Uncertainty	0.090 (22%)	0.039 (13%)
Fake rates (μ)	0.001~(0.1%)	0.001~(0.1%)			(-370)
Total Additive Uncertainty	0.050~(12%)	0.015 (4.8%)			

$R(X_{\tau/\ell})$ with hadronic B tagging Modelling validation

• Main challenge: modelling the X system. Detailed adjustments to simulation: form factors, B and D

branching fractions. Corrections based on comparison of simulation with control regions.

before M_X reweighting



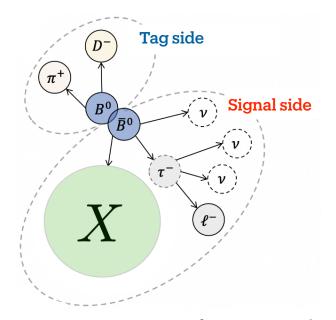
$R(X_{\tau/\ell})$ with hadronic B tagging Systematics uncertainties

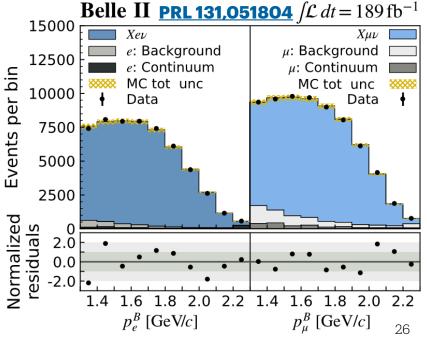
Relative uncertainties on the value of $R(X_{\tau/\ell})$ for electrons, muons and their combination (ℓ).

	Uncertainty [%]			
Source	e	μ	l	
Experimental sample size	8.8	12.0	7.1	
Simulation sample size	6.7	10.6	5.7	
Tracking efficiency	2.9	3.3	3.0	
Lepton identification	2.8	5.2	2.4	
$X_c \ell \nu$ reweighting	7.3	6.8	7.1	
$B\bar{B}$ background reweighting	5.8	11.5	5.7	
$X\ell\nu$ branching fractions	7.0	10.0	7.7	
$X\tau\nu$ branching fractions	1.0	1.0	1.0	
$X_c \tau(\ell) \nu$ form factors	7.4	8.9	7.8	
Total	18.1	25.6	17.3	

$R(X_{\tau/\ell})$ with hadronic B tagging Results

$R(X_{e/\mu})$ with hadronic B tagging $_{\rm Results}$


• Goal: measure
$$R(X_{e/\mu}) = \frac{\mathscr{B}(B \to Xe\nu_e)}{\mathscr{B}(B \to X\mu\nu_{\mu})}.$$


The most precise test of $e - \mu$ universality in semileptonic *B* decays.

- Extract signal with simultaneous maximum-likelihood templates fits to p_e^B and p_μ^B spectra.
- Main challenge: modelling $X\ell\nu$, fake leptons and secondaries. Use a sideband to validate these components.
- Main source of systematic unc.: lepton e/μ identification (1.9%)

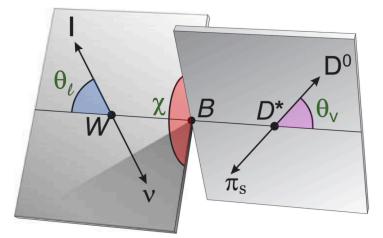
 $R_{e/\mu}(X) = 1.007 \pm 0.009(stat) \pm 0.019(syst)$

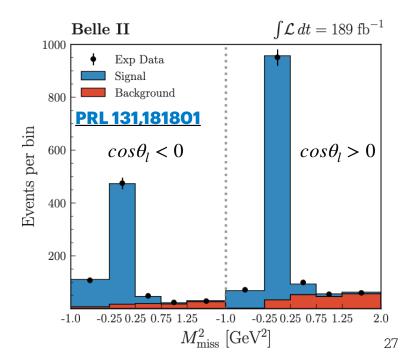
Compatible with SM and previous measurements.

Angular analysis

Basics

 $B \to D^* \ell \nu$ decay: rich phenomenology due to different decay amplitudes. Encoded in angular distributions as a function of the recoil energy w of the D^* .


Comparing angular observables between muons and electrons gives powerful LFU tests.


Experimentally:

1. Reconstruct the distributions by measuring signal yields in bins of (combinations of) angular variables.

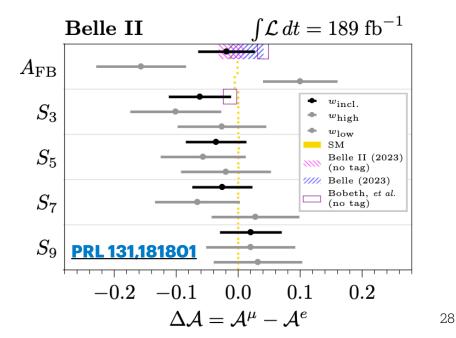
2. Signal/background separation by fitting M_{miss}^2 .

3. Correct for detector acceptance, reconstruction efficiencies and resolution effects using simulation.

$B \rightarrow D^* \ell \nu$ angular asymmetries

Results

Measure 5 angular asymmetries and compare them for e and μ in 2 bins of the recoil energy w:


- A_{FB} : tendency of the lepton to travel along the W direction.
- S_3, S_9 : sensitive to alignment of lepton and D^* direction.
- S_5, S_7 : measure coupled alignments in the orientation of the D with respect to the D^* .

Reconstruct D meson in different modes:

 $D \rightarrow K(n)\pi$ and $D \rightarrow KK$.

All asymmetry measurements are statistics limited.

Compatible with SM, no evidence for LFU violation.

