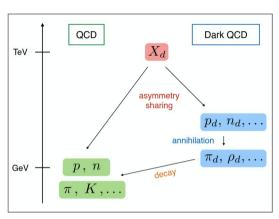


Searches for Unusual Signatures in Hadronic Channels with the ATLAS Detector

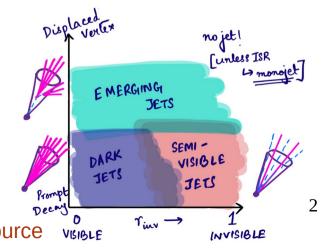
Patrick Scholer on behalf of the

ATLAS Collaboration

Carleton University

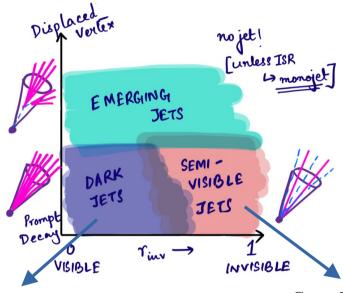

07.07.2025

EPS-HEP, Marseille



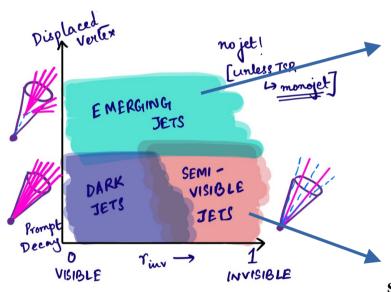
Unusual Hadronic Signatures

- Strongly coupled hidden/dark sector is one candidate to provide DM predicted by cosmology
- Pythia hidden valley module used for simulation of dark shower → best guesstimate
- ATLAS search program looking for generic final states:
 - Prompt dark shower, decay into SM particles
 - Prompt dark shower, partial decay into SM particles
 - Non-prompt dark shower, due to long lived dark mesons.
- Further unconventional hadronic signatures are being searched for, e.g hadronic LLP decay in the muon spectrometer shown today



ArXiv: 1502.05409

ATLAS Dark QCD Searches So Far


Search for Resonant Production of Dark Quarks in the Dijet Final State with the ATLAS Detector Search for non-resonant production of semi-visible jets using Run 2 data in ATLAS

ArXiv: 2311.03944

ArXiv: 2305.18037

Results Shown Today

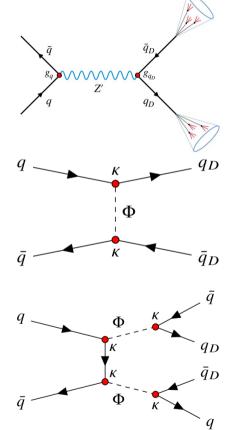
Search for emerging jets in pp collisions at $\sqrt{s} = 13.6$ TeV with the ATLAS experiment

ArXiv: 2505.02429

First ATLAS run 3 exotics result!

Search for new physics in final states with semi-visible jets or anomalous signatures using the ATLAS detector

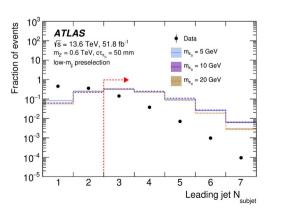
ArXiv: 2505.01634

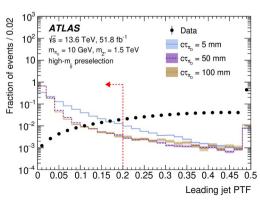

Emerging Jet Signature

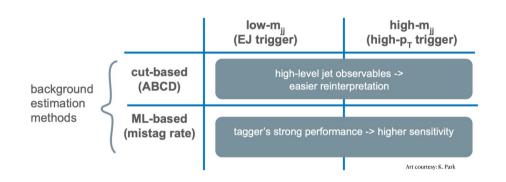
Physics:

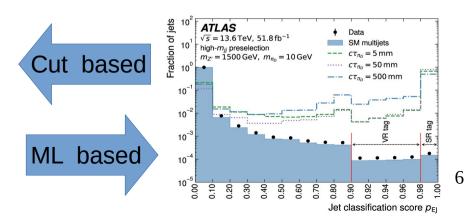
- Production of 2 dark quarks (q_D) and up to 2 SM quarks via:
 - s-channel decay of Z'
 - t-channel exchange of bi-fundamental scalar mediator
- Dark shower: Weak coupling of qD to SM quarks → macroscopic lifetime of q_D

Signature:

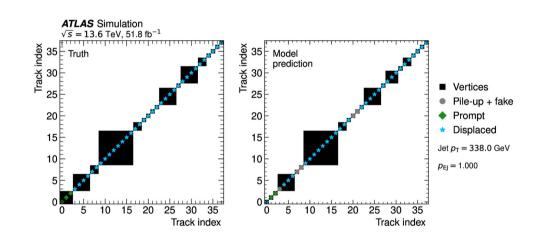

Jets with many displaced vertices in jet cone





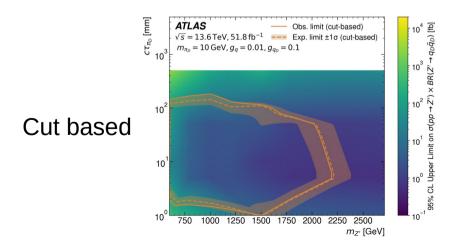

EJ Analysis Strategy

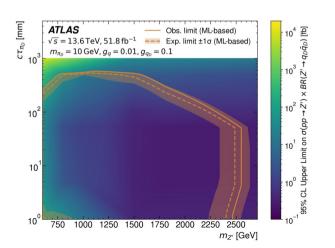
- Two analysis strategies:
 - Cut based
 - Machine learning based
- New EJ trigger deployed in Run 3
 - Based on prompt track fraction in jet
 - Targeting low m_{ii} region



EJ ML Based Analysis

- Architecture: Transformer jet tagging algorithm based on heavy flavor jet tagging (arXiv: 2505.19689):
 - Input: jet eta, 15 track variables for up to 200 associated tracks
 - Classification tasks: jet classification, track origin classification, track pair compatibility
- Background estimated from mistag rates
- Validation of background estimate using validation region of 0.9-0.98 p_{EJ}

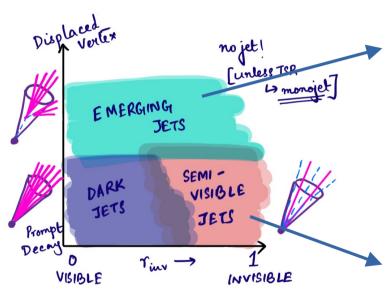




EJ Results

- No significant access observed
- Excluded $m_{z'}$ up to 2500 GeV (2150 GeV) with ML (cut) based analysis
- m_Φ excluded up to 1350 GeV

Strategy	Region	Predic	ction (±	Observed yield	
Cut-based	High-m _{jj}	7.5	±1.1	±1.1	8
	Low-m _{jj}	17.4	±5.1	±5.1	10
ML-based	High-m _{jj}	4.5	±0.3	±2.8	3
	Low-m _{jj}	31.8	±0.8	±7.5	24



ML based

Results Shown Today

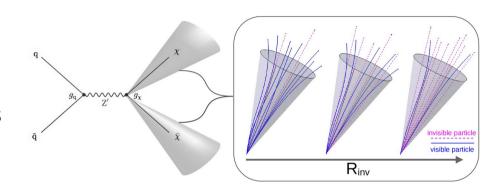
Search for emerging jets in pp collisions at $\sqrt{s} = 13.6$ TeV with the ATLAS experiment

ArXiv: 2505.02429

First ATLAS run 3 exotics result!

Search for new physics in final states with semi-visible jets or anomalous signatures using the ATLAS detector

ArXiv: 2505.01634


SVJ Motivation

Physics:

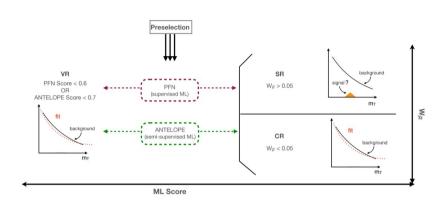
- Z' decay into pair of dark quarks
- Dark quarks hadronize → dark hadrons
 → decay to SM particles or DM candidates
- R_{invisble}: Prob. of dark hadron decay to DM

Signature:

- 2 semi-visible jets (SVJ), resonant in m_™
- Missing ET aligned with one of the jets
- Main Background: Jet miss-reconstruction in QCD multi-jet events

More details in M. Barakat's talk

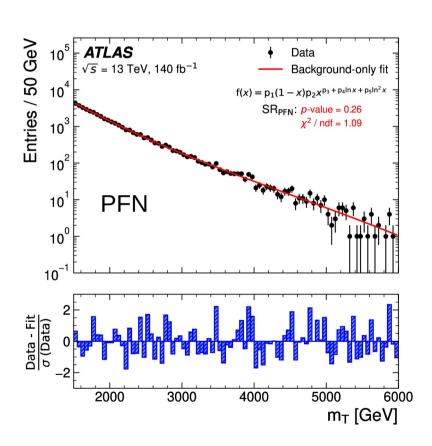
SVJ Analysis Strategy

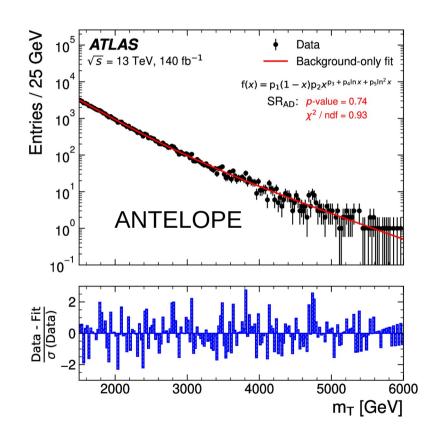

Two analysis approaches:

- Supervised machine learning with particle flow network (PFN) + Model specific results
- Semi-supervised anomaly detection (ANTELOPE) + BumpHunter to obtain model agnostic results

First ATLAS result using semisupervised anomaly detection!

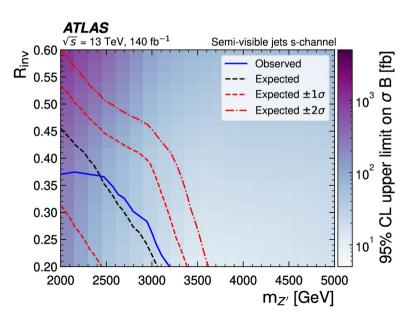
 Signal and control regions defined using width of sub-leading jet (W_{i2}) and ML scores

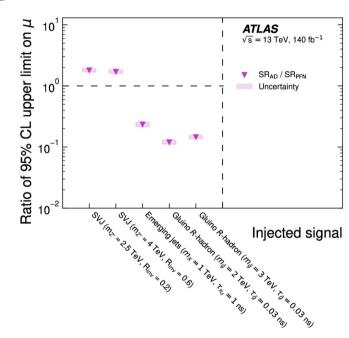

$$m_T^2 = \left[E_{T,JJ} + E_T^{\text{miss}}\right]^2 - \left[\vec{p}_{T,JJ} + \vec{p}_T^{\text{miss}}\right]^2$$



Variable	Preselection requirements							
N _{jets}	≥ 2							
N _{tracks} (jet)	≥ 3							
N_{lep}	= 0							
$p_{\mathrm{T}}j_1(j_2)$ [GeV]	> 450 (> 150)							
$\Delta\phi$ (j_1,j_2)	> 0.8							
$ \eta_{j_1,j_2} $	< 2.1							
Δy	< 2.8							
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 200							
$m_{\rm T}[{ m GeV}]$	> 1500							
	SR _{PFN}	SR _{AD}	VR _{PFN}	VR _{AD}	CR			
W_{j_2}		< 0.05						
PFN score	> 0.6	_	< 0.6	_	_			
ANTELOPE score	_	> 0.7	_	< 0.7	_			

SVJ Results

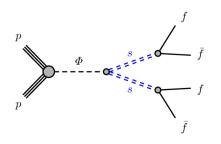


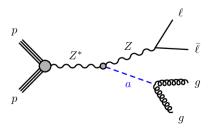


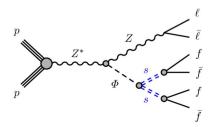
SVJ Results

- First ATLAS result on s-channel semi-visible jets
- Excluded 2TeV < m_{Z'} < 3.2 TeV
- Stronger exclusion for lower R_{inv}

- ANTELOPE used to compare PFN to less model dependent approach
- Weaker limits for SVJ, but stronger for other models → good generalization

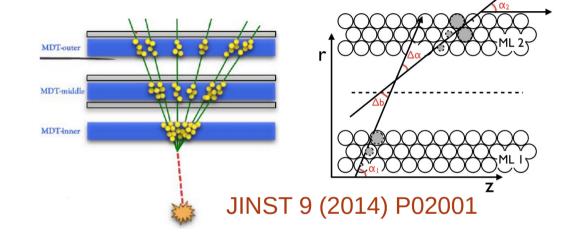

Search for events with one displaced vertex from long-lived neutral particles decaying into hadronic jets in the ATLAS muon spectrometer in pp collisions at $\sqrt{s} = 13$ TeV

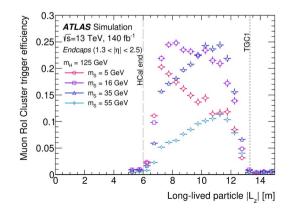

arXiv: 2503.20445

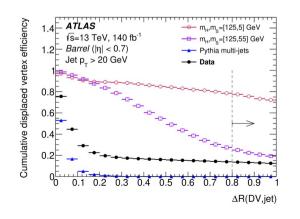


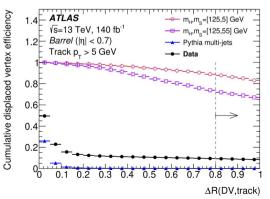
MSVtx Overview

- Search for neutral LLP hadronically decaying in muon spectrometer (MS)
- Signatures:
 - One decay vertex in the MS (using dedicated trigger)
 - One decay vertex in the MS + leptons from prompt Z (using di-lepton trigger)
- Results interpreted for scalar portal, baryogenesis models and ALPs
- Improved background estimate and signal efficiency extrapolation compared to previous searches (previous 2DV search: Phys. Rev. D 106 (2022) 032005)

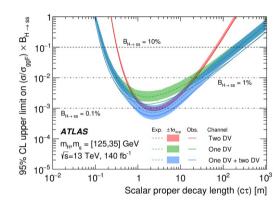


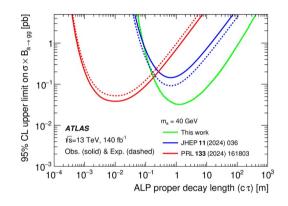


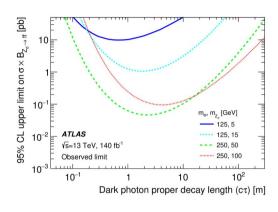



MSVtx Analysis Strategy

- Vertex reconstruction: Build tracklets from MDT multilayer and backextrapolate them to find common vertex
- Background estimate: 2 NNs trained on uncorrelated input (ABCD method)



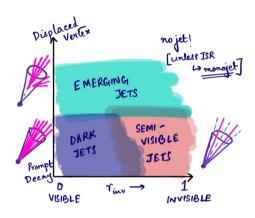


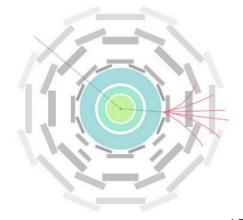

MSVtx Results

BR of SM H \rightarrow ss > 1% excluded for 5 cm < ct < 40m

Most stringent ATLAS limit set on Z + ALPmodels for $c\tau > O(10cm)$

Limits Z + dark photon with dark photon decaying to 2 fermions

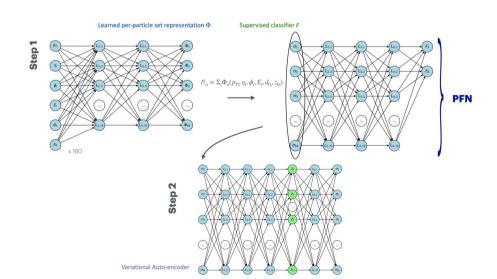


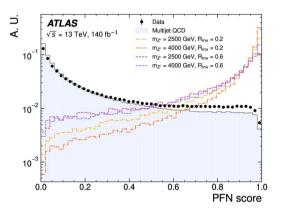

Conclusion

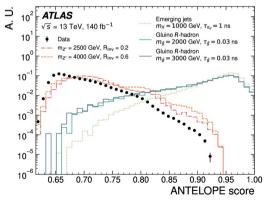
Rich program of searches for unusual hadronic final states ongoing

- Dedicated set of searches aiming at strongly coupled hidden valley theories
- Many more results to come!

 See E. Woodward's talk for unusual signatures in leptonic/missing energy channels




BACKUP



SVJ Machine Learning

- Input to both ML approaches:
 - Up to 80 tracks from leading and sub-leading jets
- ANomely deTEction on particle fLOw latent sPacE (ANTELOPE) developed in the context of this analysis

