Radiative Rare b-Hadron Decays at LHCb

and agence nationale de la recherche

On behalf of LHCb collaboration

Chandiprasad Kar LPC, University Clermont Auvergne 11 July, 2025

> **EPS-HEP 2025** 07-11 July, 2025 Marseille, France

Chandiprasad.kar@cern.ch

- neutral currents
- at loop level electroweak decays our violating decays ic decays

 W^{-}

 u_{μ}

LHCb experiment

- Designed for the study of b and c hadrons
- Forward arm spectrometer with unique coverage in pseudorapidity (2 < η < 5)
- Excellent vertex resolution
 - $\sigma_{IP} = 20 \ \mu m$
- Excellent momentum resolution
 - $\Delta p/p = 0.5\% 1.0\% (5 200 \ GeV/c)$
- Good photon energy resolution

 $\sigma(E)/E = 1\% + 10\%/\sqrt{E}$

- Efficient particle identification
 - $\epsilon(K \to K) \sim 95\%$ for $\epsilon(\pi \to K) \sim 5\%$
 - $\epsilon(e) \sim 90\%$ for $\epsilon(h \rightarrow e) \sim 5\%$
 - $\epsilon(\mu) \sim 98\%$ for $\epsilon(\pi \rightarrow \mu) \sim 1 3\%$

4

Selected results from radiative decays

<u>Other recent results not covered today</u>

• Search for $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decays [JHEP 07 (2024) 101] • Amplitude analysis of $\Lambda_b^0 \rightarrow p K^- \gamma$ decay [JHEP 06 (2024) 098]

- First observed by Belle and BaBar [PRL 101 (2008) 111801, PRD78 (2008)112001]
 - Latest PDG average, combining BaBar and Belle measurements, is $(8.6 \pm 1.5) \times 10^{-7}$ [PDG]
- Recent result combining Belle and Belle II data [PhysRevD.111.L071103]

- Using Run 1+ 2 LHCb data (9 fb^{-1})

6

Ratio of branching fraction

$$\frac{\mathcal{B}(B^0 \to \rho^0 \gamma)}{\mathcal{B}(B^0 \to K^{*0} \gamma)} = \frac{N(B^0 \to \rho^0 (\pi N))}{N(B^0 \to K^{*0} (\pi N))}$$

Yields: simultaneous unbinned maximum-likelihood fit to B invariant mass

- Mass window selections
 - $m_{\pi\pi} \in [630,920]$ MeV/c², $m_{K\pi} \in [795.5,995.5]$ MeV/c² (related efficiencies are accounted for)
- Charm veto $m_{\pi\gamma\to\pi^0} > 2000 \text{ MeV/c}^2$
- Combinatorial background suppressed by a BDT which uses kinematic and isolation variables
- PID criteria (charged and neutral) optimized with respect to the specific backgrounds
- MC/data differences corrected thanks to kinematic weighting and PID calibration samples

			$B^{0} -$
		$B^0 \to K^+ \pi^- \pi^0$	
	$B^0 \to \rho^0 \gamma(\%)$	$B^0 \to K^* \eta$	
$B^0 \to K^* \gamma$	11	$B^0_s \to K^{*0}\gamma$	
$B^0 \to \rho^0 (\pi^+ \pi^-) \pi^0$	12	$\Lambda_b^0 \to p K^- \gamma$	
$B_s^0 \to \phi(\pi^+\pi^-\pi^0)\gamma$	13	$B_s^0 \to \phi \gamma$	
$B^0 \to K^+ \pi^- \pi^0$	0.4		
$B^0 \to \rho^0 \eta$	0.9		

- $B^0 \rightarrow K^{*0} \gamma$ yield

• The ratio of branching fraction is measured as

$$\frac{\mathcal{B}(B^0 \to \rho^0 \gamma)}{\mathcal{B}(B^0 \to K^{*0} \gamma)} = 0.0189 \pm 0.0007$$

• Combining with the known $B^0 \to K^{*0}\gamma$ branching fraction from <u>HFLAV</u>, this gives

$$\mathcal{B}(B^0 \to \rho^0 \gamma) = (7.9 \pm 0.3 \pm 0.2 \pm 0.2) \times$$

The first uncertainty is statistical, the second systematic and the last one is due to the uncertainty $B^0 \to K^{*0}\gamma$ branching fraction

• Assuming $\rho^0 \to \pi^+ \pi^-$ decay saturates the dipion spectrum in the $m_{\pi\pi}$ range used ($m_{\pi\pi} \in [630, 920]$ MeV/c²)

LHCb-PAPER-2025-017 In preparation

 10^{-7} ,

Systemati	cs: Yield ratio	0	Source	Unce
	Uncertainty [%]	rat	Simulated samples size	(+0
nass model	(+0.5, -0.6)	\geq	Kinematics corrections	(+1
und contributions	(+20, 22)	20	Kaon/pion reconstruction	(+0)
und contributions	(+2.0, -2.2)	G	Charged PID	(+0)
und mass models	(+1.1, -0.8)	Ö	Neutral PID	(+0)
stematic uncertainty	(+2.3, -2.4)	E E	Total systematic uncertainty	(+1
Č				

ta	inty [%]
8,	-0.8)
1,	-0.2)
3,	-0.3)
7,	-1.3)
1,	-0.1)
6,	-1.6)

Angular analysis of $B_s^0 \rightarrow \phi e^+ e^-$ decays

 10^{-6} ull Run 1+ 2 LHCb statistics (9 fb⁻¹)

- First angular analysis of this decay mode at LHCb
- Cover a $\sqrt{egg}/\sqrt{2}$ range [0.0009, 0.2615] GeV²/ $c^4 \rightarrow s[\gamma^* \rightarrow \ell^+ \ell^-]$

 $\Gamma(b$

• Untagged, time-integrated, CP-averaged angular differential rate $\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_L \mathrm{d}\cos\theta_K \mathrm{d}\tilde{\varphi}} = \frac{9}{32\pi} \left\{ \frac{3}{4} \left(1 - F_L \right) \sin \theta_K \mathrm{d}\tilde{\varphi} \right\}$ $+ \left[\frac{1}{4} (1 - F_L) \sin^2 \theta_K + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2 \theta_K$ $+(1-F_L)A_T^{\mathcal{R}eCP}\sin^2$ $+\frac{1}{2}\left(1-F_L\right)A_T^{\mathcal{I}mCP}\sin$

Chandiprasad.kar@cern.ch

$$n^{2} \theta_{K} + F_{L} \cos^{2} \theta_{K} - F_{L} \cos^{2} \theta_{K} \bigg] \cos 2\theta_{L} \theta_{K} \sin^{2} \theta_{L} \cos 2\tilde{\varphi} \theta_{K} \cos \theta_{L} n^{2} \theta_{K} \sin^{2} \theta_{L} \sin 2\tilde{\varphi} \bigg\} .$$

 F_L : Longitudinal polarisation of ϕ meson A_T^{ReCP} : related to the forward-backward asymmetry $A_T^{(2)}$ and A_T^{ImCP} are sensitive to photon polarisation $A_T^{(2)}(q^2 \to 0) = \frac{2Re(C_7 C_7^{\prime*})}{|C_7|^2 + C_7^{\prime}|_{**}^2} + \Delta_1^2,$ $A_T^{ImCP}(q^2 \to 0) = \frac{2Im(C_7 C_7^{\prime*})}{|C_7|^2 + C_7^{\prime}|^2} + \Delta_2^2,$ Δ_i due to Δm_s and $\Delta \Gamma_s$

Angular analysis of $B_s^0 \rightarrow \phi e^+ e^-$ decays

- Backgrounds are dominated by the combinatorial background, suppressed by BDT
- The radiative $B_s^0 \rightarrow \phi(KK)\gamma$ decay with converted photon ($m_{ee} < 10 \text{ MeV}/c^2$) is used as control channel:

• $F_L[\phi\gamma_{\to e^+e^-}] = -0.01 \pm 0.02$ (stat): agrees well with a purely transverse polarisation of the ϕ meson, indicative of a real photon interaction

JHEP 03 (2025) 047

Angular analysis of $B_s^0 \rightarrow \phi e^+ e^-$ decays

The results are compatible with the SM predictions.

Radiative Rare b-Hadron Decays at LHCb

JHEP 03 (2025) 047

Amplitude analysis of $B_s^0 \to K^+ K^- \gamma$ decays

- ²/N • First observation by Belle (PRD 91 0111(
- First precise measurement of BR by LHC [Nuc. Phy. Sec. B 867 (2013), pp. 1-18]
- First amplitude analysis of this decay per
- Combinatorial and partial reco. backgrou
 - Clear structure around 1500 MeV/c², ¿

M 0

Candidates

0.6

0.2

6000 $m_{KK\gamma}$ [MeV/ c^2] JHEP 08 (2024) 093

Amplitude analysis of $B_s^0 \rightarrow K^+ K^- \gamma$ decays

Amplitude analysis of $B_s^0 \to K^+ K^- \gamma$ decays

- Fit fractions and overall tensor contributions are extracted from the best fit
- Full results in backup, one has concerning tensors

$$\frac{\mathcal{B}(B_s^0 \to f_2(1270)\gamma)}{\mathcal{B}(B_s^0 \to \phi(1020)\gamma)} = 0.25^{+0.09}_{-0.07} \text{ (stat.)}^{+0.06}_{-0.10} \text{ (syst.)} \pm 0.03$$
$$\frac{\mathcal{B}(B_s^0 \to f_2'(1525)\gamma)}{\mathcal{B}(B_s^0 \to \phi(1020)\gamma)} = 0.194^{+0.009}_{-0.008} \text{ (stat.)}^{+0.014}_{-0.005} \text{ (syst.)} \pm 0.005$$

$$\mathcal{F}_{\{f_2\}} = 16.8 \pm 0.5 \,(\text{stat}) \pm 0.7 \,(\text{syst})\%,$$

- First observation of the $B_s^0 \rightarrow f_2'(1525)\gamma$
- Mass and width of $\phi(1020)$ and $f_{2}^{'}(1525)$ are in agreement with world averages

JHEP 08 (2024) 093

15

Outlook and conclusions

- Radiative decay offers a unique environment to look for BSM physics
- LHCb pushing limits towards unprecedented levels
- Today's presentation covers
 - Branching fraction measurement of $B^0
 ightarrow
 ho^0 \gamma$ (New) Preliminary
 - Constraint on photon polarisation in $b \to s\gamma$ using $B_s^0 \to \phi e^+ e^-$
 - Amplitude analysis of $B_s^0 \to K^+ K^- \gamma$
- More results from Run 1 and 2 data are expected soon
- Run 3 data taking is currently ongoing
 - > 9 fb⁻¹ data collected in 2024 and already > 2.2 fb⁻¹ in 2025
 - Upgraded detector and trigger system (fully software base) enhance signal efficiency
 - Open the door to new searches (rarer modes, use of converted photons, time dependent analyses)

Thank you for your attention

Backup

Amplitude analysis of $B_s^0 \to K^+ K^- \gamma$ decays

• Full result from amplitude analysis

State	Fit fraction [%]	Relative fit fraction [%]	Phase [deg.]
$\phi(1020)$	$\left \begin{array}{ccc} 70.3 \begin{array}{c} +0.9 \\ -1.0 \end{array} \begin{array}{c} +1.0 \\ -1.2 \end{array}\right.$	100	0 (fixed)
$f_2(1270)$	$0.8 \pm 0.3 \ ^{+0.2}_{-0.3}$	$1.2 \ {}^{+0.4}_{-0.3} \ {}^{+0.3}_{-0.5}$	$-55 \ ^{+13}_{-17} \ ^{+25}_{-17}$
$f_2'(1525)$	$12.1 \begin{array}{c} +0.6 \\ -0.5 \end{array} \begin{array}{c} +0.9 \\ -0.4 \end{array}$	$17.3 \ {}^{+0.8}_{-0.7} \ {}^{+1.3}_{-0.5}$	0 (fixed)
$\phi(1680)$	$3.8 \ ^{+0.6}_{-0.5} \ \pm 0.7$	$5.4 \ {}^{+0.9}_{-0.6} \ {}^{+1.0}_{-1.1}$	$137 \; {}^{+5}_{-6} \pm 8$
$\phi_{3}(1850)$	$0.3 \begin{array}{c} +0.2 \\ -0.1 \end{array} \begin{array}{c} +0.2 \\ -0.1 \end{array}$	$0.4 \ {}^{+0.3}_{-0.2} \ {}^{+0.3}_{-0.2}$	$-61 {}^{+16}_{-13} {}^{+13}_{-12}$
$f_2(2010)$	$0.4 \pm 0.2 \ ^{+0.2}_{-0.1}$	$0.6 \ {}^{+0.3}_{-0.2} \ {}^{+0.3}_{-0.2}$	$43 \begin{array}{c} +30 \\ -24 \end{array} \begin{array}{c} +52 \\ -59 \end{array}$
$(KK)_{NR}$	$\left \begin{array}{ccc} 0.5 \ +0.4 \ +0.3 \\ -0.2 \ -0.2 \end{array}\right.$	$0.6 \ {}^{+0.5}_{-0.3} \ {}^{+0.5}_{-0.3}$	$165 \ ^{+6}_{-16} \ \pm 9$

