

Institute of High Energy Physics Chinese Academy of Sciences

Di-Higgs searches at CMS

Jin Wang¹

On behalf of the CMS Collaboration

1. Institute of High Energy Physics, CAS

8th July 2025

Introduction

- 2
- HH measurement directly probes Higgs self-coupling λ
 - Crucial for understanding the Higgs field potential
 - $V(H) = \frac{1}{2}m_H^2 H^2 + \lambda_3 H^3 + \lambda_4 H^4$

• Tight correlation with the dynamics of the electroweak phase transition

CERN Courier

- HH production also sensitive to Beyond Standard Model (BSM) effects
 - Modified SM couplings
 - Additional couplings in Effective Field Theory
 - Resonant production

This talk focuses on non-resonant HH measurements at CMS

See also the <u>talk of resonance searches</u> by Ilias Zisopoulos

8th July 2025

HH production

• HH production challenging to measure due to it small cross section

- $\sigma_{HH} \sim \frac{\sigma_H}{1000}$ in SM at 13TeV
- Two main production modes
 - $\sigma_{ggF} = 31.1 \, fb \, \text{SM} @ 13 \text{TeV}$
 - Dominant channel for studying self-coupling
 - Destructive interference
 - $\sigma_{VBF} = 1.73 \, fb$ SM @13TeV
 - Only channel to access quartic VVHH coupling
 - ~11% increase in the cross section at 13.6 TeV
- Test deviation from the SM couplings with κ -framework: : $k_X = X/X_{SM}$

 $\kappa_{\lambda} = \lambda / \lambda^{SM}$ also dictates signal kinematics:

Vector-boson fusion (**VBF**)

k_v

k,

 V_2^*

k_v

Additional production modes including VHH, ttHH

EPS-HEP 2025

8th July 2025

k_{2V}

Overview of HH measurement at CMS

4

- HH searches have been evolving since early Run 2
 - More HH production modes and decay channels, boosted topologies
 - Extensive usage of machine learning, trigger, selection s and tagging optimization
- Best HH sensitivity via combination of all channels
 - Run2 Legacy Combination : <u>CMS-PAS-HIG-20-011</u>
 - Using full Run 2 data with 138 fb^{-1}
 - All final states defined to be mutually exclusive

HH Combination Nature 607 (2022) 60		New additions in Run2 Legacy Combination		
bbbb resolved	Phys. Rev. Lett. 129 (2022) 081802	VHH bbbb	JHEP 10 (2024) 061	
bbbb boosted	Phys. Rev. Lett. 131 (2023) 041803	bbWW(leptonic)	JHEP 07 (2024) 293	
bbττ	Phys. Lett. B 842 (2023) 137531	bbVV(hadronic)	CMS-PAS-HIG-23-012	
bbyy	JHEP03(2021)257	$WW\gamma\gamma$	CMS-PAS-HIG-21-014	
bbZZ(4l)	JHEP 06 (2023) 130	ττγγ	CMS-PAS-HIG-22-012	
Multilepton	JHEP 07 (2023) 095			

$HH \rightarrow bbbb$ resolved

5

- Targeting HH decay resolved into 4 b-jets
- Large multi-jet background estimated from data and fitted simultaneously in multiple signal regions
- Use dedicated BDTs to separate different signals and backgrounds
- Simultaneous fit of MVA for ggF and mHH for VBF categories

b₂₁ b₁₁ b₁₁ b₁₂ b₁₂

Phys. Rev. Lett. 129 (2022) 081802

Observed (expected) results:

 $\sigma_{ggF+VBF}^{HH} < 3.9(7.8) \times \sigma_{ggF+VBF}^{HH SM}$

 $-2.3(-5.0) < k_{\lambda} < 9.4(12)$

 $-0.1(-0.4) < k_{2V} < 2.2(2.5)$

$HH \rightarrow bbbb$ boosted

- HH decay boosted into two merged jets
 - Boosted H→bb candidate(s) reconstructed as large radius jet(s)
 - "ParticleNet" tagger (<u>arXiv:1902.08570</u>) to identify boosted H decays
 - DNN b-jet energy regression to improve H→bb mass resolution
- Main backgrounds from QCD and tt
 - Fit/correction from control regions
- ggF and VBF signal extracted with
 - Fit to sub-leading jet mass for ggF
 - Fit to m_{HH} for VBF
- Observed (expected) results:
 - $\sigma_{ggF+VBF}^{HH} < 9.9(5.1) \times \sigma_{ggF+VBF}^{HH SM}$
 - $-9.9(-5.1) < k_{\lambda} < 16.9(12.2)$
- $k_{2V} = 0$ firstly excluded at >5 σ assuming $k_{\lambda} = k_t = k_V = 1$
 - 0.62 (0.66) < k_{2V} < 1.41 (1.37)

$HH \rightarrow bb\tau\tau$

- Targeting HH decays in $\tau_h \tau_h$, $\mu \tau_h$ and $e \tau_h$
 - Triggers based on leptons and hadronic taus
 - Di-τ trigger with or without jets
 - Single-e, e-τ, single-mu and μ-τ triggers
- Leading background from QCD, ttbar and DY events
 - Estimated using data-driven or control regions
- Event categorization on production mode and final state
- DNN classifiers to separate signal and backgrounds
- Signal extraction from fit to DNN score

Most stringent limits on inclusive HH (observed) and VBFHH:

$$\begin{split} \sigma^{HH}_{ggF+VBF} &< 3.3(5.2) \times \sigma^{HH\,SM}_{ggF+VBF}, \\ \sigma^{HH}_{VBF} &< 124(154) \times \sigma^{HH\,SM}_{VBF}, \end{split}$$

 $\begin{array}{l} -1.8(-3.0) < k_{\lambda} < 8.8(9.9) \\ -0.4(-0.6) < k_{2V} < 2.6(2.8) \end{array}$

Phys. Lett. B 842 (2023) 137531

8th July 2025

$HH \to bb\gamma\gamma$

8

- Targeting $HH \rightarrow bb\gamma\gamma$ final state analysis
 - very small BR, clean signal extraction due to the narrow $h \rightarrow \gamma \gamma$ mass peak
- Main backgrounds: $\gamma \gamma + jets$, $\gamma + jets$, ttH
 - Boosted Decision Trees trained to separate signal and backgrounds
 - Deep Neural Network (DNN) to reduce ttH background
 - ttH: the dominant resonant background, similar final-state topology and can reconstruct a diphoton mass peak resembling the signal
- Category for ggF and VBF based on the MVA output
- Signal extracted from a 2D fit to $(m_{\gamma\gamma}, m_{bb})$

Obs.(exp.) upper limit on HH signal strength $7.7(5.2) \times SM$

JHEP 03 (2021) 257

8th July 2025

Results from other channels

Expected: 0.9

Observed: 1.1

Complementary HH searches, with results compatible with SM predictions

Legacy Run2 combination

10

The most complete CMS combination to date

- Using full Run 2 data with 138 fb^{-1}
- All available channels in Run2
 - Overlap removal between channels leading to slight shifts in the upper limit compared to individual results
- Updated uncertainties and signal cross section
- New EFT interpretations
- Updated Projections
- Obs.(exp.) upper limit on HH signal strength : 3.5 (2.5) $\times \sigma_{ggF+VBF}^{HH SM}$
 - Significant improvement comparing to early Run 2 results
 - ~5× improvement, far beyond the ~2× gain expected from luminosity scaling alone.

8th July 2025

Constraints on coupling modifiers

- 11
 - Constrain Higgs boson self-interaction coupling modifier κ_{λ} @ 95.4% C.L.
 - Observed (expected) k_{λ} range: $-1.40 (-2.29) < k_{\lambda} < 6.43 (7.95)$
 - Constrain quartic VVHH coupling modifier κ_{2V} @ 95.4% C.L.
 - Observed (expected) k_{2V} range: 0.63 (0.62) < k_{2V} < 1.40 (1.41)
 - $k_{2V} = 0$ is excluded with a significance of 6σ , assuming $k_{\lambda} = k_{V} = k_{t} = 1$

2D coupling constraints

- Two-dimensional constraints in the $(k_{\lambda}, k_{2V}), (k_{\lambda}, k_t), (k_V, k_{2V})$ planes
- No significant deviation from the SM is observed

CMS-PAS-HIG-20-011

The HEFT modeling in CMS

- New symmetries and/or new heavy particles induces additional effective terms into the H potential
- Studied in the Higgs EFT (HEFT) scenario

13

• linear variation of couplings $(k_{\lambda}, k_t, c_2, c_g, c_{2g})$

$$\begin{aligned} |A|^2 &= \kappa_{\lambda}^2 \cdot \kappa_t^2 \cdot |\Delta|^2 + \kappa_t^4 \cdot |\Box|^2 + c_2^2 \cdot |X|^2 + \kappa_{\lambda} \cdot \kappa_t \cdot c_2 \cdot |\Delta^* X + X^* \Delta| \\ &+ \kappa_t^2 \cdot c_2 \cdot |\Box^* X + X^* \Box| + \kappa_t^3 \cdot \kappa_{\lambda} \cdot |\Delta^* \Box + \Box^* \Delta| \end{aligned}$$

HH production amplitude expression including EFT contact term c_2

- \triangle : triangle diagram contribution
- \Box : box diagram contribution
- X: contact interaction from EFT

EPS-HEP 2025

8th July 2025

Upper limits on HEFT benchmarks

- Upper limits in two representative HEFT benchmarks with different combinations of the coupling modifiers $(k_{\lambda}, k_t, c_2, c_g, c_{2g})$
 - <u>1</u>: Thirteen benchmark scenarios spanning a broad range of the coupling variations
 - 2: With NLO precision and considers direct and indirect constraints on couplings
- No significant deviations from expectations are observed
 - $\odot\,$ An overall small excess in all benchmarks, between 1σ and 2σ

HEFT coupling scans

- Scan of C2 coupling modifier
 - In general compatible with the SM
 - The best fit slightly prefers $c_2 = 0.4$

UV complete reinterpretations

16

- Probing UV complete models directly with available HH searches at CMS
 - Model dependent with more physical assumptions about interference, parameter values and correlations
 - A realistic testbed for assessing the reach and limitations of HH searches under explicit UV assumptions
 - Complementary to EFT interpretation and resonant searches
- Explored an example UV mappings for HH from JHEP 02 (2021) 049

H+HH combination

- 17
 - Single Higgs boson processes sensitive to Higgs self-coupling through EW \bigcirc corrections W/Zg -------•κ_λ Single Higgs production vs. k_{λ} g -mm $\sigma_{\rm NLO}^{\rm BSM}/\sigma_{\rm NLO}^{\rm SM}$ 1.1 JHEP12(2016)080 ΖH 9 WH ttH 9 **· · · · · · · · · · · ·** ggF VBF tHj 0.8 <u></u>10 κ₃ -10 5 -5 Kinematics vs. k_{λ} Higgs decay vs. k_{λ} $\delta BR[\%]$ 1.30 1.20 tťH 13 TeV LHC 10 1.10 1.00 BSM/SM 0.90 0.80 Кλ -20 20 10 0.70 0.60 γγ 0.50 -- ZZ 0.40 -10--- WW 0.30 Eur. Phys. J. C (2017) 77: 887 100 200 300 400 500 0 $p_{T}(H)$ [GeV]

H+HH combination

• Constrain k_{λ} with H+HH combination at 2 σ confidence level

18

- Observed (expected) range fixing other H coupling: $-1.2 (-2.0) < k_{\lambda} < 7.5 (7.7)$
- Observed (expected) range floating other H coupling: $-1.4 (-2.3) < k_{\lambda} < 7.8 (7.8)$

Phys. Lett. B 861 (2025) 139210

- The combination resolves the degeneracy in k_{λ} presented in HH-only fits.
- The 2D allowed regions in (k_{λ}, k_t) , (k_V, k_{2V}) are significantly reduced by H+HH combination

Run 3: a new era of potential for HH

19

New triggers designed in Run 3

- Improves signal efficiency
- Allows access to more phase spaces for background estimation
- More powerful b-tagging, jet p_T regression and di-jet mass regression methods
 - Heavy-flavour tagging improves ~5% per b-jet at the same mis-tag rate
 - Advanced machine learning methods for jet p_T regression and di-jet mass regression
- Optimization of signal/background classification and categorization
- Improved background estimation, validation, and assessment of systematic uncertainties

Much more to come from HH in Run 3

Evolution of the b-tagging performance for identification algorithms used in CMS from Run 1 to Run 3

See also talks of <u>Trigger</u> by Philipp Nattland <u>Jet tagging</u> by Donato Troiano <u>Object performance</u> by Raffaella Tramontano

EPS-HEP 2025

8th July 2025

HL-LHC projection

- Evidence for HH production by $\sim 2000 fb^{-1}$ in CMS at the HL-LHC
 - "S2" : uncertainties with statistical origin scaled with luminosity, theory uncertainties halved
 - "S3": accounting for 5% improvements in b-jets tagging and hadronic taus identification efficiencies
- By the end of the HL-LHC, k_{λ} can be constrained within [0.5, 1.6] at 68% confidence level. <u>CMS-PAS-HIG-20-011</u>

Summary

- Comprehensive HH searches using the full Run 2 dataset at CMS
 - Provide a direct probe of the Higgs potential and rare quartic gauge couplings
- Legacy results show significant sensitivity improvements over early Run 2
 - Expanded exploration of production modes and decay channels, including boosted topologies
 - Extensive application of machine learning for triggers, object tagging and event selection
 - Well-developed EFT interpretation within the HEFT framework
 - Combined analyses with single Higgs processes to constrain k_{λ} and Higgs couplings simultaneously
- **Looking ahead:** Run 3 holds great potential for further advancing HH searches!

Backup

H+HH combination

H+HH combination

- Ultimate precision on k_{λ} with less assumptions
- Simultaneously constraining k_{λ} and modifiers of SM H couplings to fermions, and vector bosons
- The main channels of single Higgs and HH are included

Applycic	Integrated	Targeted H	Maximum	References
Allalysis	luminosity (fb $^{-1}$)	production modes	granularity	
$H \rightarrow 4l$	138	ggF, VBF, VH, t Ī H	STXS 1.2	[51]
${ m H} ightarrow \gamma \gamma$	138	ggF, VBF, VH, ttH, tH	STXS 1.2	[52,none]
$\mathrm{H} \to \mathrm{W}\mathrm{W}$	138	ggF, VBF, VH	STXS 1.2	[54]
$H \rightarrow leptons (t\bar{t}H)$	138	tīH	Inclusive	[55]
$H \to b \bar{\overline{b}} \ (ggF)$	138	ggF	Inclusive	[56]
$H \rightarrow b\overline{b} (VH)$	77	VH	Inclusive	[48]
${ m H} ightarrow { m b} \overline{ m b} ~(t \overline{t} { m H})$	36	tĪH	Inclusive	[57]
${ m H} ightarrow au au$	138	ggF, VBF, VH	STXS 1.2	[58]
$H \rightarrow \mu \mu$	138	ggF, VBF	Inclusive	[59]

Analysis	Int. luminosity (fb^{-1})	Targeted HH production modes	References
$ m HH ightarrow \gamma \gamma b \overline{b}$	138	ggF and VBF	[53]
${ m HH} ightarrow au au { m b} \overline{ m b}$	138	ggF and VBF	[60]
$HH \to b\overline{b}b\overline{b}$	138	ggF, VBF, and VHH	[61,62,none]
$\mathrm{HH} \rightarrow \mathrm{leptons}$	138	ggF	[64]
$\rm HH \rightarrow WWb\overline{b}$	138	ggF and VBF	[65]