

What's new with light scalars!

Searches for Beyond Standard Model Higgs boson decays (including low mass resonances)

Judith Höfer – IFIC Valencia on behalf of the ATLAS collaboration

EPS-HEP, July 6-11 2025, Marseille

Overview

Motivation

New analyses

 $gg \rightarrow A$, tta

 $H \rightarrow Za, H \rightarrow aa$

References

Direct & associate production

$gg \rightarrow A \rightarrow \tau \tau$	JHEP 12 (2024) 126
tta, a \rightarrow bb	arXiv:2503.17254

Higgs portal

.....

. 🍉

$H \rightarrow Za \rightarrow II+jets$	arXiv:2411.16361
$H \rightarrow aa \rightarrow 4\tau$ (merged)	arXiv:2503.05463
$H \rightarrow aa \rightarrow 2\gamma 2\tau$	JHEP 03 (2025) 190
H → aa → 4b. 6b	arXiv:2507.01165

Motivation

Light Scalar Searches

Motivation & models

 Many BSM models addressing the shortcomings of the SM have extended Higgs sectors and can predict light (pseudo-)scalars 'a'

e.g. 2HDM, 2HDM+a, TRSM, portals to hidden sectors

- In many models light scalars have Yukawa-like couplings inherited from mixing with the SM Higgs boson
- Extensive search program at the LHC for different production mechanisms and in different final states

e.g. ATLAS searches for H \rightarrow aa

Motivation

Comments on experimental methods

Merged vs. resolved

- At lower mass of the light scalar, it will be produced with a significant Lorentz boost
 - the decay products are collimated and merge
 - motivates dedicated experimental techniques like double-b-taggers [1], merged μτ_{had} objects
 [2] or boosted di-τ objects [3]

[1] DeXTer: Deep Sets based Neural Networks for Low- $pT X \rightarrow bb$ Identification in ATLAS, ATL-PHYS-PUB-2022-042

[2] Improved reconstruction of highly boosted τ -lepton pairs in the $\tau\tau \rightarrow (\mu\nu_{\mu}\nu_{\nu})$ (hadrons + ν_{τ}) decay channels, 2412.14937

[3] Reconstruction and identification of pairs of collimated τ -leptons decaying hadronically, 2411.09357

Overview

Motivation

New analyses

 $gg \rightarrow A$, tta

 $H \to Za, \ H \ \to \ aa$

$\begin{array}{l} gg \ \rightarrow \ A, \ H \ \rightarrow \ Za, \ tta \\ gg \ \rightarrow \ A \ \rightarrow \ \ TT \end{array}$

- Search for CP-odd scalar A, m = 20 90 GeV
- gg \rightarrow A \rightarrow tt, \rightarrow eµ4v final state
- Select =1e, =1µ (opposite charge) events
- Main background: $Z \rightarrow \tau \tau$
- Main observable: m_{MMC}, a likelihood-based estimator of invariant di-τ mass
- Two signal regions: low mass and high mass

JHEP 12 (2024) 126

Largest local excess: 1.8 σ (m_A = 20 GeV)

7

$gg \rightarrow A, H \rightarrow Za, tta$ tta, $a \rightarrow bb$

- Search for light scalar a, m = 12 100 GeV
- tta production, $a \rightarrow bb$ decay (merged or resolved) ٠
- Select events with two leptons from tt and \geq 3 jet ٠
- Main background: tt+jets, especially tt+bb ٠
 - Derive re-weighting to improve modelling ►
- Main observables: number of b-tagged and double-b-٠ tagged jets, lepton-jet- and jet-jet-pairing BDT scores, discrimination NN score

arXiv:2503.17254

Overview

Motivation

New analyses

 $gg \rightarrow A$, tta

 $H \rightarrow Za, H \rightarrow aa$

$gg \rightarrow A, H \rightarrow Za, tta$ H $\rightarrow Za \rightarrow II+jets$

- Search for light scalar a, m = 0.5 3.5 GeV
- $H \rightarrow Za \text{ production}, a \rightarrow gg \text{ or } qq \text{ decay (merged)}$
- Select events with two leptons from Z and \geq 1 jet
- Main background: Z+jets
 - Derive NN-based re-weighting to improve modelling
- Main observables: lepton-lepton-jet invariant mass m_{IIJ}, NN-based a mass estimation from jet observables, classification NN score

arXiv:2411.16361

Largest local excess: 1.5 σ (m_a = 0.5 GeV, a \rightarrow gg)

 $H \rightarrow aa$

$H \rightarrow aa \rightarrow \tau \tau \tau \tau$

- Search for light scalar a, m = 4 15 GeV
- H \rightarrow aa production, a $\rightarrow \tau\tau \rightarrow \mu$, had decay (merged) \longrightarrow
- Select events with exactly two μτ_{had} objects (hadronic τ with opposite-charge μ inside) with mass < 15 GeV, and combined invariant mass slightly below Higgs mass (missing neutrinos)
- Main background: events with fake τ_{had} with nonprompt μ from hadron decays
 - Estimate with tight-to-loose data-driven method
- Main observable: (corrected) average mass of μτ_{had} objects

arXiv:2503.05463

No excess observed

Expected limit

Expected $\pm 1\sigma$

Expected $\pm 2\sigma$

60

$H \rightarrow aa$

\rightarrow aa \rightarrow $\gamma\gamma\tau_{had}\tau_{had}$

- Search for light scalar a, m = 10 60 GeV
- $H \rightarrow aa \text{ production}, a \rightarrow \gamma\gamma, a \rightarrow \tau_{had}\tau_{had} decay$ ٠ (resolved or merged)
- Select events with 2 photons and either one boosted ٠ di- τ candidate or two resolved τ -leptons
- Main background: continuum $\chi\chi$, χ jet and jet jet ٠ events, with jets misidentified as photons or τ_{had}
 - Estimate data-driven by parametrising ► continuum shape by an analytical function

ATLAS 10^{-1} $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

JHEP 03 (2025) 190

 $H \rightarrow aa$

ZH, H \rightarrow aa \rightarrow 4b

- Search for light scalar a, m = 12 60 GeV
- * ZH, H \rightarrow aa production, a \rightarrow bb decay (resolved or merged)
- Select events with 2 leptons or E_T^{miss} (2v) from the Z decay and at least 3 b-objects: b-tagged jets, double-b-tagged jets or displaced vertices outside of jets
- Main background: Z+jets, tt
 - Derive re-weighting to improve modelling
- Main observables: number of b-objects, NN-based quadruplet selection (object pairing), discrimination BDT score

NEW!

Z + light $H_{t} + > 1F$

tt + light

arXiv:2507.01165

AITANA IFIC

 $H \rightarrow aa$

ZH, H \rightarrow $a_1a_2 \rightarrow$ 4b / 6b

INEW!

arXiv:2507.01165

AITANA IFIC

Same analysis did also search for And even **cascade** decays $H \rightarrow a_1 a_2 \rightarrow$ decays to two scalars of different $3a_1 \rightarrow 6b (a_2 \rightarrow a_1a_1)$ mass H \rightarrow a₁a₂ \rightarrow 4b \rightarrow slightly different analysis strategy: no explicit pairing of b-objects, just \rightarrow same analysis strategy discrimination BDT score pZ $b_{\overline{h}}$ p_{(q9}) 0.7 0.6 $^{4b)}$ - 6.0 - ⁻ ATLAS ATLAS HÎ √s = 13 TeV, 140 fb⁻¹ a_1a_2 √s = 13 TeV, 140 fb⁻¹ 0.5 Observed Expected \pm 1 σ Expected \pm 1 σ $\stackrel{\sim}{\leftarrow} 0.5 \\ H)_{H} \times \frac{0.5}{H_{D}}$ Expected $\pm 2\sigma$ Î Expected $\pm 2\sigma$ B(H . 0.4 × ^{NS o} 0.3 p95% CL upper limits on Z0.2 0.2 All $a_1 \rightarrow bb$ 0.1 resolved or (merged! (15, 50) GeV (15, 90) GeV (20, 70) GeV (30, 80) GeV (20, 30) GeV (40, 60) GeV (50, 70) GeV mass point mass point First ever search Largest local excess: 3.28 σ (m_{a1.a2} = 50, 70 GeV) Largest local excess: $\sim 1 \sigma$ (m_{a1,a2} = 30, 80 GeV) 2.57 σ global for $H \rightarrow a_1a_2!$ Judith Höfer | ATLAS light scalar searches | EPS 2025 13

Conclusion Conclusion

• Many new exciting results for light scalar searches!

Thank you for your attention.

And compliments to all the analysis teams for their great analyses!

Backup

Interpretation as long-lived ALPs!

Axion-Like Particles

Both plots assume the ALPs exclusively decay to photons.

ATL-PHYS-PUB-2025-007

- Searches for light scalars can also be sensitive to ALPs, particularly when a $\rightarrow \gamma\gamma$
- Two existing searches (with an interpretation for ALPs or being a search for ALPs) ...
 - $H \rightarrow Za, a \rightarrow \gamma\gamma, m_a = 2 33 \text{ GeV}$ Phys. Lett. B 850 (2024) 138536
 - H \rightarrow aa \rightarrow 4y, m_a = 0.1 62 GeV Eur. Phys. J. C 84 (2024) 742
- ... have been re-interpreted:

