



Recent Heavy Flavour Physics results by the CMS experiment

Alessio Boletti (LIP, Lisbon) on behalf of the CMS Collaboration

EPS-HEP – 7th July 2025 – Marseille

Outline

• Search for rare $D^0 \rightarrow \mu\mu$ decay

[arXiv:2506.06152] submitted to PRL

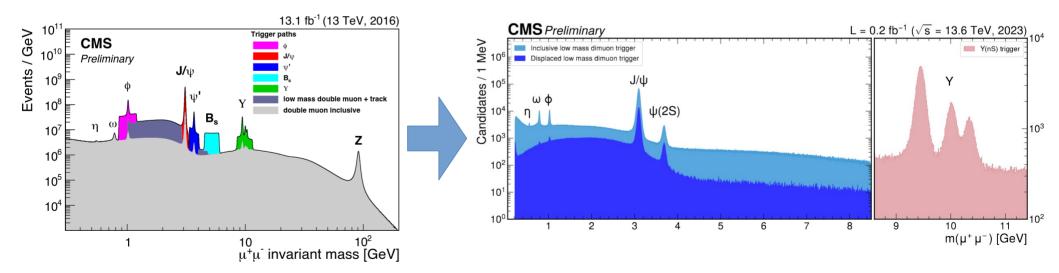
- First full reconstruction of B* mesons
- Follow other CMS results:

[CMS-BPH-24-011]

- Lepton flavor (universality) violation studies with heavy flavor at CMS
- Observation of a family of all-charm tetraquarks with spin-2 and positive parity at CMS
- Production of Heavy Flavours at CMS

by Chiara Basile, today 3 PM

by Xining Wang, tomorrow 4:30 PM QCD & hadron physics track


by Marco Buonsante, Wed 5 PM

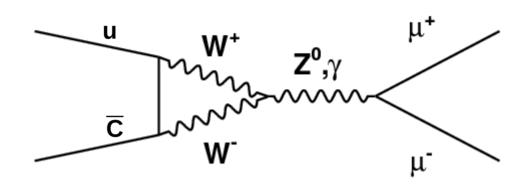
CMS triggers for heavy-flavor physics

Many heavy-flavor analyses in CMS rely on dimuon triggers

Run2: set of triggers dedicated to specific dimuon mass regions or topologies

Run3: inclusive dimuon trigger with loose requirements on the momenta

[CMS-DP-2016-059]


[CMS-NOTE-2023-007]

Search for rare $D^0 \rightarrow \mu\mu$ decay

[arXiv:2506.06152] submitted to PRL

Flavour changing neutral currents gained a lot of attention in the last decades

- bs $\ell\ell$ transitions under heavy scrutiny ex. $B_s \rightarrow \mu\mu$ and $b \rightarrow s\mu\mu$ analyses
- cull transitions less studied

 $D^0 \rightarrow \mu\mu$ decay heavily suppressed in the SM (loop diagram + helicity):

- BR prediction ~ 10⁻¹³
- High sensitivity to new-physics phenomena

Former most sensitive analysis by LHCb posed a limit at: BR(D⁰ $\rightarrow \mu\mu$) < 3.5 10⁻⁹ (95% CL)

This analysis uses 2022+2023 CMS data, and first one using new low-p_⊤ dimuon trigger

Analysis uses D⁰ from cascade decays: $D^{*+} \rightarrow D^0 \pi^+$

- Exploits mass difference $\Delta m = m(D^{*+}) m(D^{0})$ to strongly suppress combinatorial
- D** produced promptly or from B-hadron decays
- Final state: two opposite charged muons + track

 $D^0 \rightarrow \pi^+\pi^-$ used as normalization channel:

$$\mathcal{B}(\mathrm{D}^0 \to \mu^+ \mu^-) = \mathcal{B}(\mathrm{D}^0 \to \pi^+ \pi^-) \frac{N_{\mathrm{D}^0 \to \mu\mu}}{N_{\mathrm{D}^0 \to \pi\pi}} \frac{\varepsilon_{\mathrm{D}^0 \to \pi\pi}}{\varepsilon_{\mathrm{D}^0 \to \mu\mu}}$$

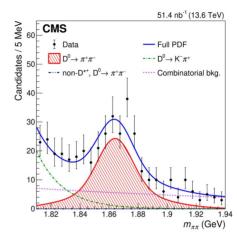
Sources of background:

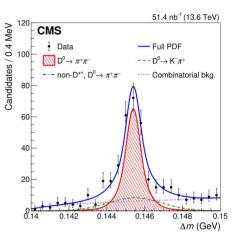
- Combinatorial: suppressed via BDT, exploiting topological and kinematic features
- Peaking backgrounds for signal (w/ misID pions):
 - $D^{*+} \rightarrow D^0(\pi\pi)\pi$
 - $D^{*+} \rightarrow D^0(\pi \mu \nu)\pi$
- Peaking background for normalization channel:
 - $D^{*+} > D^0(K\pi)\pi$

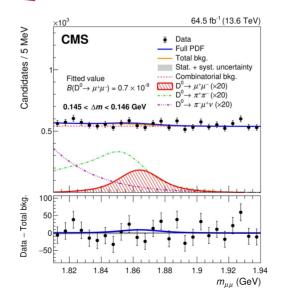
Search for $D^0 \rightarrow \mu\mu$ decay - results

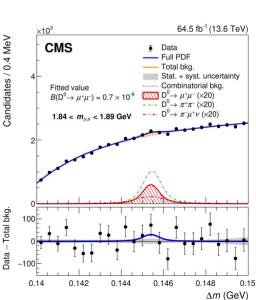
arXiv:2506.06152]

2D UML fits:

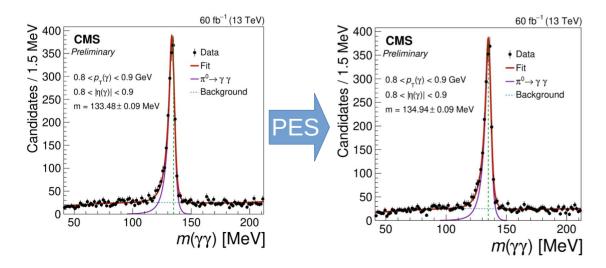

• to $[m(\pi\pi), \Delta m]$ in normalization sample

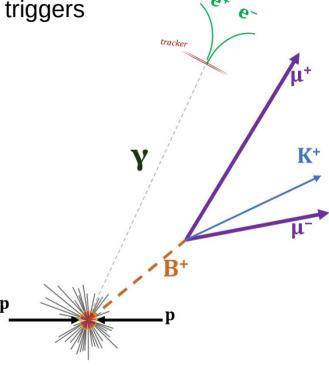

• to $[m(\mu\mu), \Delta m]$ in signal sample


No significant signal excess


Resulting limit:

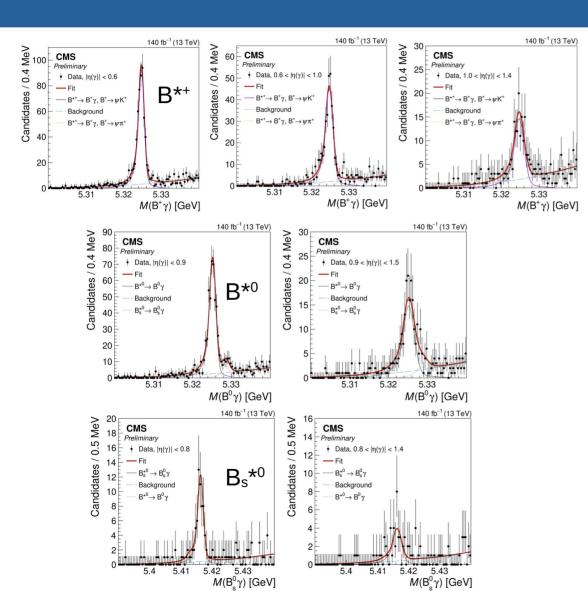
BR(D⁰ $\rightarrow \mu\mu$) < 2.4 10⁻⁹ at 95% CL




Fullly exclusive reconstruction of B*+, B*0, B_s*0 radiative decays

[CMS-BPH-24-011]

CMS analysis on Run-2 heavy-flavor datasets, with mixture of triggers


- Exploits charmonium decays of B mesons
 - $B^+ \rightarrow \Psi K^+$
 - $B^0 \rightarrow \psi K^*(892)^0 (\rightarrow K^+\pi^-)$
 - $B_s \rightarrow \psi \phi (\rightarrow K^+K^-)$
 - J/ψ or ψ(2S) → μμ
- Photon conversion reconstruction in e⁺e⁻
- Refit of electron tracks and By vertex (including other tracks from PV activity) to improve mass resolution

Dedicated photon energy correction:

- $\pi^0 \rightarrow \gamma \gamma$ with double conversion used in bins of p_T and η
- Successful in correcting energy underestimation

Simultaneous fit in 7 categories of $M(Xy) = m(Xy)-m(X)+M_{PDG}(X)$

Categories defined by flavor and η ranges with common mass parameters within each flavor

Models include: Signal, Combinatorial bkg, Peaking bkg: $B^+ \rightarrow \psi \pi^+$ and $B^{*0} \leftrightarrow B_s^{*0}$ cross-feed

Three states reconstructed fully exclusively for the first time!!

	Parameter	Value				
1	$\Delta m(\mathbf{B}^{*+}) \equiv m(\mathbf{B}^{*+}) - m(\mathbf{B}^{+})$	$45.277 \pm 0.039 \pm 0.021 \mathrm{MeV}$	- Hyperfine	One orde	er of magnitude	45.34 ± 0.20
2	$\Delta m(\mathbf{B}^{*0}) \equiv m(\mathbf{B}^{*0}) - m(\mathbf{B}^{0})$	$45.471 \pm 0.056 \pm 0.024 \mathrm{MeV}$	splitting in B	precision	n improvement	45.34 ± 0.20
3	$\Delta m(\mathbf{B}_{\mathrm{s}}^{*0}) \equiv m(\mathbf{B}_{\mathrm{s}}^{*0}) - m(\mathbf{B}_{\mathrm{s}}^{0})$	$49.407 \pm 0.132 \pm 0.034 \mathrm{MeV}$	system!	wrt PDG	2024:	48.5 ± 1.4
4	$m(\mathrm{B}^{*+})$	$5324.69 \pm 0.04 \pm 0.02 \pm 0.07 \text{MeV}$	New masse	c to "I	3* mass" 5324.	75±0.20 May
5	$m(\mathrm{B}^{*0})$	$5325.19 \pm 0.06 \pm 0.02 \pm 0.08 \text{MeV}$				
6	$m(B_s^{*0})$	$5416.34 \pm 0.13 \pm 0.03 \pm 0.10 \mathrm{MeV}$	add to PDG	В	$B_{\rm s}^{*0}$ mass 5415.	4±1.4 MeV
7	$m(B^{*0}) - m(B^{*+})$	$0.50 \pm 0.07 \pm 0.01 \pm 0.05 \text{MeV} -$	→ In agreeme	ent with	CMS-BPH-2	16-003
8	$m({\rm B_s^{*0}}) - m({\rm B^{*+}})$	$91.66 \pm 0.14 \pm 0.03 \pm 0.12 \mathrm{MeV}$	ı			
9	$m({ m B}_{ m s}^{*0}) - m({ m B}^{*0})$	$91.15 \pm 0.14 \pm 0.03 \pm 0.12 \mathrm{MeV}$				
10	$m(B_s^{*0}) - \frac{m(B^{*0}) + m(B^{*+})}{2}$	$91.40 \pm 0.13 \pm 0.03 \pm 0.12 \mathrm{MeV}$				
11	$\Delta m(\mathrm{B}^{*0}) - \Delta m(\mathrm{B}^{*+})$	$0.19 \pm 0.07 \pm 0.01\mathrm{MeV}$				
12	$\Delta m(\mathrm{B_s^{*0}}) - \Delta m(\mathrm{B^{*+}})$	$4.13 \pm 0.14 \pm 0.03 \mathrm{MeV}$			Somo eve	tomatics
13	$\Delta m(\mathrm{B_s^{*0}}) - \Delta m(\mathrm{B^{*0}})$	$3.94 \pm 0.14 \pm 0.03 \mathrm{MeV}$	First measure	ments	Some sys	
14	$\Delta m(\mathrm{B_s^{*0}}) - \frac{\Delta m(\mathrm{B^{*0}}) + \Delta m(\mathrm{B^{*+}})}{2}$	$4.03 \pm 0.13 \pm 0.03 \text{MeV}$				differences and theory
15	$\Delta m(\mathrm{B}^{*0})/\Delta m(\mathrm{B}^{*+})$	$1.0043 \pm 0.0015 \pm 0.0002$,
16	$\Delta m(\mathrm{B_s^{*0}})/\Delta m(\mathrm{B^{*+}})$	$1.0912 \pm 0.0031 \pm 0.0007$			uncertaint	•
17	$\Delta m(\mathrm{B_s^{*0}})/\Delta m(\mathrm{B^{*0}})$	$1.0866 \pm 0.0031 \pm 0.0007$			expected	to be
18	$\frac{2 \cdot \Delta m(B_S^{*0})}{\Delta m(B^{*+}) + \Delta m(B^{*0})}$	$1.0889 \pm 0.0030 \pm 0.0007$			reduced	

B* mass – comparison with theory

[CMS-BPH-24-011]

A few lattice theory papers provide predictions with uncertainties

One paper comments on the ratio of hyperfine splitting

Parameter	Measurement, MeV	Theory, MeV
$\frac{\Delta m(\mathrm{B}^{*+})}{m(\mathrm{B}^{*+}) - m(\mathrm{B}^{+})}$	$45.277 \pm 0.039 \pm 0.021$	$50 \pm 3 [10]$ $39 \pm 2 [24]$
$\frac{\Delta m(\mathrm{B}^{*0})}{m(\mathrm{B}^{*0}) - m(\mathrm{B}^{0})}$	$45.471 \pm 0.056 \pm 0.024$	$41.7 \pm 5.3 [25]$
$\Delta m(B_{s}^{*0}) m(B_{s}^{*0}) - m(B_{s}^{0})$	$49.407 \pm 0.132 \pm 0.034$	$52 \pm 3 [10]$ $38 \pm 1 [24]$ $37.8 \pm 6.7 \text{ MeV } [25]$

Parameter	Measurement	theory
$\frac{\Delta m(B^{*0})/\Delta m(B^{*+})}{\frac{m(B^{*0})-m(B^{0})}{m(B^{*+})-m(B^{+})}}$	$1.0043 \pm 0.0015 \pm 0.0002$	
$\frac{\Delta m(B_{s}^{*0})/\Delta m(B^{*+})}{\frac{m(B_{s}^{*0})-m(B_{s}^{0})}{m(B^{*+})-m(B^{+})}}$	$1.0912 \pm 0.0031 \pm 0.0007$	
$\frac{\Delta m(B_s^{*0})/\Delta m(B^{*0})}{\frac{m(B_s^{*0})-m(B_s^0)}{m(B^{*0})-m(B^0)}}$	$1.0866 \pm 0.0031 \pm 0.0007$	1.007 ± 0.034 [10]
$\frac{2 \cdot \Delta m(B_{S}^{*0})}{\Delta m(B^{*+}) + \Delta m(B^{*0})}$	$1.0889 \pm 0.0030 \pm 0.0007$	

[10] Phys.Rev.D 86 (2012) 094510

[24] JHEP 01 (2025) 123

[25] Phys.Rev.D 92 (2015) 5, 054509

Summary and conclusions

- Search for rare $D^0 \rightarrow \mu\mu$ decay
 - Excellent example of application for new CMS soft dimuon triggers
 - New best limit on the branching ratio
 - Still 4 order of magnitude above SM prediction
- First full reconstruction of B* mesons
 - Uses converted photons to exclusively reconstruct the B*+, B*0, B_s*0 states
 - Most precise measurement of hyperfine splitting in B system
 - Theory predictions need to be improved!
- As inclusive dimuon and signle-muon triggers keep collecting data, stay tuned for new exiting results to come!

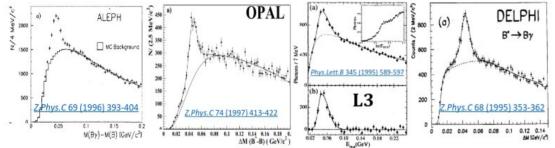
Backup slides

D⁰ → µµ systematic uncertainties

Source	$\mathrm{D}^0 o \mu\mu$	$\mathrm{D}^0 o \pi\pi$	$\mathrm{D}^0 o \pi \mu u$
Trigger efficiency	0.7%	0.7%	0.7%
Muon efficiency	2%		1%
Tracking efficiency	4.6%	4.6%	4.6%
Pileup	1%	1%	1%
$D^0 \rightarrow \pi^+\pi^-$ yield	8.7%	8.7%	8.7%
Efficiency	0.2%	0.6%	12%
d_{MVA} correction	1.2%	2.0%	
$\mathcal{B}(\mathrm{D}^0 o\pi^+\pi^-)$	1.7%		1.7%
$\mathcal{B}(\mathrm{D}^0 o \pi^- \mu^+ u)$			4.5%
Fit bias	1%		
Misidentification rate		28%	14%

$D^0 \rightarrow \mu\mu$ resulting yields

Range	Signal	Comb. bkg.	$\mathrm{D}^0 o \pi^+\pi^-$	$\mathrm{D}^0 o \pi^- \mu^+ u$	Data
Full range	100 ± 120	126140 ± 380	278 ± 51	231 ± 40	126 752
$0.145 < \Delta m < 0.146 \text{GeV}$	67 ± 81	14037 ± 42	179 ± 33	94 ± 16	14412
$1.84 < m_{\mu\mu} < 1.89 {\rm GeV}$	90 ± 110	48530 ± 150	162 ± 30	62 ± 11	48798

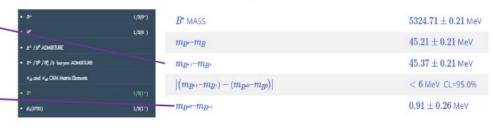

B* history (from Sergey's talk @LHCP)

HISTORY OF B* Meson studies

CMS-PAS-BPH-24-011

LEP experiments L3, DELPHI, OPAL, ALEPH using $Z \rightarrow b\overline{b}$ process, inclusively reconstruct B meson as **b-jet** combine **b-jet** with a converted photon (calibrated via π^0)

Measure **averaged between B*+, B*0, and B*0** mass difference $m(B^*)-m(B)$


VALUE (MeV)		EVTS	DOCUMENT I	D	TECN
$\textbf{45.21} \pm \textbf{0.21}$	OUR FIT				
$\textbf{45.42} \pm \textbf{0.26}$	OUR AVERAGE inc	cludes data from	$m_{B^*}-m_B$		
$46.2 \pm 0.3 \pm 0.8$			¹ ACKERSTAFF	1997M	OPAI
$45.3 \pm 0.35 \pm 0.87$		4227	¹ BUSKULIC	1996D	ALEP
$45.5 \pm 0.3 \pm 0.8$			1 ABREU	1995R	DLPH
46.3 ±1.9		1378	¹ ACCIARRI	1925B	L3

Mass differences also measured via P-wave B_s states

 $m(B^{*+})-m(B^{+})$ measured by LHCb using the difference between $B_{s2}^{*}(5840)^{0} \rightarrow B^{*+} K^{-}$ and $B_{s2}^{*}(5840)^{0} \rightarrow B^{+} K^{-}$ peak positions

 $m(B^{*+})-m(B^{*0})$ was measured by <u>CMS</u> (<u>BPH-16-003</u>) via the difference between $B_{s1}(5830)^0 \rightarrow B^{*0} K_S^0$ and $B_{s1}(5830)^0 \rightarrow B^{*+} K^-$ peak positions

PDG still has a <u>single "entry"</u> for B*+ and B*0!

B* history (from Sergey's talk @LHCP)

B_s^{*0} measurements at B-factories

CMS-PAS-BPH-24-011

 B_s^{*0} mass difference w.r.t. B_s^0 was previously measured at B-factories via the energy spectrum of reconstructed B_s^0 mesons assumed to be produced in Y(5S) decays:

- $Y(5S) \rightarrow B_s^0 \overline{B}_s^0$
- $Y(5S) \rightarrow B_s^{*0} \overline{B}_s^0$
- $Y(5S) \rightarrow B_s^0 \overline{B}_s^{*0}$
- $Y(5S) \rightarrow B_s^{*0} \overline{B}_s^{*0}$

However, the results were not in a good agreement with each other (PDG scale factor 2.9)

Central value of the mass difference is larger in comparison to $B^+ \& B^0$

$m_{B_s^*} - m_{B_s}$					
VALUE (MeV)		DOCUMEN	T ID	TECN	COMMENT
$48.5^{+1.8}_{-1.5}$	OUR FIT Error includes	s scale factor of	2.9.		
$\textbf{46.1} \pm \textbf{1.5}$	OUR AVERAGE				
$45.7 \pm 1.7 \pm 0.7$		1 AQUINES	2006	CLEO	$e^+\;e^- o \varUpsilon(5S)$
47.0 ± 2.6		² LEE-FRANZI	NI 1990	CSB2	$e^+ \; e^- ightarrow \varUpsilon(5S)$

B_s^* MASS		
From mass difference belo	ow and the B_s^0 mass.	
VALUE (MeV)	DOCUMENT ID	TECN
5415.4 ^{+1.8} _{-1.5} OUR FIT Erro	or includes scale factor of 2.9.	
5415.8 ± 1.5 OUR AVER	RAGE Error includes scale fact	or of 2.6.
$5416.4 \pm 0.4 \pm 0.5$	LOUVOT 200	9 BELL
$5411.7 \pm 1.6 \pm 0.6$	¹ AQUINES 200	06 CLEO

B* systematics

Source	$m(B^{*+}) - m(B^+)$	$m(\mathbf{B}^{*0}) - m(\mathbf{B}^0)$	$m(B_{\rm s}^{*0}) - m(B_{\rm s}^{0})$
Signal model	4	8	21
Signal shape parameters	17	18	15
Yield ratios between $ \eta(\gamma) $ regions	1	2	10
Background shape	2	< 1	7
Cross-feed $B_s^{*0} \leftrightarrow B^{*0}$	< 1	1	10
PES	12	14	16
Total	22	24	34

Δm uncertainties [keV]

Δm differences uncertainties [keV]

Source	$\Delta m(\mathbf{B}^{*0}) - \Delta m(\mathbf{B}^{*+})$	$\Delta m(\mathrm{B_s^{*0}}) - \Delta m(\mathrm{B^{*+}})$	$\Delta m(\mathrm{B_s^{*0}}) - \Delta m(\mathrm{B^{*0}})$	$\Delta m(\mathrm{B_s^{*0}}) - \frac{\Delta m(\mathrm{B^{*0}}) + \Delta m(\mathrm{B^{*+}})}{2}$
Baseline value	194	4130	3936	4033
Statistical uncertainty	68	138	139	134
Signal model	4	23	23	23
Signal shape parameters	2	7	7	7
Yield ratios between $ \eta(\gamma) $ regions	3	11	7	9
Background shape	3	9	6	8
$\mathrm{B^+} ightarrow \mathrm{J}/\psi \pi^+$ yield	1	1	< 1	< 1
Cross-feed $B_s^{*0} \leftrightarrow B^{*0}$	1	10	12	11
Photon energy scale	4	11	11	11
Total systematic	8	31	31	31

			-	
Source	$\Delta m(B^{*0})/\Delta m(B^{*+})$	$\Delta m(\mathrm{B}_\mathrm{s}^{*0})/\Delta m(\mathrm{B}^{*+})$	$\Delta m(\mathrm{B}_\mathrm{s}^{*0})/\Delta m(\mathrm{B}^{*0})$	$\frac{2 \cdot \Delta m(B_{S}^{*0})}{\Delta m(B^{*+}) + \Delta m(B^{*0})}$
Baseline value	1.00428	1.09122	1.08656	1.08888
Statistical uncertainty	0.00151	0.00306	0.00309	0.00297
Signal model	0.00009	0.00050	0.00052	0.00052
Signal shape parameters	0.00005	0.00014	0.00016	0.00016
Yield ratios between $ \eta(\gamma) $ regions	0.00008	0.00023	0.00016	0.00020
Background shape	0.00005	0.00020	0.00014	0.00017
$\mathrm{B^+} ightarrow \mathrm{J}/\psi \pi^+$ yield	0.00002	0.00002	0	0.00001
Cross-feed $B_s^{*0} \leftrightarrow B^{*0}$	0.00003	0.00023	0.00025	0.00015
Photon energy scale	0.00009	0.00025	0.00024	0.00024
Total systematic	0.00017	0.00069	0.00068	0.00067

Δm ratio uncertainties