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Chiral phase transition

Phase transition restoring chiral symmetry
at higher temperatures

⟨q̄q⟩ ̸= 0 → ⟨q̄q⟩ = 0

▶ Study chiral PT at µ = 0 in AdS/QCD for nf = 2
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Chiral condensate at finite temperature in AdS/QCD

Bottom-up approach: study QCD through an effective field theory in 5d AdS space

QCD operators described by fields

Ingredients:

▶ Metric of 5d AdS space with black hole

ds2 = −A(z, v)dv2 +Σ(z, v)2eB(z,v)dx2
⊥ +Σ(z, v)2e−2B(z,v)dy2 − 2

z2
dvdz

Black-hole horizon at z = zh

▶ Dilaton ϕ(z) = c2z2 breaks conformal invariance

▶ Field X = eiπ(X0 + S)eiπ ⇔ q̄q operator

⇒ study the vev X0(z, v) =
1

2
Xq(z, v)diag(1, 1) for nf = 2
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[Fang et al., PLB 762 (2016), 86]The action is:

S ∝
∫

d5x
√
−g e−ϕ(z)

[
(∂MXq)(∂

MXq) +m2
5X

2
q +

λ

4
X4

q

]

m2
5(z) = −3− µ2z2

Parameters: c = 440 MeV, µ = 1450 MeV, λ = 80

Equation of motion:

∂M (
√
−g e−ϕ(z) ∂MXq(z, v))−m2

5

√
−g e−ϕ(z) Xq(z, v)−

λ

2

√
−g e−ϕ(z) Xq(z, v)

3 = 0

The chiral condensate ⟨q̄q⟩ = γσ from the expansion

Xq −−−→
z→0

mq γ z + σ z3 +

(
c2mqγ + (mqγ)

3λ− 1

2
mqγµ

2
c

)
z3 log z +O(z5)
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At equilibrium

Metric with static black hole: [Cao et al., PRD 107 (2023), 086001]

Σ(z, v) = 1/z

B(z, v) = 0

A(z) =
1

z2
(1− z4/z4h) zh =

1

πT

▶ mq = 0: 2nd order PT at Tc ∼ 163 MeV

⟨q̄q⟩ = (245 MeV)3 at T = 0

▶ mq = 3.22 MeV: crossover

⟨q̄q⟩ = (247 MeV)3 at T = 0
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Out of equilibrium

Matter produced in HIC undergoes rapid expansion and cooling ⇒ include out-of-equilibrium effects

Fig. from Commun Phys 8, 55 (2025)

How does χPT change?

⇒ assume a time-dependent metric in the bulk and either on-shell or perturbed initial conditions
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Metric functions and scalar field Xq(z, v) depend on time, quark mass mq and dilaton ϕ(z) are constant

Equation of motion u = z/zh(v):

X ′′
q

(
2użh +Az2hu

2)+ zhẊq

(
−3

Σ′

Σ
+ ϕ′

)
− 2zhẊ

′
q +

+X ′
q

(
6żh

Σ′

Σ
u− użhϕ

′ + 2żh + 3u2z2hA
Σ′

Σ
− u2z2hAϕ′ + u2z2hA

′ + 2uz2hA− 3zh
Σ̇

Σ

)
+

−m2
5

u2
Xq −

λ

2u2
X3

q = 0

We solve it with Chebyshev pseudospectral method

We assume two different backgrounds characterised by different zh(v)
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Toy model

We assume the metric functions are:

Σ(z, v) = 1/z

B(z, v) = 0

A(z, v) = 1/z2(1− z4/zh(v)
4)

with

zh(v)/zh(0) = 1± Λℓ (v/zh(0))
a a = 1, 2

Define effective temperature T (v) =
1

π zh(v)

T (v)/T (0) = (1± Λℓ (v/zh(0))
a)−1

⇒ Rapid variation for large Λℓ
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Increasing temperature (−), starting from equilibrium solution at T (0) ∼ 80 MeV

mq = 0
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▶ In both cases chiral condensates smoothly goes to zero

▶ The curves deviate more from the equilibrium one as a and Λℓ increase
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Increasing temperature (−), perturbed initial condition at T (0) ∼ 80 MeV with σ = 0.016 GeV3
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▶ Oscillations disappear when the system approaches the equibrium curve

▶ For smaller Λℓ the oscillations are faster and the system reaches equilibrium at lower temperatures
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Decreasing temperature (+), starting from equilibrium solution at T (0) ∼ Tc

mq = 0
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▶ χSB at T < Tc, which increases with decreasing Λℓ and a

▶ At the beginning the system tends to stay close to the initial condition, then σ starts growing,
running after the static curve

▶ Eventually, when the dynamical solution approaches the static one, oscillations can occur
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Decreasing temperature (+), perturbed initial condition

mq = 0

IC at T (0) ∼ 187 MeV with σ = 0.02 GeV3
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▶ Bigger differences in the chiral limit

▶ In the chiral limit, if the initial condition is Xq = 0, the solution vanishes for any subsequent time
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Viscous hydrodynamics background

Choose a 5dmetric that gives the 4d EMT obtained in viscous hydrodynamics through Bjorken expansion:

Tµ
ν =

N2
c

2π2
diag(−ϵ, p⊥, p⊥, p||) with

ϵ(v) =
3π4Λ4

4(Λv)4/3

[
1− 2c1

(Λv)2/3
+

c2
(Λv)4/3

+O
(

1

(Λv)2

)]
p∥(v) =

π4Λ4

4(Λv)4/3

[
1− 6c1

(Λv)2/3
+

5c2
(Λv)4/3

+O
(

1

(Λv)2

)]
p⊥(v) =

π4Λ4

4(Λv)4/3

[
1− c2

(Λv)4/3
+O

(
1

(Λv)2

)]
c1 =

1

3π
, c2 =

1 + 2 log 2

18π2
[Janik and Peschanski, PRD 73 (2006) 045013]

Effective temperature from ϵ(v) =
3

4
π4T (v)4

T (v) =
Λ

(Λv)1/3

[
1− 1

6π(Λv)2/3
+

−1 + log 2

36π2(Λv)4/3
+O

(
1

(Λv)2

)]
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The metric that produces this EMT is:

A(z, v) =
1

z2

(
1− 4z4

3
ϵ(v)

)
Σ(z, v) =

1

z
(v + z)1/3

B(z, v) =
z4

3
(p⊥(v)− p||(v))−

2

3
log(v + z)

[de Haro et al., Commun. Math. Phys. 217 (2001) 595-622,

Bellantuono et al., PRD 94 (2016), 025005]

BH horizon at A(z, v) = 0:

zh(v) =
(Λv)1/3

πΛ

[
1 +

c1
2(Λv)2/3

+
5c21 − 2c2
8(Λv)4/3

+O
(

1

(Λv)2

)]
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Gauge/gravity duality used to study the thermalization of the system driven far from equilibrium by
boundary sourcing

[Chesler and Yaffe, PRL 102 (2009) 211601]

Considering different quenches, found:

▶ Λ = 2.25 GeV (model A1)

▶ Λ = 1.73 GeV (model A2)

▶ Λ = 1.12 GeV (model B)

▶ Λ = 1.59 GeV (model C)

[Bellantuono et al., JHEP 07 (2015) 053]

T (v) varies more slowly with time when Λ is larger
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mq = 0

Initial condition: Xq = 10−5u3 at T ∼ 168 MeV
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▶ If a fluctuation of Xq occurs at T ≳ Tc, thermalization and transition to a chirally broken phase
at T < Tc

▶ If a fluctuation of Xq occurs at a much lower temperature, short oscillations are observed before
equilibrium

▶ In model B, which has the smallest Λ, equilibrium reached at lower temperatures
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Prethermalization

Transient quasistationary state different from the true thermal equilibrium

▶ We observe prethermalization in chiral limit if
T (0) ∼ Tc and if it slowly changes with time

▶ Initial condition: Xq(u, v0) = 10−4u3

▶ Model B (smallest Λ) has the shortest
prethermalization stage

▶ Equilibrium is eventually reached 0.01
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Duration of prethermalization depends on how fast temperature changes with time and how much the
initial condition deviates from the equilibrium one

Evolution of the chiral condensate in AdS/QCD with time-dependent temperature 16



Introduction
Equilibrium

Out of equilibrium
Conclusions

Conclusions

We have studied the chiral condensate at finite temperature in AdS/QCD in a time-dependent background

▶ Model:

▶ Two different scenarios: power-law time dependence of zh(v) and the one foreseen by viscous hydrodynamics

▶ Two different initial conditions: equilibrium solution and a perturbed profile

▶ Results:

▶ Deviation from equilibrium increases as the rate of temperature change over time becomes more
pronounced

▶ In the chiral limit, if the chiral condensate initially vanishes, the transition does not occur

▶ At low temperatures the chiral condensate oscillates around the equilibrium value when the solution
approaches the static one with an energy excess

▶ A prethermalization stage found in the chiral limit if initially T ∼ Tc
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