

Searches for new phenomena in hadronic final states using the ATLAS detector

Marawan Barakat On behalf of the ATLAS collaboration

09/07/2025

EPS-HEP CONFERENCE 07-11 JULY, 2025 PALAIS DU PHARO MARSEILLE, FRANCE

Why the hadronic final state ?

- High statistics available due to large QCD cross section in pp collisions
- **BSM particles decay predominantly to quarks and gluons**
- **Rich BSM phenomenology**, including dark QCD and WIMP-inspired dark sector models
- Many models predict couplings between new physics and 3rd generation quarks
- Fully hadronic channels enable broad and inclusive model-independent searches

Boosted Dijet+ISR γ

Search for boosted low-mass resonances decaying into hadrons produced in association with a photon in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

JHEP01(2025)099

top, charm + E_T^{miss}

Reinterpretation of searches for flavour-violating supersymmetry into flavour-violating dark matter models using 139 fb⁻¹ of ATLAS Run 2 data

ATL-PHYS-PUB-2025-010

Outline

Semi-Visible Jets

Search for new physics in final states with semi visible jets or anomalous signatures using the ATLAS detector

arXiv:2505.01634

Boosted dijet+ISR y

- Z' a spin-1 mediator coupling the SM to the dark sector
- A versatile candidate for both visible and invisible signatures
- Resonant production of a Z' mediator via $q\bar{q} \rightarrow \gamma + Z' \rightarrow \gamma + q\bar{q}$

Boosted dijet+ISR y

- Z' a spin-1 mediator coupling the SM to the dark sector
- A versatile candidate for both visible and invisible signatures
- Resonant production of a Z' mediator via $q\bar{q} \rightarrow \gamma + Z' \rightarrow \gamma + q\bar{q}$
- Challenging m_{Z'} range from 20-100 GeV

- decay to be more collimated
- maximum data recording rate

• The Lorentz boost of the Z' boson results in the $Z' \rightarrow q\bar{q}$

• The system is recoiling against an energetic ISR photon

Using the photon as a trigger to a trigger to bypass limitations on the

Analysis Strategy

- Challenging background from QCD + ISR γ
- Jets from multi-jets events can fake photons

| Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

JHEP01(2025)099

Analysis Strategy

- Challenging background from QCD + ISR γ
- Jets from multi-jets events can fake photons
- Events are split using the two-prong tagger D_2^{DDT}
 - Tagged region: $D_2^{\text{DDT}} < 0 \rightarrow \text{signal and resonant background}$
 - Anti-tagged region: $D_2^{\text{DDT}} \ge 0 \rightarrow \text{non-resonant QCD background}$

1 prong (QCD)

JHEP01(2025)099

- Backgrounds from $\gamma + V$ are modelled using MC simulation
- Their normalization and tagging efficiency are calibrated using a dedicated control regions

DESY.

Analysis Strategy

Boosted dijet+ISR y

arXiv:2408.00049

Analysis Strategy

- Backgrounds from $\gamma + V$ are modelled using MC simulation
- Their normalization and tagging efficiency are calibrated using a dedicated control regions

Boosted dijet+ISR y

11

Results

Boosted dijet+ISR y

No significant excess is observed in the invariant mass of the large jet

Exclusion limit on the coupling g_q up to 0.1 for the $m_Z' < 100$ GeV

Results

Boosted dijet+ISR y

arXiv:2408.00049

- Resonant production of a heavy Z' mediator via $pp \rightarrow Z' \rightarrow \chi_d \chi_d$
- High mass $m_{Z'}$ from 2 to 5 TeV

• Each χ_d hadronizes into a dark shower with visible and invisible components

- Resonant production of a heavy Z' mediator via $pp \rightarrow Z' \rightarrow \chi_d \chi_d$
- High mass $m_{Z'} \in 2.0$ to 3.0 TeV
- Invisible fraction controlled by parameter R_{inv}

• Each χ_d hadronizes into a dark shower with visible and invisible components

- Resonant production of a heavy Z' mediator via $pp \rightarrow Z' \rightarrow \chi_d \chi_d$
- High mass $m_{Z'} \in 2.0$ to 3.0 TeV
- Invisible fraction controlled by parameter R_{inv}

• Each χ_d hadronizes into a dark shower with visible and invisible components

Signal

| Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

Backgrounds

Semi-Visible Jets

Background (QCD)

• Jet mismeasurements \rightarrow fake aligned $E_{\rm T}^{\rm miss}$ mimicking signal topology Poor MC modelling for QCD motivates data driven background estimation

Input processing

Particle Flow Network (PFN) – Supervised Classifier

- Inputs: Up to 160 leading tracks (80 per jet) using 6 features: $p_T, \eta, \phi, E, d_0, z_0$
- Goal: Optimized for semi-visible jets signal vs. QCD background classification
- Architecture : An order and length agnostic classifier is trained over latent input space to learn the key features of the events

18

Analysis Strategy

ANTELOPE – Semi-Supervised Anomaly Detection

- Inputs: Up to 160 leading tracks (80 per jet) using 6 features: $p_T, \eta, \phi, E, d_0, z_0$
- Goal: Generalize to unknown BSM topologies (model independent)
- check for any deviations from the SM in data

| Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

Semi-Visible Jets

Architecture: a variational auto encoder is trained over the same PFN inputs to

No significant excess is observed, and good background-only fit quality obtained with PFN and ANTELOPE regions

| Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

Results

Semi-Visible Jets

Semi-Visible Jets Setting upper-limit on the production cross section x BR

Results

reflecting the challenge of detecting highly invisible jet signatures

Dark Matter Flavour Violation

Model

Flavoured DM sector with 3 fermions representing 3 DM flavours χ_1, χ_2, χ_3

A colour charged scalar mediator coupling **DM-SM** introducing flavour violation

| Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

Model

Dark Matter Flavour Violation

 χ_i

Flavoured DM sector with 3 fermions representing 3 DM flavours χ_1, χ_2, χ_3

U

A colour charged scalar mediator coupling **DM-SM** introducing flavour violation

This analysis reuses a previous SUSY search with the same t,c+ $E_{\rm T}^{\rm miss}$ finale state First time at the LHC

Dark Matter Flavour Violation

Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

Analysis strategy

Re-interpretation by plugging the new DMFV signal into the SUSY analysis

Analysis strategy

Dark Matter Flavour Violation

At least 1 b-jet

$min\Delta\phi$ (E_T^{miss} and 4 Leading jets) > 0.4

Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

Analysis strategy

Dark Matter Flavour Violation

Selection optimised to reduce backgrounds from QCD and V+jets

 E_T^{miss}

Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

> 250 GeV

Dark Matter Flavour Violation Excluded up to 1.2 TeV for the high coupling D_{λ} region

| Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

Results

- Explored different fully hadronic final states
- Wide range of BSM models aiming to explain open questions
- Heavy use of advanced ML for object reconstruction and background estimation
- To be continued with Run 3

Searches for new phenomena in hadronic final states using the ATLAS detecto | Marawan Barakat | EPS 2025 | Marseille, France

Summary

28

Object / Variable	Selection Crit
Primary vertex	≥ 2 tracks with
Photon	$p_T > 150 \text{ GeV},$
Leading TAR jet	$p_T > 150 \text{ GeV},$
Jet isolation	No $R = 0.2$ jet
Jet width	$\rho \equiv \log(m_J^2/p_T^2)$
Track multiplicity	TAR jets must

Region	Photon Region	D_2^{DDT} Tag Category		
Signal Region (SR)	$ \eta_{\gamma} \leq 1.3 \text{ (Central)}$	Tagged $(D_2^{\text{DDT}} < 0)$		
Control Region 1 (CR1)	$ \eta_{\gamma} > 1.3$ (Forward)	Tagged		
Control Region 2 (CR2)	$ \eta_{\gamma} \leq 1.3 \text{ (Central)}$	Anti-tagged $(D_2^{\text{DDT}} \ge 0)$		
Control Region 3 (CR3)	$ \eta_{\gamma} > 1.3$ (Forward)	Anti-tagged		

Backup

Boosted dijet+ISR y

teria

 $p_T > 0.5 \text{ GeV}$ tight ID, $|\eta| < 1.37$ or $1.52 < |\eta| < 2.37$ $|\eta| < 2.0, \ 2m_J/p_T < 1, \ \Delta\phi(\gamma, J) > \pi/2$ within $\Delta R \leq 1.2$ of TAR jet with $p_T > p_T^{\gamma}$ > -5.4

have ≥ 3 associated tracks

1 prong

| Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

Backup

Boosted **dijet+ISR** γ

2 prongs

3 prongs

| Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

DESY.

Backup

Boosted dijet+ISR y Events / bin 10⁶

arXiv:2408.00049

Backup

Boosted dijet+ISR y

Backup

Boosted dijet+ISR y

ML Score

| Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

Using angle separation and transverse variables for the preselection

| Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

Analysis Strategy

Semi-Visible Jets

Variable	Preselection requirements							
N _{jets}	≥ 2							
N _{tracks} (jet)	≥ 3							
N _{lep}	= 0							
$p_{\rm T} j_1(j_2)$ [GeV]	> 450 (> 150)							
$\Delta \phi (j_1, j_2)$	> 0.8							
$ \eta_{j_1,j_2} $	< 2.1							
Δy	< 2.8							
$E_{\rm T}^{\rm miss}$ [GeV]	> 200							
$m_{\rm T}[{\rm GeV}]$	> 1500							
	SR _{PFN}	SR _{AD}	VR _{PFN}	VR _{AD}	CR			
W _{j2}		< 0.05						
PFN score	> 0.6	—	< 0.6	_	_			
ANTELOPE score	—	> 0.7	_	< 0.7	_			

Analysis Strategy

| Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

Semi-Visible Jets

Regions developed based on ML score and Jet Width

Odels

- Comparing PFN and ANTELOPE signal regions
- PFN region provides the better limit on the SVJ grid points by approximately a factor of two
- ANTELOPE region takes over with nearly an order of magnitude improvement on the emerging jet and gluino R-hadron alternate signals

Semi-Visible Jets

Backup

<u>4</u>) 4

Semi-Visible Jets

- Exclusion contour based on the PFN signal region.

Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

Results

• Sensitivity is strongest for lower R_{inv} and lower mediator mass, where production cross section is higher

Semi-Visible Jets

| Searches for new phenomena in hadronic final states using the ATLAS detector | Marawan Barakat | EPS 2025 | Marseille, France

Backup

- Two tagging algorithms, DL1r and DL1rc are running in sequence
- If a jet is classified as a b-jet, it is no longer considered as an input to the c-tagging algorithm
- This technique is very helpful to avoid large b-jet mistag rate

Boosted top tagging

Boosted top quark decays are close enough to be reconstructed as a large-R jet

| Searches for new phenomena in hadronic final states using the ATLAS detecto | Marawan Barakat | EPS 2025 | Marseille, France

Backup Top-tagging

80% efficiency WP $p_{\rm T} \in [350, 2500] \, {\rm GeV}$ $m \in [40, 600] \text{ GeV}$

Sensitive Variables

 $m_T(j, E_T^{miss})_{close}$ Transverse mass between the closest jet to E_T^{miss} and the E_T^{miss}

 E_T^{miss}

J

Backup

$min[m_T(b/c, E_T^{miss})]$ and $max[m_T(b/c, E_T^{miss})]$

Minimum and maximum transverse mass between b-tagged and c-tagged jets and the

m_{T2} STransverse mass

Looping over all possible combinations of $p_{T,1}$ and $p_{T,2}$

