Composite Operators in Quantum (super)gravity

Axel Maas @axelmaas

8th of July 2025 EPSHEP 2025 Marseille France

• QFT setting – no strings or other non-QFT structures

$$Z = \int_{\Omega} Dg_{\mu\nu} D\phi^a e^{iS[\phi,e] + iS_{EH}[e]}$$

• QFT setting – no strings or other non-QFT structures

Standard gravity

$$Z = \int_{\Omega} Dg_{\mu\nu} D \phi^{a} e^{iS[\phi,e] + iS_{EH}[e]}$$

• QFT setting – no strings or other non-QFT structures

Standard gravity

$$Z = \int_{\Omega} Dg_{\mu\nu} D \phi^{a} e^{iS[\phi,e] + iS_{EH}[e]}$$

- QFT setting no strings or other non-QFT structures
- Diffeomorphism is like a gauge symmetry [Hehl et al.'76]
 - Arbitrary local choices of coordinates do not affect observables – pure passive formulation

$Z = \int_{\Omega} Dg_{\mu\nu} D\phi^{a} e^{iS[\phi,e] + iS_{EH}[e]}$

Standard gravity

- Integration variable currently arbitrary choice
 - Manifold topolgies when factoring out diffeomorphisms
 - Other choices (e.g. vierbein) possible when integrating over diffeomorphism orbits

- Integration variable currently arbitrary choice
 - Manifold topolgies when factoring out diffeomorphisms
 - Other choices (e.g. vierbein) possible when integrating over diffeomorphism orbits

- Integration variable currently arbitrary choice
 - Manifold topolgies when factoring out diffeomorphisms
 - Other choices (e.g. vierbein) possible when integrating over diffeomorphism orbits
- Setup of FRG/Asymptotic safety, CDT, EDT

 $\langle O \rangle = \int_{\Omega} Dg_{\mu\nu} D \phi^a O e^{iS[\phi,e] + iS_{EH}[e]}$

$\bigcup_{\mathbf{A}} \neq \langle O \rangle = \int_{\Omega} Dg_{\mu\nu} D \phi^a O e^{iS[\phi,e] + iS_{EH}[e]}$ non-zero

$0 \neq \langle Q \rangle = \int_{\Omega} Dg_{\mu\nu} D \phi^a O e^{iS[\phi,e] + iS_{EH}[e]}$ Needs to be invariant to be non-zero

$\bigoplus_{\mathbf{A}} \neq \langle \mathbf{O} \rangle = \int_{\Omega} Dg_{\mu\nu} D \phi^{a} O e^{iS[\phi,e] + iS_{EH}[e]}$

Needs to be invariant

- Locally under Diffeomorphism
- Locally under Lorentz transformation

to be non-zero

$\bigoplus_{\mathbf{A}} \neq \langle \mathbf{O} \rangle = \int_{\Omega} Dg_{\mu\nu} D \phi^{a} O e^{iS[\phi, e] + iS_{EH}[e]}$

Needs to be invariant

- Locally under Diffeomorphism
- Locally under Lorentz transformation
- Locally under gauge transformation
- Globally under custodial,... transformation to be non-zero

[Ambjorn et al.'12,19, Maas'19]

- Average metric vanishes: $\langle g_{\mu\nu}(x) \rangle = 0$
 - No preferred events, maximally symmetric

- Average metric vanishes: $\langle g_{\mu\nu}(x) \rangle = 0$
 - No preferred events, maximally symmetric
- Observables need to be diffeomorphisminvariant
 - Average space-time is an observation from invariants like the curvature scalars

[Ambjorn et al.'12,19, Maas'19]

- Average metric vanishes: $\langle g_{\mu\nu}(x) \rangle = 0$
 - No preferred events, maximally symmetric
- Observables need to be diffeomorphisminvariant
 - Average space-time is an observation from invariants like the curvature scalars
 - Local observables need to be composite
 - E.g. again curvature scalars

[Ambjorn et al.'12,19, Maas'19]

- Average metric vanishes: $\langle g_{\mu\nu}(x) \rangle = 0$
 - No preferred events, maximally symmetric
- Observables need to be diffeomorphisminvariant
 - Average space-time is an observation from invariants like the curvature scalars
 - Local observables need to be composite
 - E.g. again curvature scalars
 - Arguments/distances need to be invariants
 - E.g. geodesic distances [Ambjorn et al.'12, Schaden '15, Maas'19]

Causal Dynamical Triangulation [Ambjorn et al.'12,19]

$\langle O \rangle = \int_{O} Dg_{\mu\nu} D \phi^a O e^{iS[\phi,e] + iS_{EH}[e]}$

Causal Dynamical Triangulation [Ambjorn et al.'12,19]

 $\langle O \rangle = \int_{O} Dg_{\mu\nu} O e^{iS_{EH}[e]}$

Causal Dynamical Triangulation [Ambjorn et al.'12,19]

Toplogy of manifold

 $\langle O \rangle = \int_{O} Dd(X,Y)Oe^{iS_{EH}[e]}$

Causal Dynamical Triangulation

Toplogy of manifold – diffeomorphism invariant!

 $\langle O \rangle = \int_{\Omega} Dd(X,Y) Oe^{iS_{EH}[e]}$

Causal Dynamical Triangulation

Toplogy of manifold – diffeomorphism invariant!

 $\langle O \rangle = \int_{\Omega} D d(X, Y) O e^{iS_{EH}[e]}$ Restricted to foliable, pseudo-Riemannian manifolds with fixed global structure

Causal Dynamical Triangulation

Causal Dynamical Triangulation

Wick rotation allows use of standard Monte-Carlo (lattice) techniques

$$\langle O \rangle = \sum_{\Omega} Dd(X_i, Y_j) Oe^{S_{EH}[e]}$$

Replaced with a finite, discrete triangulation by simplices – basically tetrads (Regge calculus)

Causal Dynamical Triangulation

Wick rotation allows use of standard Monte-Carlo (lattice) techniques

$$\langle O \rangle = \sum_{\Omega} D d(X_i, Y_j) O e^{S_{EH}[e]}$$

Replaced with a finite, discrete triangulation by simplices – basically tetrads (Regge calculus)

Systematic errors due to statistics, finite volume and discretization

Space-time in CDT

Space-time in CDT

Maximum volume constrained by finite size

Space-time in CDT

Periodicity by boundary conditions

Space-time in CDT

Space-time in CDT

[Ambjorn et al.'12,'19 Maas, Plätzer, Pressler'25]

Space-time in CDT

Space-time in CDT

Curvature scalar R can be numerically Estimated from Q

Space-time in CDT

Space-time in CDT

Only cosmological constant, no inflation!

Space-time in CDT

An average gauge-fixed metric would be close to the de Sitter-like

Like in classical general relativity

Space-time in CDT Maas, Plätzer, Pressler'25] Per configuration histogram of the size - relatively similar, no large fluctuations Spatial global observables ∛#Simplices 10 5 <Q> 0.5 100 25 Ħ $<|\Delta Q|>$ 50 20 0.1 -40-20 0 2 15 ³√Simplices -20 10 0 τ An average gauge-fixed metric 20 would be close to the de Sitter-like

[Ambjorn et al.'12,'19

Like in classical general relativity
[Ambjorn et al.'12,'19 Maas, Plätzer, Pressler'25]

• Geon: A diff-invariant composite scalar operator

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)\rangle/\langle 11\rangle$

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)\rangle/\langle 11\rangle$
 - CDT: $\langle \Delta Q(x) \Delta Q(y)
 angle / \langle 11
 angle$

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)\rangle/\langle 11\rangle$
 - CDT: $\langle \Delta Q(x) \Delta Q(y)
 angle / \langle 11
 angle$

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)\rangle/\langle 11\rangle$
 - CDT: $\langle \Delta Q(x) \Delta Q(y)
 angle / \langle 11
 angle$

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)\rangle/\langle 11\rangle$
 - CDT: $\langle \Delta Q(x) \Delta Q(y)
 angle / \langle 11
 angle$

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)\rangle/\langle 11\rangle$
 - CDT: $\langle \Delta Q(x) \Delta Q(y)
 angle / \langle 11
 angle$

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)\rangle/\langle 11\rangle$
 - CDT: $\langle \Delta Q(x) \Delta Q(y) \rangle / \langle 11 \rangle$
 - Self-bound gravitons, akin to a glueball

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)
 angle/\langle 11
 angle$
 - CDT: $\langle \Delta Q(x) \Delta Q(y) \rangle / \langle 11 \rangle$
 - Self-bound gravitons, akin to a glueball

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)\rangle/\langle 11\rangle$
 - CDT: $\langle \Delta Q(x) \Delta Q(y) \rangle / \langle 11 \rangle$
 - Self-bound gravitons, akin to a glueball

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)\rangle/\langle 11\rangle$
 - CDT: $\langle \Delta Q(x) \Delta Q(y) \rangle / \langle 11 \rangle$
 - Self-bound gravitons, akin to a glueball

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)\rangle/\langle 11\rangle$
 - CDT: $\langle \Delta Q(x) \Delta Q(y)
 angle / \langle 11
 angle$
 - Self-bound gravitons, akin to a glueball

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)\rangle/\langle 11\rangle$
 - CDT: $\langle \Delta Q(x) \Delta Q(y) \rangle / \langle 11 \rangle$
 - Self-bound gravitons, akin to a glueball

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)\rangle/\langle 11\rangle$
 - CDT: $\langle \Delta Q(x) \Delta Q(y) \rangle / \langle 11 \rangle$
 - Self-bound gravitons, akin to a glueball

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)\rangle/\langle 11\rangle$
 - CDT: $\langle \Delta Q(x) \Delta Q(y)
 angle / \langle 11
 angle$
 - Self-bound gravitons, akin to a glueball

- Geon: A diff-invariant composite scalar operator
 - Continuum: Curvature fluctuations: $\langle R(x)R(y)\rangle/\langle 11\rangle$
 - CDT: $\langle \Delta Q(x) \Delta Q(y)
 angle / \langle 11
 angle$
 - Self-bound gravitons, akin to a glueball

- Concept of invariant observables carries
 - Physical observables are invariant under local transformations
 - Quasi-particle like behavior of composites

- Concept of invariant observables carries
 - Physical observables are invariant under local transformations
 - Quasi-particle like behavior of composites
- Surprising implications for supersymmetry

- Concept of invariant observables carries
 - Physical observables are invariant under local transformations
 - Quasi-particle like behavior of composites
- Surprising implications for supersymmetry
 - Combining gravity with supersymmetry makes it a local gauge symmetry
 - Two supersymmetry gauge transformations make one local diffeomorphism transformation

- Concept of invariant observables carries
 - Physical observables are invariant under local transformations
 - Quasi-particle like behavior of composites
- Surprising implications for supersymmetry
 - Combining gravity with supersymmetry makes it a local gauge symmetry
 - Two supersymmetry gauge transformations make one local diffeomorphism transformation
 - Supermultiplets are as color multiplets

- Concept of invariant observables carries
 - Physical observables are invariant under local transformations
 - Quasi-particle like behavior of composites
- Surprising implications for supersymmetry
 - Combining gravity with supersymmetry makes it a local gauge symmetry
 - Two supersymmetry gauge transformations make one local diffeomorphism transformation
 - Supermultiplets are as color multiplets
 - Spin of particles can be locally changed spin cannot be an observable

Consequences

Composite operators need to be completely neutral

[Maas'23]

Consequences

 ϕ

W

- Composite operators need to be completely neutral
 - Consider supergravity multiplet and scalar multiplet
 - Linear representation

e

 ψ

F

[Maas'23]

Consequences

- Composite operators need to be completely neutral
 - Consider supergravity multiplet and scalar multiplet
 - Linear representation
- Observables need to be invariant under supersymmetry transformations (and all other)

$$S = \begin{pmatrix} \phi \\ \omega \\ D \end{pmatrix}^{+} \Gamma D \begin{pmatrix} e \\ \psi \\ F \end{pmatrix}$$

[Maas'23]

Consequences

- Composite operators need to be completely neutral
 - Consider supergravity multiplet and scalar multiplet
 - Linear representation
- Observables need to be invariant under supersymmetry transformations (and all other)
 - Supersymmetry can be at most 'discovered' as color
 - Individual superpartners cannot be detected
 - Could explain absence of observable supersymmetry

$$S = \begin{vmatrix} \phi \\ \omega \\ D \end{vmatrix}^{+} \Gamma D \begin{vmatrix} e \\ \psi \\ F \end{vmatrix}$$

Consequences

- Composite operators need to be completely neutral
 - Consider supergravity multiplet and scalar multiplet
 - Linear representation
- Observables need to be invariant under supersymmetry transformations (and all other)
 - Supersymmetry can be at most 'discovered' as color
 - Individual superpartners cannot be detected
 - Could explain absence of observable supersymmetry
 - But what is spin?

$$S = \begin{vmatrix} \phi \\ \omega \\ D \end{vmatrix}^{+} \Gamma D \begin{vmatrix} e \\ \psi \\ F \end{vmatrix}$$

 In some gauges metric seems to be dominated by the classical metric

 In some gauges metric seems to be dominated by the classical metric – CDT results! Assume to hold in SuGra

- In some gauges metric seems to be dominated by the classical metric – CDT results! Assume to hold in SuGra
 - A vacuum expectation value from the classical solution

 a Brout-Englert-Higgs effect for gravity

- In some gauges metric seems to be dominated by the classical metric – CDT results! Assume to hold in SuGra
 - A vacuum expectation value from the classical solution

 a Brout-Englert-Higgs effect for gravity
 - Same approach as in electroweak physics

- In some gauges metric seems to be dominated by the classical metric – CDT results! Assume to hold in SuGra
 - A vacuum expectation value from the classical solution

 a Brout-Englert-Higgs effect for gravity
 - Same approach as in electroweak physics
- Can be applied to composite operators by the Fröhlich-Morchio-Strocchi mechanism

$$S = \begin{pmatrix} \phi \\ \omega \\ D \end{pmatrix}^{+} \Gamma D \begin{pmatrix} e \\ \psi \\ F \end{pmatrix}$$

- In some gauges metric seems to be dominated by the classical metric – CDT results! Assume to hold in SuGra
 - A vacuum expectation value from the classical solution

 a Brout-Englert-Higgs effect for gravity
 - Same approach as in electroweak physics
- Can be applied to composite operators by the Fröhlich-Morchio-Strocchi mechanism
 - Assume suitable vacuum expectation values also for scalar and gravitino, and neglect auxillary fields

$$S = \begin{pmatrix} \phi \\ \omega \\ D \end{pmatrix}^{+} \Gamma D \begin{vmatrix} e \\ \psi \\ F \end{vmatrix}$$

- In some gauges metric seems to be dominated by the classical metric – CDT results! Assume to hold in SuGra
 - A vacuum expectation value from the classical solution

 a Brout-Englert-Higgs effect for gravity
 - Same approach as in electroweak physics
- Can be applied to composite operators by the Fröhlich-Morchio-Strocchi mechanism
 - Assume suitable vacuum expectation values also for scalar and gravitino, and neglect auxillary fields
 - Expansion of composite yields effectively a fermion

$$S = \begin{vmatrix} \phi \\ \omega \\ D \end{vmatrix}^{+} \Gamma D \begin{vmatrix} e \\ \psi \\ F \end{vmatrix} \stackrel{e \sim \delta, \psi \sim \Delta, \phi \sim v}{=} \operatorname{const} + \omega^{+} \Gamma$$

Summary

 Only composite objects can be observables in quantum gravity

Summary

 Only composite objects can be observables in quantum gravity

- CDT simulations hints that these create reasonable physical degrees of freedom
 - Self-bound gravitons with a mass: Geons

Summary

 Only composite objects can be observables in quantum gravity

- CDT simulations hints that these create reasonable physical degrees of freedom
 - Self-bound gravitons with a mass: Geons

• Yields an new view on supersymmetry
Summary

 Only composite objects can be observables in quantum gravity

- CDT simulations hints that these create reasonable physical degrees of freedom
 - Self-bound gravitons with a mass: Geons

 Yields an new view on supersymmetry ...and why it may escape conventional detection