Searches for unusual signatures in leptonic and missing energy channels with the ATLAS detector

Eleanor Woodward

On Behalf of the ATLAS Collaboration

EPS-HEP, 7 July 2025

Long-lived Particles in ATLAS

- Beyond Standard Model (BSM) models may yield "long-lived" particles (LLPs), due to weak couplings, small mass splittings, or off-shell decays
 - Supersymmetry (SUSY), Dark Sectors, Axion-like
 Particles (ALPs), Heavy Neutral Leptons (HNLs)...
- LLPs leave unusual signatures, requiring new triggers + analysis and reconstruction techniques:
 - Displaced electron and muon triggers
 - Displaced tracks, displaced vertices, high specific ionization tracks, delayed signatures...
- This talk → final states with leptons and missing energy (MET)
 - For ATLAS LLP searches with hadronic final states \rightarrow see previous <u>talk</u> by P. Scholer

Displaced Track and Vertex Reconstruction

Large Radius Tracking (LRT) Improvements

- Standard track reconstruction in ATLAS: v. limited efficiency for displaced trajectories (cut at |d₀| < 5 mm)
- Secondary (LRT) tracking: uses leftover hits to reconstruct tracks for 3 < |d₀| < 300 mm
- Since Run 2, LRT algorithm sped up and fake rate reduced → included in trigger for Run 3 (allows lower pT thresholds) + run on all offline events

Displaced Vertexing

- Displaced tracks originating from potential LLP decays vertexed through dedicated secondary vertexing algorithms
- Optimized vertexing for displaced leptonic vertices → increased signal acceptance

Details on Large Radius Tracking, Displaced Vertexing Performance 3

True electron $|d_0|$ [mm]

Calorimeter Timing

Electromagnetic (EM) Calorimeter Timing

- Calibrated timing measurements from Liquid Argon (LAr) calorimeter w/ O(200 ps) resolution for EM-objects (dominated by beamspread)
 - Potential discrimination from prompt background for LLP signals with delays >~O(ns)
- Timing calibration: centers distribution of prompt objects at t=0

ATLAS Tile Calorimeter β_{TOF} Calibration

Hadronic Calorimeter Timing

- Meta-/stable- LLPs not expected to shower in EM calorimeter: tile calorimeter timing signal with resolution ~O(1 ns)
- Used to estimate β from particle time-of-flight

Pixel dE/dX + β -calo

5

- Search for (meta)stable (*τ* > 3 ns) massive (2 GeV < m < 3 TeV) charged particles predicted in various SUSY scenarios
 - Leave high specific ionization (dE/dx) tracks in Pixel detector (agnostic to decay mode)
 - Follow-up of prev. search [JHEP 06 158]) which saw 3.3σ excess at m_{11P}=1.4 TeV
- Two independent searches:
 - β -search: require >=1 high dE/dx track with β measured from pixel dE/dX and Tile calorimeter time-of-flight (TOF)
 - **Di-track search**: require >=2 opposite-sign high dE/dx tracks
- Both searches: mass of LLP from β and pT measurements as analysis variable

Pixel dE/dX + β -calo

<u>arXiv: 2502.06694</u> 140 fb⁻¹, s=√13 TeV

- Agreement with SM observed
- Most stringent limits to date for detector-unstable LLP with τ > 10ns !
 - Di-track: stau limits
 - β -search: chargino and gluino limits
- 7 events comprising excess in previous search \rightarrow all excluded by β_{TOF} selection

Displaced Heavy Neutral Leptons

 ℓ^+_{α}

 W^{+*}

- Heavy Neutral Leptons (HNLs) predicted in BSM theories of neutrino (Dirac or Majorana) mass including Type-I Seesaw Mechanism (prompt or long-lived)
- Search for long-lived HNLs from decay of W boson, with HNL decaying leptonically or semi-leptonically – mass 1-20 GeV (1-3 GeV semi-leptonic), $c\tau$ 0.1 mm - 1 m
 - Require >=1 displaced vertex (DV) with >=1 matched lepton tracks offline 0
 - SR: W mass window of m_{III}∈[40-90 GeV]/m_{II}_π∈ [70-90] GeV + 0 tagged b-jets in DV Ο

arXiv:2503.16213 140 fb⁻¹, s=√13 TeV

- Follow up of previous analysis [PRL 131 (2023) 061803] using same dataset
- Backgrounds: SM heavy flavor hadron decays (est. from MC in CR with inverted b-jet veto) + mis-reconstructed leptons (est. from data in W-mass sideband regions)

Displaced Heavy Neutral Leptons

 Higher masses and lower couplings excluded with respect to previous analysis using same dataset, due to inclusion of semi-leptonic channel and improvements to LRT algorithm !

Summary of HNL limits from ATLAS search program → vs. mass and lifetime (from <u>ATL-PHYS-PUB-2025-008</u>)

- No significant deviation from SM
- Limits placed on HNL mass and coupling to SM in both Single Lepton Flavor and Quasi-Degenerate HNL models (Dirac and Majorana scenarios) for 0.5 < m_N < 16 GeV

<u>arXiv:2503.16213</u> 140 fb⁻¹, s=√13 TeV

Displaced Leptons

- Search for pair-produced displaced leptons in Run 2 + partial Run 3
- Final states: ee, eµ, µµ + additional reco. states displaced e reconstructed as γ, and single-EM objects
 - ABCD Region (ee, eμ, μμ): uses new Run 3 Large Radius Tracking (LRT) triggers to extend to lower pT
 - EM-BDT Region (>=1 e or >=2e/γ): uses BDT (including calorimeter (LAr) precision timing) to isolate signal
- Data-driven background estimation in fake-enriched/negative timing CRs

Displaced Leptons

<u>arXiv:2410.16835</u> 140 fb⁻¹ @ s=√13.6 TeV + 56.3 fb⁻¹ @ s=√13.6

- No deviation from SM observed → exclusion of GMSB selectrons, smuons, and staus improved with respect to previous Run 2 only analysis [PRL127051802]
- Increased sensitivity to higher lifetimes from single-electron regions and to lower pT final states from LRT triggers
- Limits also set on dark chargino model: masses, lifetimes and mass splitting of chargino

Limits on Slepton Masses and Lifetimes

Long-Lived ALPs Interpretation

- Re-interpretation of two searches for axion-like particles (ALPs) produced in the decay of the SM Higgs and decaying to photons in extended regimes
 - $H \rightarrow Za \rightarrow l^+l^-\gamma\gamma$ search [<u>PLB 850 (2024) 138536</u>] for prompt ALPs (a) \rightarrow lifetime reweighting of MC samples + additional displacement-based uncertainty used to exclude to longer lifetimes ($c_\tau > 3 \text{ mm}$)/lower couplings

ATL-PHYS-PUB-2025-007

140 fb⁻¹, s=√13.6 TeV

11

 H→aa→yyyy search [EPJC 76 (2016) 210] for long-lived ALPs (a) → reinterpreted to extend to lower masses (0.01-0.1 GeV)

Summary and Conclusion

- Many new Run 2/Run 3 results searching for long-lived signatures in final states with leptons and MET
- Sophisticated reconstruction and analysis techniques for these challenging signatures have been and are being developed in ATLAS
- See P. Scholer's <u>talk</u> (hadronic final states) and <u>ATLAS Search Results</u> (latest summaries)
- Many scenarios have been ruled out, but more phase space left to explore
 - Run 3 is ongoing (~350 fb⁻¹ expected)
 - Only ~10% of full LHC expected luminosity (3000-4000 fb⁻¹) collected so far !

BACKUP

Pixel dE/dX + β -calo

<u>arXiv: 2502.06694</u> 140 fb⁻¹, s=√13 TeV

- Schematic of Tile calorimeter with values of pseudorapidity overlaid
- β_{TOF} measurements extracted from resolution-weighted average of timing measurements of Tile cells

- Distribution of events in di-track signal region
- Only events in mass compatibility window included

Displaced Heavy Neutral Leptons: Limits

Limits on Dirac Mass Scenarios

Limits on Majorana Mass Scenarios

Displaced Leptons

arXiv:2410.16835 140 fb⁻¹ @ s=√13 TeV + 56.3 fb⁻¹ @ s=√13.6

 Analysis Region flow chart: orthogonal regions defined by reconstructed lepton type, number, and pT

 $\widetilde{e}\widetilde{e}; \widetilde{e} \rightarrow e \widetilde{\chi}_{.}^{0}$ _ifetime [ns] 10⁴ **ATLAS** Exp. Combined Obs. Combined Exclusion of \rightarrow Exp. ABCD high-p. √s=13 TeV, 140 fb⁻¹ Obs. ABCD high-p 10³ - Vs=13.6 TeV, 56.3 fb⁻¹ Exp. ABCD LRT selectron and All limits at 95% CL Obs. ABCD LRT Exp. EM-BDT 10² Obs. EM-BDT PRL 127 (2021) 051802 10 split by analysis 10 10^{-2} ____ 10^{-3} 100 200 300 400 500 600 700 800 900 1000 m(ẽ) [GeV] $\widetilde{\tau}\widetilde{\tau};\widetilde{\tau}\to\tau\widetilde{\gamma}$ -ifetime [ns] Exp. Combined ATLAS Obs. Combined 10² /s=13 TeV, 140 fb⁻¹ Exp. ABCD high-p_ √s=13.6 TeV, 56.3 fb⁻¹ Obs. ABCD high-p Exp. ABCD LRT All limits at 95% CL Obs. ABCD LRT 10⊧ PRL 127 (2021) 051802 10-10 10^{-3} 500 600 100 200 300 400 700 m(τ̃) [GeV]