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Ω
Dgμ νDϕ

aeiS [ϕ , e ]+iSEH [e ]

● QFT setting – no strings or other non-QFT structures
● Diffeomorphism is like a gauge symmetry [Hehl et al.’76]

● Arbitrary local choices of coordinates do not affect 
observables – pure passive formulation

Standard gravity
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Z=∫
Ω
Dgμ νDϕ

aeiS [ϕ , e ]+iSEH [e ]

Other fields

Standard gravityStandard gravity
coupling

● Integration variable currently arbitrary choice
● Manifold topolgies when factoring out 

diffeomorphisms
● Other choices (e.g. vierbein) possible when 

integrating over diffeomorphism orbits
● Setup of FRG/Asymptotic safety, CDT, EDT

Setup
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Observables

● Average metric vanishes:
● No preferred events, maximally symmetric 

● Observables need to be diffeomorphism-
invariant

● Average space-time is an observation from 
invariants like the curvature scalars

● Local observables need to be composite
● E.g. again curvature scalars

● Arguments/distances need to be invariants
● E.g. geodesic distances [Ambjorn et al.’12, Schaden ‘15, Maas’19]

⟨gμ ν(x)⟩=0

[Ambjorn et al.’12,19,
 Maas’19]
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⟨O⟩=∫
Ω
Dd (X ,Y )OeiSEH [e ]

Causal Dynamical Triangulation

Toplogy of manifold 
– diffeomorphism invariant!

Restricted to foliable,
pseudo-Riemannian manifolds
with fixed global structure

[Ambjorn et al.’12,19]
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Causal Dynamical Triangulation

Replaced with a finite, discrete triangulation
by simplices – basically tetrads
(Regge calculus)

[Ambjorn et al.’12,19]

Wick rotation allows use
of standard Monte-Carlo
(lattice) techniques

Systematic errors due to statistics, finite volume 
and discretization
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Basically distances of
surface points on a 
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Curvature scalar R can
be numerically
Estimated from Q
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     large fluctuations

[Ambjorn et al.’12,’19
 Maas, Plätzer, Pressler’25]

An average gauge-fixed metric
would be close to the de Sitter-like

Like in classical general relativity
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Supergravity

● Concept of invariant observables carries
● Physical observables are invariant under local 

transformations
● Quasi-particle like behavior of composites

● Surprising implications for supersymmetry
● Combining gravity with supersymmetry makes it 

a local gauge symmetry
● Two supersymmetry gauge transformations make 

one local diffeomorphism transformation
● Supermultiplets are as color multiplets
● Spin of particles can be locally changed – spin 

cannot be an observable

[Maas’23]
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But what is spin?

● In some gauges metric seems to be dominated by the 
classical metric – CDT results! Assume to hold in SuGra

● A vacuum expectation value from the classical solution 
– a Brout-Englert-Higgs effect for gravity

● Same approach as in electroweak physics
● Can be applied to composite operators by the Fröhlich-

Morchio-Strocchi mechanism
● Assume suitable vacuum expectation values also for 

scalar and gravitino, and neglect auxillary fields
● Expansion of composite yields effectively a fermion

S= (
ϕ
ω
D )

+

ΓD (
e
ψ

F ) =
e∼δ ,ψ∼Δ ,ϕ∼v

const+ω
+

Γ

[Maas’23,’19]
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Summary

● Only composite objects can be 
observables in quantum gravity

● CDT simulations hints that these create 
reasonable physical degrees of freedom

● Self-bound gravitons with a mass: Geons

● Yields an new view on supersymmetry 
…and why it may escape conventional 
detection
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