

### Mixing and CP violation in charm decays at LHCb

### Giovanni Punzi, Pisa On behalf of the LHCb collaboration





EPS -HEP Conference July 6-11, 2025

### Current Experimental knowledge

- Charm is the only up-type quark with observable mixing and CPV effects. Unique window into fundamental physics, possible path to new dynamics
- · Experimentally more difficult than bottom and strange quarks
  - Smaller effects, requires large statistics and tight control of systematics.

Charm Only

195

190

185

5.82

5.84

Beauty and Charm

- First evidence of charm mixing in 2007, first CPV observation in 2019
  - Mixing parameters known at 10% level
  - Single observation of CPV in decay:  $\Delta A_{CP}(K^+K^- \pi^+\pi^-)$  PRL 122, 211803

LHCb-CONF-2024-004

LHCŀ

 $\delta^D_{K\pi} = (11.6^{+2.5}_{-2.4})$ 

5.88

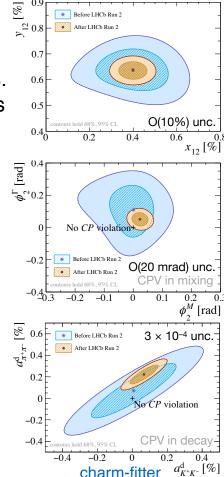
5.86

- Known at ~20%
- No CPV yet seen in I <sup>□</sup><sup>210</sup>
  - Phase measurec +
- A lot to measure and dis

LHCb ideally suited for the - has been the leading (

CPV and mixing in Charm at LHCb

 $> 4\sigma$  evidence for


 $\frac{A(D^0 \to K^+ \pi^-)}{2} \approx - r_D^{K\pi} e^{-i\delta_D^{K\pi}}$ 

wledge (see plots)

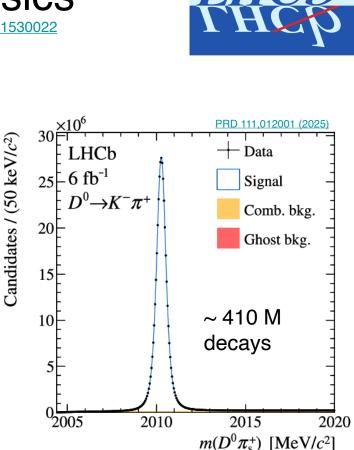
U-spin breaking

in the phase

 $A(\bar{D}^0 \rightarrow K^+\pi^-)$ 

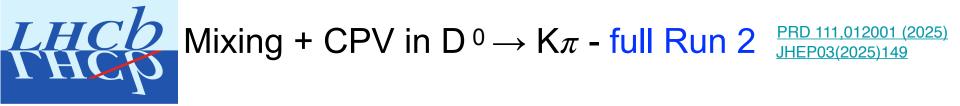


Giovanni Punzi - Pisa


EPS 2025

### LHCb features for charm physics

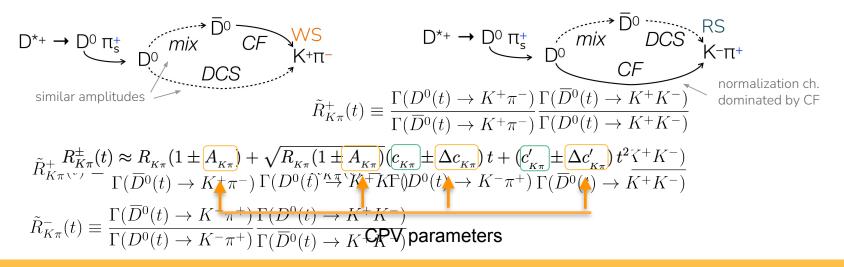
Int.J.Mod.Phys.A 30 (2015) 07, 1530022


#### A heavy-flavor targeted experiment at the LHC

- Huge production  $\sigma(pp \rightarrow charm X) \times L_{inst}$  (Run 2) ~1 MHz
- Forward geometry covers large acceptance in small area
- Focus on tracking
  - Mass and vertexing resolution
  - disentangle signal from background
  - Measure decay times
- High-performance particle identification
   → separate and distinguish decay modes
- Complex trigger capability, focused on detailed tracking
- → O(Billion) cleanly reconstructed charm decays



EPS 2025

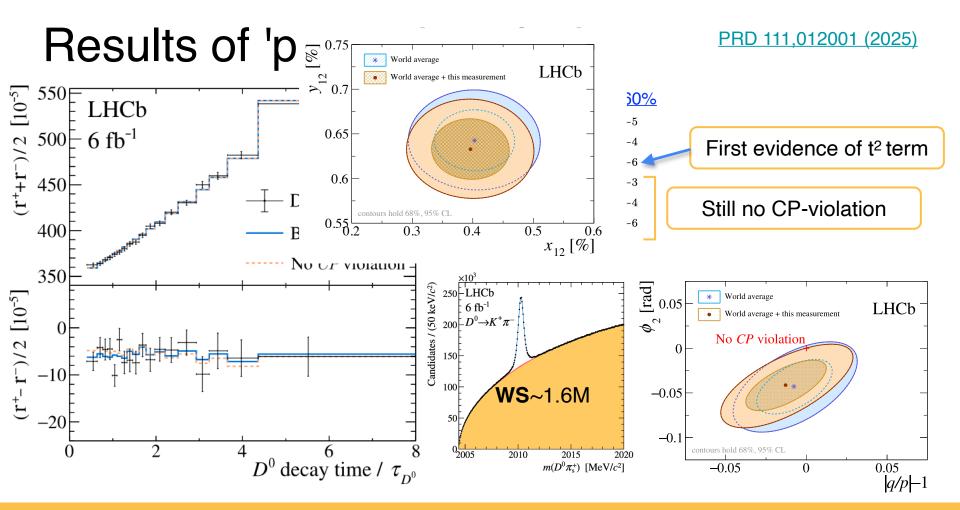

Giovanni Punzi - Pisa



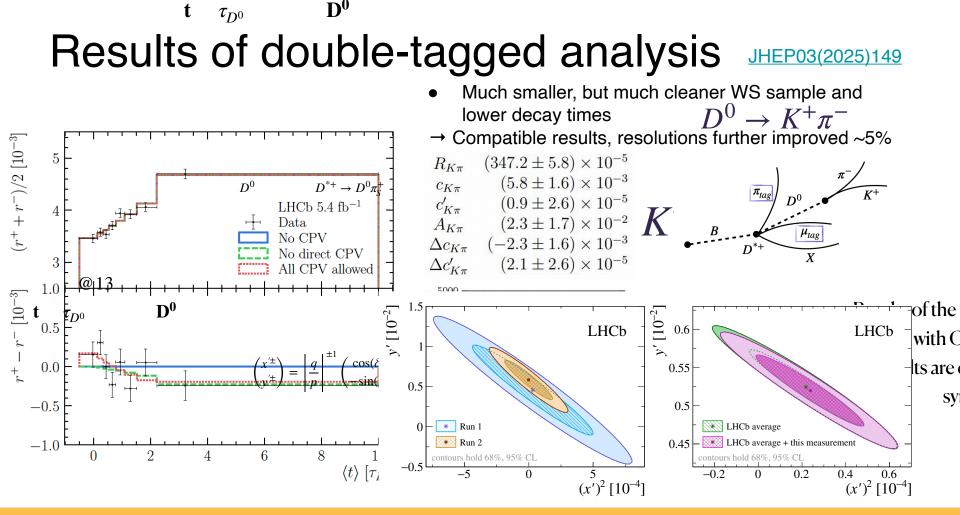
Measure ratio between:

- $D^{*+} \rightarrow D^{0} (\rightarrow K^{+}\pi^{-})\pi^{+} \rightarrow \text{Wrong Sign (WS)}$
- $D^{*+} \rightarrow D^{0} (\rightarrow K^{-}\pi^{+})\pi^{+} \rightarrow \text{Right Sign (RS)}$

$$R_{K\pi}^{+}(t) \equiv \frac{\Gamma(D^{0}(t) \to K^{+}\pi^{-})}{\Gamma(\overline{D}^{0}(t) \to K^{+}\pi^{-})} \qquad R_{K\pi}^{-}(t) \equiv \frac{\Gamma(\overline{D}^{0}(t) \to K^{-}\pi^{+})}{\Gamma(D^{0}(t) \to K^{-}\pi^{+})}$$




Giovanni Punzi - Pisa

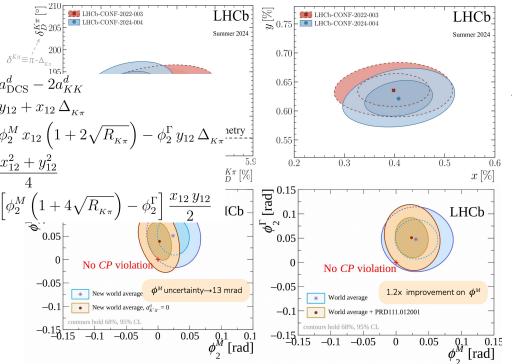

CPV and mixing in Charm at LHCb

4

**EPS 2025** 



Giovanni Punzi - Pisa




Giovanni Punzi - Pisa

CPV and mixing in Charm at LHCb

EPS 2025

### Impact on charm mixing/CPV parameters

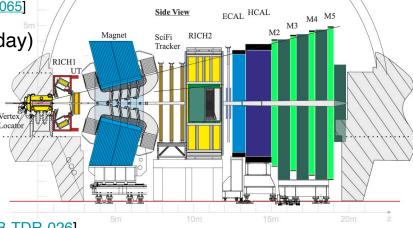


Overall fit to extract physics parameters from experimental observables [charm-fitter]

#### Mixing:

<u>C</u>

$$egin{aligned} & c_{_{K\pi}} \simeq y_{12}\cos\phi^{\Gamma}_{_{K\pi}}\cos\delta_{_{K\pi}} - x_{12}\cos\phi^{M}_{_{K\pi}}\sin\delta_{_{K\pi}} \ & c_{_{K\pi}}' \simeq rac{1}{4}\left(x_{12}^2+y_{12}^2
ight) \end{aligned}$$


$$\begin{array}{l} \begin{array}{l} \overset{\mathsf{PV:}}{\mathcal{A}_{K\pi}} = a^d_{WS} + a^d_{RS} \\ \Delta c_{_{K\pi}} \simeq x_{12} \phi^M_{_{K\pi}} \cos \delta_{_{K\pi}} + y_{12} \phi^\Gamma_{_{K\pi}} \sin \delta_{_{K\pi}} \\ \Delta c'_{_{K\pi}} \simeq \frac{1}{2} x_{12} y_{12} (\phi^M_{_{K\pi}} - \phi^\Gamma_{_{K\pi}}) \end{array}$$

\*Strong phase  $\delta_{K\pi}$  takes advantage of external inputs <u>LHCb-CONF-2024-004</u>(LHCb internal combination, most precise) <u>PRD 86, 112001</u> <u>EPJC 82, 1009</u> <u>https://arxiv.org/abs/2506.07906</u> <u>https://arxiv.org/abs/2506.07907</u>

#### Giovanni Punzi - Pisa

# The LHCb Upgrades (I & II)

- LHCb THCp
- Facts proved the LHCb approach was right: precision tracking, PID, smart trigger, large B/W
  - But it is necessary to walk that path further to achieve the desirable precision on charm
- LHCb has been fully rebuilt for Run 3 (x5 Lumi) [JINST 19, P05065]
  - All-new tracking/PID (see talk by <u>G. Cavallero</u> later today)
  - Full reconstruction of every LHC collision @30MHz
    - Allows smarter selections using full information
    - See talk by <u>D. Von Bruch</u> yesterday



- Even more advances planned for U2 (Run 5, L ~10<sup>34</sup>) [LHCB-TDR-026]
  - High granularity, hit timing, mostly-silicon tracker, upgraded PID...
  - Largest DAQ dataflow in HEP (~200Tb/s)

### HCb's Long-term aims in charm CPV/mix

Charm mixing&CPV prominently appear in LHCb future program Indut to E\$PPU #8 "Discovery potential of LHCb Upgrade II" 0s 24590x gtadayia030ee0990a050s A long-term physics legacy ! [Flavour WG report, Venice, 23/6/25]  $\sigma(\phi)$  [°] 101 ESPP26 LHC:  $\Delta x$ preliminary LHC:  $\Delta x + A\Gamma$  $6 \times 10^{12} Z^0$  $10^{0}$  $2 \times 10^{12} Z^0$ Belle II STCF 5/ab  $10^{-1}$ 

today 2030s 2040s 2050

Giovanni Punzi - Pisa

LHC: Δx

| Observable                                                                | Current LHCb        | Upgrade I            |                      | Upgrade II           |
|---------------------------------------------------------------------------|---------------------|----------------------|----------------------|----------------------|
|                                                                           | $(up to 9 fb^{-1})$ | $(23{\rm fb}^{-1})$  | $(50{\rm fb}^{-1})$  | $(300{\rm fb}^{-1})$ |
| <u>CKM tests</u>                                                          |                     |                      |                      |                      |
| $\gamma \ (B \to DK, \ etc.)$                                             | $2.8^{\circ}$       | $1.3^{\circ}$        | $0.8^{\circ}$        | $0.3^{\circ}$        |
| $\phi_s \ \left( B^0_s  ightarrow J\!/\!\psi \phi  ight)$                 | $20\mathrm{mrad}$   | $12\mathrm{mrad}$    | $8\mathrm{mrad}$     | $3\mathrm{mrad}$     |
| $ V_{ub} / V_{cb}  \ (\Lambda_b^0 \to p\mu^- \overline{\nu}_\mu, \ etc.)$ | 6%                  | 3%                   | 2%                   | 1%                   |
| <u>Charm</u>                                                              |                     |                      |                      |                      |
| $\Delta A_{CP} \ (D^0 \to K^+ K^-, \pi^+ \pi^-)$                          | $29 \times 10^{-5}$ | $13 \times 10^{-5}$  | $8 \times 10^{-5}$   | $3.3 \times 10^{-5}$ |
| $A_{\Gamma} \ (D^0 \to K^+ K^-, \pi^+ \pi^-)$                             | $11 \times 10^{-5}$ | $5 \times 10^{-5}$   | $3.2 \times 10^{-5}$ | $1.2 \times 10^{-5}$ |
| $\Delta x \ (D^0 \to K^0_{\rm S} \pi^+ \pi^-)$                            | $18 \times 10^{-5}$ | $6.3 \times 10^{-5}$ | $4.1 \times 10^{-5}$ | $1.6 \times 10^{-5}$ |
| Rare decays                                                               |                     |                      |                      |                      |
| $\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$   | ) 69%               | 41%                  | 27%                  | 11%                  |
| $S_{\mu\mu} \ (B_s^0 \to \mu^+ \mu^-)$                                    |                     |                      |                      | 0.2                  |
| $A_{\rm T}^{(2)} \ (B^0 \to K^{*0} e^+ e^-)$                              | 0.10                | 0.060                | 0.043                | 0.016                |
| $S_{\phi\gamma}(B_s^0 \to \phi\gamma)$                                    | 0.32                | 0.093                | 0.062                | 0.025                |
| $\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$                         | $^{+0.17}_{-0.29}$  | 0.148                | 0.097                | 0.038                |

#### An ambitious goal. Today a first step towards it

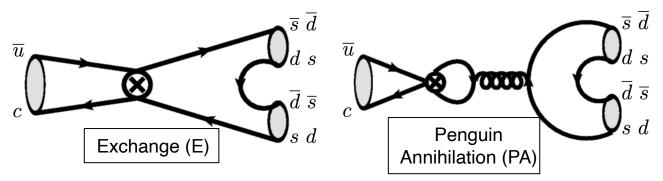


**FPS 2025** 

10

### Today's feature: First CPV measurement with the Upgraded LHCb

(first LHCb result with 2024 data)


Paper in preparation: LHCB-PAPER-2025-036

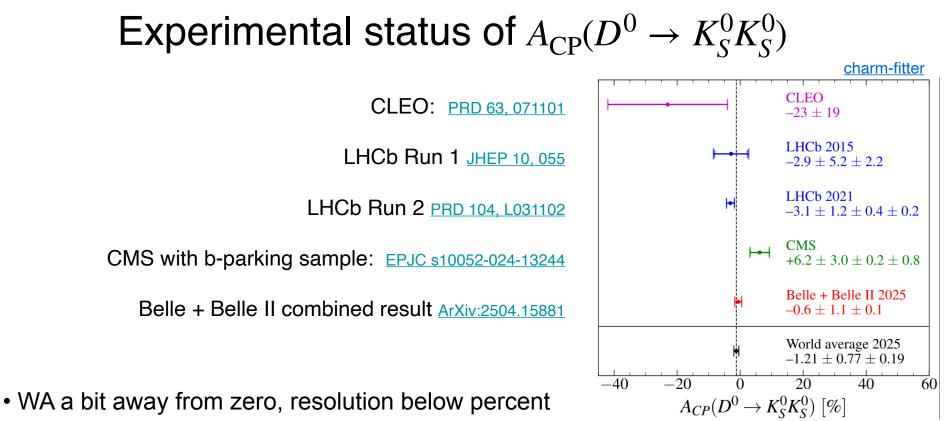
Giovanni Punzi - Pisa

 $A_{\rm CP}(D^0 \to K^0_{\rm S} K^0_{\rm S})$ 

•  $D^0 \rightarrow K^0_S K^0_S$  is another 2-body decay into pseudo-scalar particles, just as  $D^0 \rightarrow K^+ K^-$  and  $D^0 \rightarrow \pi^+ \pi^-$ • Interesting to look for another possibly non-zero ACP parameter, additional to  $\Delta A_{CP}(K^+ K^- - \pi^+ \pi^-)$ 

• Similarity is only on the surface: it is sensitive to a different set of fundamental processes, being dominated by Penguin-Annihilation and Exchange PRD 92 (2015) 054036 PRD 92 (2015) 014004




- Smaller BR (vanishes in SU(3)<sub>F</sub> limit) but  $A_{CP}$  might be enhanced, potentially up to O(1%)
- Conversely, some theory fits to data constrain the E contribution and predict small  $A_{\rm CP} \simeq 0.35 \cdot A_{\rm CP}(\pi^+\pi^-)$  (PRD 99(2019)113001).

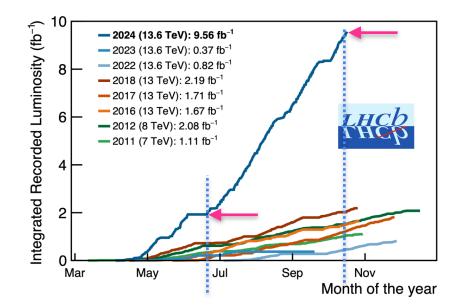
#### Interesting to see what picture emerges, and how well it fits with SM.

Giovanni Punzi - Pisa

CPV and mixing in Charm at LHCb

11

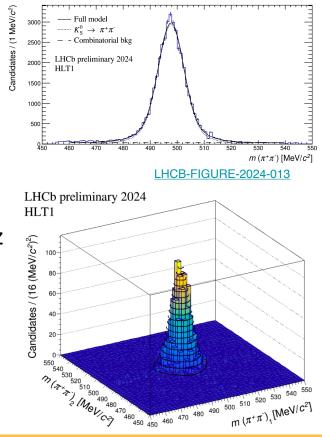



- Some tension between results (PDG assigns S=2.0)
- Interest in further results

## Data sample for the new measurement

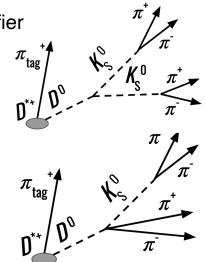
- In 2024, LHCb collected more data than in all previous years combined
- Sample used here is 6.2 fb-1 of best quality, alldetector data, final trigger configuration, design luminosity or close to it (L = 2\*10<sup>33</sup>,  $\mu$  = ~5)

~Same lumi of the Run 2 analysis


| Data block | $\int \mathcal{L} dt \; [\mathrm{fb}^{-1}\;]$ |
|------------|-----------------------------------------------|
| 1          | 1.12                                          |
| 2          | 0.58                                          |
| 3          | 0.65                                          |
| 4          | 0.72                                          |
| 5          | 1.09                                          |
| 6          | 0.90                                          |
| 7          | 0.68                                          |
| 8          | 0.42                                          |
| Total      | 6.19                                          |



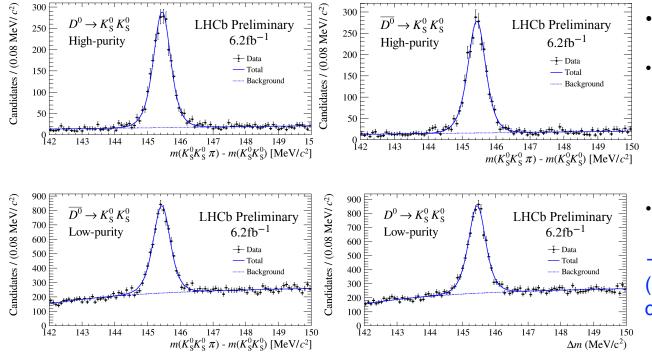
- Split into 8 subsamples by running conditions
- Each block analyzed separately
- ACP results combined at the end


# Trigger selection

- Long-lived particles like  $K_S^0$  are challenging at LHCb
- Evolution of approach:
  - Run1: trigger on CALO energy
  - Run2: 1-track generic trigger after CALO
- **Run 3 (now)**:  $K_S^0$  at very first trigger level (software, no L0)
  - No other LHC experiment does this
  - Requires building all track-pair combinations at 30 MHz
  - Plus, even a Ks-pair trigger ! (not used here)
- Not just more efficiency, but:
  - Get a  $K_S^0 \pi^+ \pi^-$  reference sample from same trigger: <u>best possible calibration of spurious asymmetries</u>



## Methodology of 2024 measurement


- Some ingredients identical to Run-2 analysis [PRD 104, L031102]:
  - Tag  $D^0$  flavor with  $D^{*+} \rightarrow D^0 \pi^+$  decays
  - Exploit both prompt and secondary candidates as signal
  - 3D fit to  $\Delta m$  and two  $m(K_{S^0})$  to extract A<sup>CP</sup> from  $D^0$ /anti- $D^0$  asymmetry
  - Correct for production+detection asymmetries by <u>reweighting individual candidates</u> with weights extracted from a calibration mode via a kNN algorithm
  - Split each sample in two bins of purity according to a multivariate classifier
- Novelties of the Run-3 analysis: LHCB-PAPER-2025-036(in preparation)
- Calibrate with  $D^0 \rightarrow K_s^0 \pi^+ \pi^-$  instead of  $D^0 \rightarrow K^+ K^-$ 
  - same final particles as signal (5 pions),
  - same HLT1 trigger as signal. Closely similar HLT2 trigger.
- Restrict to 'easiest' categories of events for faster result
  - Only  $K_S^0$  decaying inside VErtex LOcator (VELO) (HLT1 trigger)
  - Only PV-compatible candidates
  - This will be revisited for final Run 3 results with full data sample



## Signals after offline selections

LHCB-PAPER-2025-036 (in preparation)

· Cumulative plots, adding together all data blocks (fitted separately)



- Total signal yield:
   N = 15,676 ± 229
- Largest existing D\*-tag sample
  - LHCb Run2 ~ 8,000
  - Belle ~ 4,900
  - Belle II ~ 2,200
    - CMS ~ 2,000

(Belle/II also has a 19k non-D\* sample, but with much more background)

• LHCb Run2: 5,400 candidates in same category in 6fb-1

→Factor of x3 efficiency gain (effect of the new trigger) **and** collected in much shorter time.

#### Collect decays at a rate ~15x LHCb Run 2

Giovanni Punzi - Pisa

CPV and mixing in Charm at LHCb

EPS 2025 16

### A<sup>CP</sup> results

### LHCB-PAPER-2025-036 (in preparation)

| Data block       | Yield           | $\mathcal{A}^{C\!P}$ $[\%]$ |                                                                                  |
|------------------|-----------------|-----------------------------|----------------------------------------------------------------------------------|
| 1                | $2915\pm85$     | $0.3 \pm 2.4$               | • Results for each block, calibrated and averaged over                           |
| 2                | $1385\pm55$     | $-0.3\pm3.4$                | Low Purity and High Purity bins. All compatible.                                 |
| 3                | $1639\pm56$     | $0.8 \pm 3.2$               | <ul> <li>Average effect of calibration is +1.35 % shift</li> </ul>               |
| 4                | $1534 \pm 75$   | $5.5 \pm 3.4$               | • Corrections decreases $\chi^2$ : <b>12.7</b> $\rightarrow$ <b>9.4</b> (17 DOF) |
| 5                | $3149\pm94$     | $0.0 \pm 2.4$               | → Confirms it is working properly                                                |
| 6                | $2544 \pm 77$   | $4.6\pm2.6$                 | <ul> <li>Global average yields the result (statistical error only):</li> </ul>   |
| 7                | $1599\pm67$     | $1.7\pm3.3$                 |                                                                                  |
| 8                | $911 \pm 54$    | $5.6 \pm 4.3$               | $A_{CP}(D^0 \to K_S^0 K_S^0) = (1.86 \pm 1.04)\%$                                |
| Total            | $15676 \pm 229$ | $1.86 \pm 1.04$             | World's best statistical precision                                               |
| LHCb Preliminary | 1               |                             |                                                                                  |

- Better than Run 2 precision (1.2%) with just few months of Run 3 data and only one sub-category of events:
  - no Downstream Ks candidates, no PV-incompatible candidates
  - Corresponding Run 2 sample had 1.6 % resolution

# Systematic uncertainties

Leading systematic effects:

- 1. Fit model
  - A<sup>CP</sup> sensitivity to model of signal  $pdf \rightarrow 0.27\%$
- 2. Cancellation of spurious charge asymmetries
  - → Statistical fluctuations of calibration sample → 0.24%
  - → Choice of k in kNN-based charge calibration → 0.20%
- 3.  $K^{0}$  material effects contribution to  $A^{raw}(D^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-})$  (negligible)
  - → precisely measured in Run 2 detector, expected small
  - → remeasured in current  $K_{\rm S}^0 \pi^+ \pi$  sample: < 0.05% for Long  $K_{\rm S}^0$

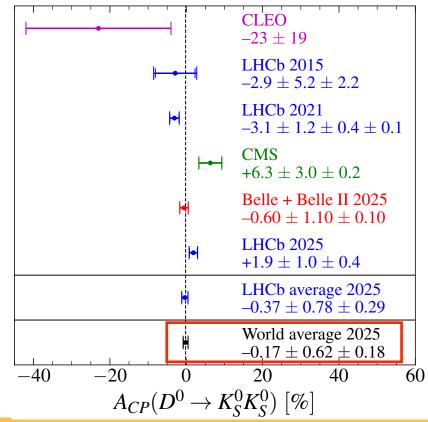
Total combined systematics  $\rightarrow$  **0.41%** 

LHCB-PAPER-2025-036 (in preparation)

**FPS 2025** 



# Final result


LHCB-PAPER-2025-036 (in preparation)

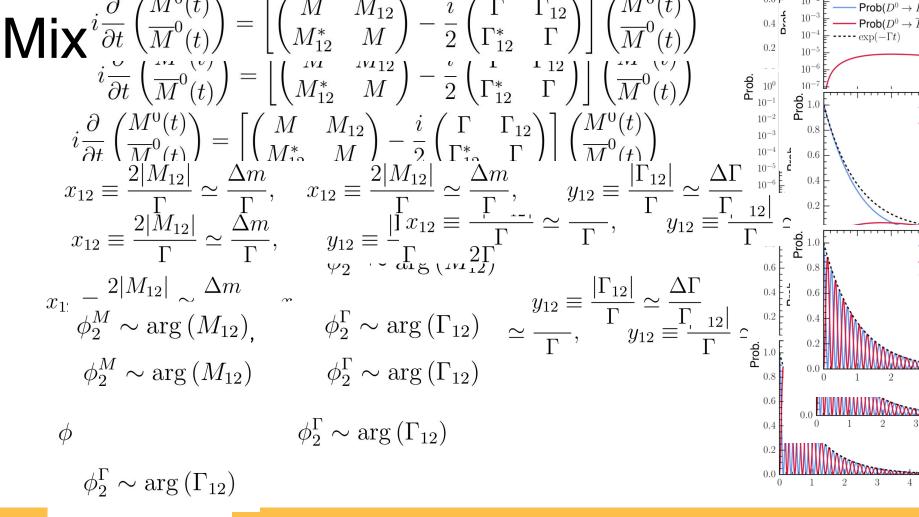
**EPS 2025** 

19

 $A_{CP}(D^{0} \rightarrow K_{S}^{0}K_{S}^{0}) = (1.86 \pm 1.04 \pm 0.41)\%$ 

- Compatible with no CPV
- Compatible with previous WA
- Marginal agreement (~1%) with previous LHCb results (2.9 $\sigma$  from Run 2, that was -2.5 $\sigma$  from zero)
  - Global LHCb average:  $(-0.37 \pm 0.78 \pm 0.29)\%$
- Brings back WA to full agreement with zero CPV
  - And statistical resolution down to **0.62%**
- Expect significant further improvement with complete Run 3 sample (23 fb<sup>-1</sup> expected)
- Will enter an interesting region of sensitivity




Giovanni Punzi - Pisa



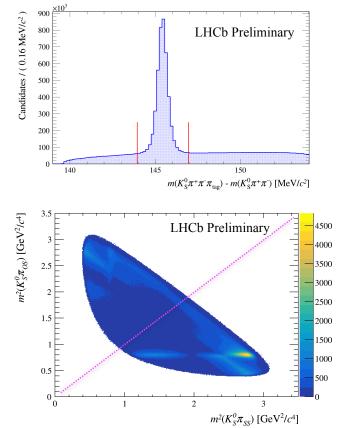
# Conclusions

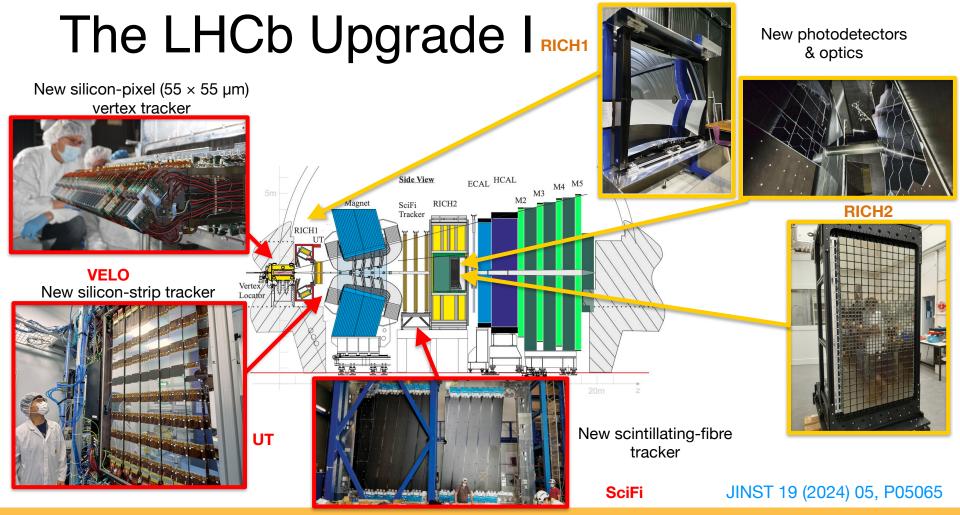
- LHCb the leading laboratory for Charm CPV and Mixing
- Today first Run 3 result: time-integrated  $A_{CP}(D^0 \rightarrow K_S^0 K_S^0)$ 
  - Improve on Run 2 result from just year 2024 data
  - Still statistics-dominated
    - Most of systematics is statistical in nature anyway
- This is just the beginning expect to see:
  - More data
  - More channels
  - More upgrades...

# BACKUP



Giovar  ${}_{\mu}\Gamma$   ${}_{\mu}$ 


CPV and mixing in Charm at LHCb


EPS 2025 22

## Calibration channel sample

- Different from  $K_{\rm S}^{0}\pi^{+}\pi^{-}$  sample of other LHCb analyses
- Triggered on the  $K_{\rm S}^0$
- Dedicated selection without  $IP/\chi_{IP}^2(\pi)$  cuts on pions, to preserve similarity to signal sample.
- Yield ~750  $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}/\text{pb}^{-1} \text{ vs } 2.5 \ D^{0} \rightarrow K_{S}^{0} K_{S}^{0}/\text{pb}^{-1} \text{ S/B} \sim 10$ 
  - → large enough for calibration
- However,  $K_{\rm S}^0\pi^+\pi^-$  has non-trivial Dalitz distribution
  - Pion pair not charge-symmetric
  - · Need preliminary re-weight to symmetrize pion pair





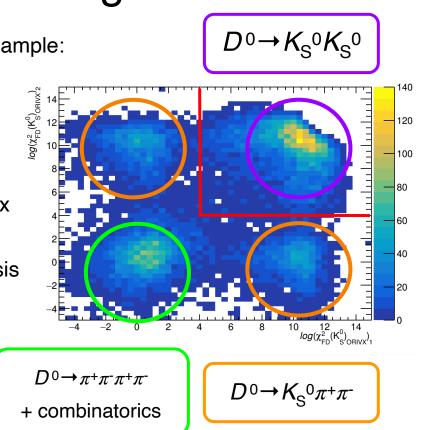


Giovanni Punzi - Pisa

CPV and mixing in Charm at LHCb

EPS 2025 24

## Removal of $D^0 \rightarrow K_S^0 \pi \pi$ background


 $D^0 \rightarrow K_{\rm S}^0 \pi^+ \pi^-$  decay is also a background to signal sample:

- peaks in  $\Delta m$  similarly as  $D^0 \rightarrow K_S^0 K_S^0$
- disentangled in the 3D fit

Preliminary rejection to improve statistical precision  $\rightarrow$  cut on  $K_{\rm S}^0$  flight-distance significance from  $D^0$  vtx

Cut optimized to minimize  $\sigma_S$ /S during Run 2 analysis  $\rightarrow$  keep Run 2 selection - no difference expected

Applied selection 
$$\rightarrow \log(\chi_{FD}^2(K_S^0)_{1,2}) > 4$$



#### Giovanni Punzi - Pisa