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Recall: ¢* theory

Mathematical
Institute

» ¢; theory: A single, real-valued, bosonic (i.e. commutative) field ¢ in 4 — 2¢ spacetime
dimensions. Interacts with itself, vertex in Feynman graphs is 4-valent.

» Isn’t present in the real world, but similar to Higgs field. Related to statistical physics
when extrapolated to D = 3. We only consider mass m = 0 (=at critical point).
> ¢* theory has generic properties of perturbative QFT, namely

1. Is renormalizable in 4 dimensions (infinitely many divergent diagrams).
2. Number of diagrams grows factorially with loop number L.
3. Can use N-component field ¢ with global internal O(N) symmetry, large/small N limits etc.
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Recall: ¢* theory

Mathematical
Institute

» ¢; theory: A single, real-valued, bosonic (i.e. commutative) field ¢ in 4 — 2¢ spacetime
dimensions. Interacts with itself, vertex in Feynman graphs is 4-valent.

» Isn’t present in the real world, but similar to Higgs field. Related to statistical physics
when extrapolated to D = 3. We only consider mass m = 0 (=at critical point).
> ¢* theory has generic properties of perturbative QFT, namely
1. Is renormalizable in 4 dimensions (infinitely many divergent diagrams).
2. Number of diagrams grows factorially with loop number L.
3. Can use N-component field $with global internal O(N) symmetry, large/small N limits etc.

» We restrict ourselves to:

1. Only vertex-type graphs (4 external legs).

2. Only graphs without subdivergence (i.e. primitive in the renormalization Hopf algebra
[Kreimer 1998]). These graphs are cyclically 6-edge connected (=do not have 4-valent or
2-valent subgraphs with loops).

3. Consider only the scale-dependence (and not the full functional dependence on all masses
and momenta). This quantity contributes to the Symanzik beta function (renormalization
group function [Callan 1970; Symanzik 1970]).
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Periods in ¢* theory

Mathematical
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2
» For momentum p and reference p, let s :=In 5—2 be the (energy-) scale.
Feynman integral of a primitive vertex-type graph G evaluates to

const- P(G)-s + s—independent terms.
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Periods in ¢* theory

Mathematical
Institute

» For momentum p and reference p, let s :=In & 5  be the (energy-) scale.
Feynman integral of a primitive vertex-type graph G evaluates to

const- P(G)-s + s—independent terms.

> P(G) is a finite number, called the period [Broadhurst and Kreimer 1995; Schnetz 2010].
Feynman integral in parametric form (Assign variable a. to each edge e. U is the
Symanzik polyomial):

o0 IEG
P@)= | II fee | o|1- X oy ©
eckg 0

» P is a period in the sense of [Kontsevich and Zagier 2001].
Their number theory is interesting, but not for this talk.
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Completions and decompletions

Mathematical
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» The period P(G) is defined for a vertex-type graph, i.e. G has 4 external edges.
At L loops, G has L+ 1 (internal) vertices.
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Completions and decompletions

Mathematical
Institute

» The period P(G) is defined for a vertex-type graph, i.e. G has 4 external edges.
At L loops, G has L+ 1 (internal) vertices.

» Merge the 4 external edges at a new vertex. The resulting graph has L 4 2 vertices and no
external edges. It is called the completion of G.

J
(3 non-isomorphic decompletions) (completion

~—

» All decompletions G of some fixed completion have the same period P(G).
(this is non-trivial. The Symanzik polynomials are distinct, but the integrals evaluate to the same number)
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Example: loop order L = 3

» There are no primitive graphs with L = 2 in ¢j-theory.

Mathematical
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» There is exactly one primitive graph on L +2 =5 vertices, K5 =

» All vertices in Ks are equivalent = removing any of them gives the same decompletion
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Example: loop order L = 3
» There are no primitive graphs with L = 2 in ¢j-theory.

Mathematical
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» There is exactly one primitive graph on L +2 =5 vertices, K5 =

» All vertices in Ks are equivalent = removing any of them gives the same decompletion

» Symanzik polynomial
Uc = a1(ar + a3)(as + as) + asasag + a1(a2 + a3 + as + as)ag + aras(as + a) + asas(as + a) + a2a3(as + as + ag)

» Period integral can be solved with some effort,

6 o0
P(G) = HO/dae ( Zae> TN = 6¢(3) ~ 7.212
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Counts and symmetries
[ leJele]e]

How many primitive graphs are there?
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(Recall: decompletions are graphs with 4-valent
vertices, cyclically 6-edge connected,
with 4 external edges)

Just generate them all and count...
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Counts and symmetries
[ leJele]e]

How many primitive graphs are there?

(Recall: decompletions are graphs with 4-valent
vertices, cyclically 6-edge connected,
with 4 external edges)

Just generate them all and count...

Number grows factorially.
> 1 billion at 15 loops.
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Primitive
decompletions
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Counts and symmetries
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Period Symmetries
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» All decompletions of the same completion have the same period.

» There are a few other symmetries, where the period of non-isomorphic graphs has the
same value [Schnetz 2010; Panzer 2022; Hu et al. 2022].
» Planar dual graphs have the same period.
» In a 3-vertex cut, the period is the product of the two sides’ periods
» In a 4-vertex cut, can take the planar dual on either side or “twist” the connection at the
cut vertices.

» There are interesting combinatorial invariants that respect the same symmetries.
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Counts and symmetries
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Counts of primitive graphs

= Exploiting all symmetries, still millions of independent period integrals remain.

Paul-H. Balduf, U Oxford

L Vertex-type graphs | Vacuum graphs | independent
“decompletions” “completions” periods
3 1 1 1
4 1 1 1
5 3 2 1
6 10 5 4
7 44 14 9
8 248 49 31
9 1,688 227 134
10 13,094 1,354 819
11 114,016 9,722 6,197
12 1,081,529 81,305 55,196
13 11,048,898 755,643 543,535
14 120,451,435 7,635,677 5,769,143
15 1,393,614,379 82,698,184 | 65,117,118
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Counts and symmetries
00080

Relation to random graphs on n = L + 2 vertices

Mathematical
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» Recall that our primitive completions are 4-regular and cyclically 6-edge connected graphs.
They are a subset of all 4-regular simple graphs.

» G, 4 is space of random 4-regular simple (but not necessarily primitive) graphs [Bender and
Canfield 1978; Bollobas 1980] on n = L 4 2 vertices.
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Relation to random graphs on n = L + 2 vertices

Mathematical
Institute

» Recall that our primitive completions are 4-regular and cyclically 6-edge connected graphs.
They are a subset of all 4-regular simple graphs.

» G, 4 is space of random 4-regular simple (but not necessarily primitive) graphs [Bender and
Canfield 1978; Bollobas 1980] on n = L 4 2 vertices.
» Known for G € G, 4 in the limit n — oo:
» G is almost surely 4-edge connected [Wormald 1981],
» asymptotic number of graphs in G, 4 coincides with asymptotic number of primitive graphs
[Bender and Canfield 1978; Bollobas 1982; Borinsky 2017],
(JAut(G)|) — 1 [McKay and Wormald 1984],
» Distribution of cycles of fixed length [Bollobds 1980; McKay, Wormald, and Wysocka 2004],
> ...

v

» = To leading asymptotic order n — 0o, G, 4 is a good model for primitive graphs.
» We deal with graphs on n < 20 vertices. Are we in the asymptotic region?
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Are we in the n — oo asymptotic region for G, 47

Symmetry factors 1 — (| Aut(G)~1|) — 07

All decompletions non-isomorphic,
1— <#decomp|etions> 07

10°

107!

1072

F£vertices

Correction to asymptotics, Double log plot

e
- N\
oAt
D
.
1 ",
3 6 9 12 15 L

= asymptotic domain starts at L ~ 10.

Cycles of length k are Poisson distributed

Mathematical

Conclusion: whether we are in the asymptotic domain depends on the quantity in question.
“local” quantities are asymptotic starting from L = 10.

Paul-H. Balduf, U Oxford

3 Institute
with mean X = g—k?
Number of k-cycles relative to their asymptotics
{ni)
KN
Laf T \
1.0 N
0.8 :
0.6, Lo18
L=7 .
0.4
0.2 -
N\ Lk
0.0
3 5 7 9 11 13 15
= only good for short cycles where k < L.
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Distribution of periods
000000

Computing periods numerically
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» Periods can be quickly (~ 1h/graph) computed numerically with new algorithm up to
L =~ 16 loops [Borinsky 2023; Borinsky, Munch, and Tellander 2023], based on Hepp bound
/tropicalization [Panzer 2022]. Exploit symmetries etc.

» Computed all graphs including 13 loops, incomplete samples for L < 18. Typical accuracy
4 digits (~ 100ppm). In total, &~ 2 - 10° distinct completions (=vacuum graphs).
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Distribution of periods
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Distribution of periods
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» Most periods are somewhat close to the mean (P)
» There are few, but extreme, outliers. Relative standard deviation 6(P) ~ 100%.

» The pattern of outliers repeats at each loop order, but scaled.

Distribution of periods, without symmetry factor, normalized to unit mean

14
1.2
1.0
0.8
0.6
0.4 (©12 ©13
0.2 (D12 (D)2 (D13 @12 (b)s (@)13
] ] ] Ny

0'0 dhikd
(P) 5 10 15 20 25 30
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Distribution of periods
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Continuous part of the distribution
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» Shape of distribution is essentially unchanged at higher loop order, just scaled.
Distribution of # for L=13
1.4
1.2 o
1. j’ A\
0.8
0.6 ]
0.4 log normal

||||||II||.

0.5
0.0 0.5 1.0 1.5 2.0 2.5 3.0

M 4 P
s\ gamma

» This histogram is for uniform sampling of periods. If one samples non-uniformly o \Aut|'
histogram resembles log-gamma distribution [Borinsky and Favorito 2025].
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Distribution of periods
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Outliers in the distribution
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» Recall distribution: 4 distinct outliers.

Distribution of periods, without symmetry factor, normalized to unit mean

14
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Distribution of periods
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Which ones are the outliers?
Mathematical

Institute

» The zigzag graphs (= (1, 2)-circulants) and their cousins.
» They look “symmetric’, but that's deceptive, overall only weak correlation between P and

symmetry factor.

focde2346/3
P ~ 832206.8  |Aut| = 30

fhedef: "Rd/Rb/bfac/ce/d/cfc/] le
P ~ 464116.5  |Aut| =2 P ~ 484645 |Aut| = 4
largest

fdefbeffe
P~ 403425.9  |Aut| = 2
4t Jargest —

fell

Statistics of Feynman integrals
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Distribution of periods
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The smallest periods

Mathematical
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» Smallest P, not smallest \APTtI'
» No immediately visible structure.
P ~ 5930.41 |Aut] = 4 P ~ 6078.193 |Aut| = 10 P ~ 6109.389 JAut] = 1 P ~ 6131.892 |Aut| =
smallest — 4% smallest
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Correlations

Mathematical
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» We saw: The outliers are not at all random, but very special graphs.

» Can we guess the value of a period for a given graph G with some simple function P(G)?
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Correlations

Mathematical
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» We saw: The outliers are not at all random, but very special graphs.
» Can we guess the value of a period for a given graph G with some simple function P(G)?

» The period of a graph G is correlated with many properties of G, in [Balduf and Shaban 2024]
we examined = 150 distinct properties empirically.

» Recall: At fixed L, all 4-regular graphs have the same number of edges and vertices.
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Average vertex distance

» Average of the shortest path between all pairs of vertices, where each edge has length 1. i
> Relatively fast to count, clearly correlated, but low accuracy § ~ 30%.

» Note that the graphs of different loop order align. This correlation is universal across all
loop orders.

# as a function of the mean distance

10°

10°

10*

1.6 1.8 2.0 22 24 d
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Correlations
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Average resistance (Kirchhoff index)

» Consider a completion G. Mathematical

Institute
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Average resistance (Kirchhoff index)

» Consider a completion G. Mathematica

Institute

» Assign unit electrical resistance to every edge.
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Average resistance (Kirchhoff index)

» Consider a completion G.

» Assign unit electrical resistance to every edge.

» Resistance Fui v between vertices v; and v;. Matrix of resistances can be computed from

the pseudoinverse IL™ of the (unlabelled) Laplacian I,

Tt + _m1+ _Tm+
rij=Wi;+ Ly — L = L.

from
2 3

—_
I

129
2 30
0 22
30

W N =
Bror o
i3

30 30 15

2 QTN
13818
b
[

30 30 15

to vertex ...

=
)
©
N
©
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1 1 29

v2 2 30

-
|
|
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Correlations
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Average resistance (Kirchhoff index)

» Consider a completion G. Mathematica
Institute

» Assign unit electrical resistance to every edge.

» Resistance Fui v between vertices v; and v;. Matrix of resistances can be computed from
the pseudoinverse IL™ of the (unlabelled) Laplacian I,

Tt + _m1+ _Tm+
rij=Wi;+ Ly — L = L.

» Kirchhoff index R(G) = average resistance

from vertex ...

1 2 3 45 6
| (@ L 22 2 29 2 1
2 30 30 30 30 2
9 |1 g 22 22 22 22 1
;"' 2 30 30 30 30 2
e 29 29 8 8 2 29 71
23 1% % 9 %o os % =R(G)=g
Ly |2 2 8 5 2 8 2
5 30 30 15 3 15 30
55 |2 2 8 2 g 8 2
o) 30 30 15 3 15 30
6 |22 2 8 8 g 2
30 30 3 15 15 30
71 1 2 2 2 2 g
V2 2 30 30 30 30
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Average resistance

. . X . Mathematical
Period as function of the average resistance, Log plot Institute

10*-

0.50 0.55 0.60 0.65 070 R

(Colors = loop orders 5 . ..18)

» Resistance approximation reaches § ~ 5% with linear fit.
» Nice interpretation: spatially “larger” (=less dense) graphs have larger periods.
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Hepp bound
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» Hepp bound H [Hepp 1966; Panzer 2022] arises from “tropicalization” of period integral.

» Strongly correlated with period. Low order polynomial function, combined with edge-cuts
In(c;), gives § =~ 0.2%.

» Computing H for a graph requires iteration over all subgraphs (and/or caching).

P as a function of H

Relative standard deviation of Hepp models

including (+8+10-cuts

o

v / slobal Hepp model

1
@
10 . N 0.5
g ’ 0.2
:
07 0 0"

1o . o 0 v 708 9 10 11 12 13 W 15 16 17T 18
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Many more...

Mathematical
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» Counts of cycles and cuts of various types, Work with Kimia Shaban
» Eigenvalues etc. of graph matrices,

» Variance, higher moments of electrical resistance etc,

» Martin invariant [Panzer and Yeats 2023] (=O(N) symmetry factor at N = —2).

» Combined linear regression leads ¢ =~ 0.1%, quadratic even better.

» Also tried some machine learing models.

See [Balduf and Shaban 2024] for full details.
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Computing the beta function
[ leJe]e]

Is that good for something?

Mathematical
Institute

» Tested several conjectures, and discovered new relations and conjectures that are worth
investigating mathematically.
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Computing the beta function
[ leJe]e]

Is that good for something?

Mathematical
Institute

» Tested several conjectures, and discovered new relations and conjectures that are worth
investigating mathematically.

» Correlations have very concrete practical use: P tells us which Feynman graphs contribute
most to the sum of all periods.

» The sum of all periods is the primitive contribution to the beta function,

prim ,__ P(G)
Pimi=2-41(L+2) Y TAw(G)]

completion G
L loops

» Compute this sum with a weighted sampling algorithm [Metropolis et al. 1953; Hastings 1970].
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Computing the beta function
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Which of the correlations should we use?

Mathematical
Institute
» Accuracy of the weighted sum is limited by speed t, and accuracy ¢ of approximation
function P.
» Implemented everything in C++. For all functions, t, grows exponentially with L, but
vastly different rate.
» Consider curves of equal resulting sampling accuracy. For L > 13, cut+cycle model is
most suitable of all models considered.
Time per graph, 1 thread Performance of different approximations. L=13, N,=16000
s 1 empty symbols: 20 threads
10 filled symbols: 1 thread
5-cycle hd grey curves: constant U
N S T— .
2 O 10-c L3
1 O cutscycle—@
0.5
10-! / 0.2
102 0.1
L t, / ms
7 8 ) 10 11 12 1 14 15 16 10" 10 107 10* 10t
24
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Computing the beta function
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Weighted sampling implementation details

Mathematical
Institute

» The program is largely autonomous: Allocates number of threads dynamically to various
tasks, tunes parameters automatically, ...

» Let it run on some servers in Waterloo and see:

w0
7, )
‘ | '\ 440000
w0 . ..a\_
o0
s
n
| | 000
som
®
: 0o
o
3 o0 500 o 1000 som 0o F oo som
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Computing the beta function
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Example results: Primitive beta function for L = 14

Mathematical

» Reached 120ppm standard deviation after 24k CPU core h (< 2 weeks walltime). intitute
» Previous work with uniform random sampling took 400k CPU core h for 1063ppm.

Convergence of gM" L=14
30427 gyrim  g1s

3.040
3.038 orange constant: previous best estimate

3.036

3.034 3

i

3.032ff

blue: new data
runtime /1000h

3.030 ! ! ! ' '

0 2 4 6 8 10 12 14 16 18 20 22 24

Closer comparison shows: Weighted sampling is &~ 1000x faster than uniform random

sampling, or reaches ~ 32x the accuracy at the same runtime.
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O(N) dependence and asymptotic number of graphs
» Circuit partition polynomial J(G, N) gives O(N)-symmetry factor of graphs G,

Mathematical
Institute

PN =2

> A(L+2)-J(G,N) - P(G)
L
completion G 3 +2N(N + 2)|AUt(G)‘
L loops

» Compute exact asymptotics of li(u(t;(’g;‘ (=number of graphs weighted by symmetry

factors) from O-dimensional QFT [Balduf and Thiirigen 2024].
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Asymptotics
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O(N) dependence and asymptotic number of graphs
» Circuit partition polynomial J(G, N) gives O(N)-symmetry factor of graphs G, Jyr—

prim L 4!(L + 2) ) J(Gv N) i P(G) -
CTM=2 > SN 2)Ac(0)

completion G
L loops
» Compute exact asymptotics of Au t(Ng‘ (=number of graphs weighted by symmetry
factors) from O-dimensional QFT [Balduf and Thiirigen 2024].
» Sum of all vacuum graphs series Z(h,0) = >_ h"z,, has the asymptotics for n — co

Zn ~

Ner i nE 24(2n+ N—3) ' 1152(2n+ N —3)(2n + N — 5)

» For primitive graphs only, prim(Az) =: 3" p hk, for L — oo

3¥e_12:3N 9 L85 N+5 9(3N274N*80)
PL~ G = | 3 )\ Ty )
V() \3 ? U

» Also known for other classes of graphs, and many more subleading terms in % expansion.
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Asymptotics
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0-dimensional asymptotics

» Are these asymptotic formulas accurate at typical loop numbers? — it depends . ..

Mathematical

. . Institute
» For all graphs, excellent agreement even at low n (note that the asymptotic expansion
itself is divergent. Including higher orders r of subleading corrections eventually makes it

worse).

=0
green lines: leading asymptotics k=1

tblack markers: coefficients

n
2 4 6 8 10 12 14 16 18 20
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Asymptotics
[o] le]e}

0-dimensional asymptotics

Mathematical

» For all graphs, excellent agreement even at low n. Institute

» For primitive graphs, 20% off leading asymptotics even at 25 loops.

15 k=2 1.00
10 (reen Tines leading asymptotics k=1 =0
1012 black markers: coefficients 0.99
107 0.98
4,
10 0.97
10*
0.96
10°
0.95 '
2 L6 8 10 12 14 16 18 20 0 2 1 6 8 10 12 14 16
1016 1.10
10 1.00 -
T=(
102 0.90
101 0.80
108 0.70
106 0.60
10 0.50
102 black markers: coefficients 0.40
green line: leading asymptotics 0.30
10" L r=3 L
0.20 ! 3 o, -
0 5 10 15 20 0 5 10 15 20 2 30 3

(The asymptotics is exact. This is not a problem of incorrect fit parameters etc.)

Paul-H. Balduf, U Oxford Statistics of Feynman integrals 28


https://paulbalduf.com/research

Asymptotics
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Large-loop asymptotics and N-dependence
» Use exact enumeration and asymptotics in O-dimensional theory [Balduf and Thiirigen 2024].

Mathematical

. 1 . .
» E.g. asymptotics p; ~ e implies zeros at N € {—4,—6,...}. Institute
2
location N of root largest root
-4 ® ® s ® e 000088 8O
-6 a A ®®® 008
n
8. -
w
-10 "y
L] C‘ (\s]
-12 LI
0: 0-dim without symfactor @ | 4" largest root
-14 o 0-dim with symfactor .
6 m: 4-dim with symfactor 0 L
U 6 3 0 12 14 16
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Asymptotics
[e]e] e}

Large-loop asymptotics and N-dependence
» Use exact enumeration and asymptotics in O-dimensional theory [Balduf and Thiirigen 2024].

Mathematical

» E.g. asymptotics p; ~ W implies zeros at N € {—4,—6,...}. Institute
2

» large-L-expansion is factorially divergen, large-N-expansion is not. How that? Consider
average order of polynomial at fixed L,

N SR < (N 1 1 25 3 111
(k)L._pL|N:1;k[N]pL(N)_ipL(N) ’Nzl S0+ 57— T3+ 5@+ 5+

The (maximum) degree of p; in N grows like %L. But (k), grows only logarithmically.

location N of root largest root 1.1-
-4 ® ® s 5000000000 1.0
. 0.9
-6 a s ® e 08 8 e
s ® 0.8
-8® . 0.7+
v .
- 0.6
10 pt ] e i
e O 0.5
~12 ] 5 = 0.4 black markers: data
0: 0-dim without symfactor @ | 4" largest root . ee line: leading asymptotics
14 . . B = 0.3
©: 0-dim with symfactor u blue line: asymptotics including L? corrections
(L 4dim with symfactor 10 L 0.2 o B L
-16 LT
’ 4 6 8 10 12 14 16 3 5 8 10 12 15 20 25 30 35

At 30 loops, mean order is 1 < 20
= polynomials are heavily dominated by lowest-order summands N°, .
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Asymptotics
[e]ele] ]

Asymptotics of the beta function

Mathematical

» Coefficient 3, grows factorially with L. Ratio r, := B.11/(L - 5L) should have finite limit, msiute
and power series expansion in

~l=

In O- dimensional theory, known exactly [Balduf and Thiirigen 2024]:
2
24 N5l 3NAN-80.L 4 . Observe that values for L < 18 suggest wrong
asymptotlcs.

1L
red lines: wrong asymptotics N=4

1.0

extrapolated from 10=Ls<18

0.9 o N-1

0.8 N=_2

0.7

s: cocfficients 1

symptotics

red/black marl

green lines: correct lead:
|

1 1 1 1 1 1 1

© 100 50 25 8 13 10
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Asymptotics of the beta function

» Coefficient 3, grows factorially with L. Ratio r, := fB141/(L - 8.) should have finite limit, mtse
and power series expansion in

~l=

In O—dimensional theory, known exactly [Balduf and Thiirigen 2024]:

2
24 N5l 3NAN-80.L 4 . Observe that values for L < 18 suggest wrong

asymptotlcs.

> In 4-dimensional theory, instanton computation [McKane 2019] yields r, ~ 1+ 1281
Only know data for L < 18. Does not match expected asymptotics.

Iy, g
Lof X _ 222 |
red lines: wrong asymptotics N=4 red lines: (probably) wrong asymptotics ~ N=4
extrapolated from 10=Ls<18 2.0 extrapolated from 10=L=18
N=1 N=1
0.9 o 1.8 ‘
1.6 N=-2
0.8 N=_92 1.4+
¥~ — 1.2+
0.7 L0 1
red/black markers: cocfficients l 0.8 % red/black markers: coefficients ~ +
green lines: correct leading asymptotics . green lines: conjectured leading asymptotics T,
| I |
1 1 1 L L 1 L 111 L L L L
100 50 2 18 13 10 © 100 50 25 18 13 10

= Even at 18 loops, we do not observe the leading asymptotic growth rate.
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Conclusion
o

Conclusion

Mathematical

1. Considered Feynman periods in ¢ theory, subdivergence-free vertex diagrams. Institute
Random graphs G, 4 are a decent model.

2. Number of graphs grows factorially, perturbation series diverges.
3. Periods in ¢j-theory have a fairly smooth distribution, with outliers.
4. Period value is correlated with many properties of the graph.
5. Correlations can be exploited for importance sampling, increases speed 1000-fold
= Numerical effort to compute primitive beta function is much lower than expected.
6. Asymptotics of number of graphs, including O(N)-symmetry, can be computed exactly.

7. Even for number of primitive graphs alone (=setting all periods to unity), need L > 20 to
see leading asymptotics. Similar (or worse) for 4-dimensional primitive beta function.
8. N-dependence “converges faster” than absolute value (e.g. zeros at negative integer).
“Asymptotic regime” depends on the quantity in question, can be L =5 or L > 50.
Big picture: We're moving towards “big data perturbation theory”, exploiting statistics,
correlations, and asymptotics of billions of graphs. To determine L = 16 primitive beta function
to within 400ppm, less than 0.01% of Feynman integrals have actually been computed.
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Minimum required loop number

Mathematical
Institute

» In order to reach a given accuracy with the rt"-order asymptotic expansion, how many
loops are needed?

» Depends heavily on N.
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Importance sampling for periods

Mathematical
Institute

» Idea of importance sampling: If we know a function P which approximates the period
and P is fast to compute, then:

1. Evaluate (P) in a large sample of size N; - n. B

2. Generate a smaller random sample S of n graphs weighted proportional to P. Evaluate
<%>S in this sample.

3. Law of conditional probability:

(P) = @ ' Iarg’i’p.e,

slow individually, but fast individually
but small sample
» First factor sampling accuracy is limited by § := (%) (i.e. accuracy of the prediction
function).
» Second factor sampling accuracy is limited by feasible N, i.e. by speed of the prediction
function P. Scales like \/1,\7 o +/ta, where t, ... approximation time for one graph.

» Use Metropolis-Hastings sampling algorithm [Metropolis et al. 1953; Hastings 1970].
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Hepp bound

Mathematical
Institute

» Several combinatorial invariants are known that respect the symmetries of P.

» One example: Hepp bound H(G) [Hepp 1966; Panzer 2022]. Arises from “tropicalization” of
period integral, replacing Symanzik polynomial 9.

o0 |Eg|
_E)= H/ dac 012 = o

Y6 trop = Maximum monomial of 7.

» Which monomial is maximum depends on the particular values of edge variables {a.}.

» The Hepp sector integrals of H(G) are over monomials = can be done analytically
= recursive combinatorial formula for #(G) without explicit integration.
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Martin invariant

Mathematical
Institute

» If G is a decompletion, the Martin invariant is the linear coefficient of the Martin
polynomial M(G, N) := % [Martin 1977; Panzer and Yeats 2023].

» Equals evaluation of O(N)-symmetric vector symmetry factor at N = —2.

» Replace every edge in G by k parallel edges, compute J and M, obtain “higher” Martin
invariant M1,

» Like Hepp bound, can be computed by explicit combinatorial enumeration.
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Martin invariant

Mathematical

Institute

» Martin invariant MK [Panzer and Yeats 2023] is O(NN) vector-model symmetry factor (circuit
partition polynomial J(G, N)) at N = —2 for a graph where every edge is replaced by k
parallel edges.

» Linear function of In MY gives § ~ 4%, higher M are much better. k™-order polynomial
of M can get very accurate when cobined with cuts In(¢j), reach 6 < 0.1%.

» Like Hepp, requires recurrence over decompositions and caching.

Period as a function of Martin invariant, Double Log plot Cubic Martin+Cut model
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