Searches for hidden sectors and lepton flavor violation in kaon decays at the NA62 experiment

- Calle Mathematha

ALL IN

an an

EPS-HEP 2025 Marseille, July 07-11

Viacheslav Duk, for the NA62 collaboration INFN Perugia

NA62 experiment

NA62: fixed target experiment at CERN SPS

Technique: Kaon decays in flight

Timeline: ▶2015: commissioning ▶2016-2018: Run 1

≻2021-2026: Run 2

Primary goal: Measure BR(K⁺ $\rightarrow \pi^+\nu\nu$)

ECN3 hall at CERN

NA62 collaboration: ~300 participants, ~30 institutions

NA62 recent results

•	$K^+ ightarrow \pi^+ \vee u$	
	$BR(K^+ \rightarrow \pi^+ \vee \nu)$	JHEP 02 (2025) 191
	spin-off: $K^+ \rightarrow \pi^+$	X JHEP 03 (2021) 58 paper on Run1+2 analysis in preparation
•	Precision measure	ments
	${\rm K}^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$	PLB 850 (2024) 138513
	spin-off: $K^+ \rightarrow \pi^+$	$X, X \rightarrow \gamma \gamma$
•	LFV/LNV decays	
	$K^{+} ightarrow \pi \mu e$	PRL 127 (2021) 131802
	$K^+ ightarrow \pi^- I^+ I^+$	PLB 797 (2019) 134794; PLB830 (2022) 137172
	$K^+ ightarrow \pi^- \pi^0 e^+ e^+$	PLB 830 (2022) 137172
	${ m K}^{\scriptscriptstyle +} o \mu^{\scriptscriptstyle -} { m v} \; { m e}^{\scriptscriptstyle +} { m e}^{\scriptscriptstyle +}$	PLB 838 (2023) 137679
	К⁺ → π ⁰ π µ е	PLB 859 (2024) 139122
•	HNL production in	kaon decays
	$K^+ \rightarrow I^+ N$	PLB807 (2020) 135599, PLB816 (2021) 136259
•	HNL production in	pion decays
	$\pi^{+} \rightarrow e N$	Paper in preparation
٠	Beam dump searc	hes for Hidden Sectors
	$A^{'} \rightarrow I^{+} I^{-}$	PRL 133 (2024) 111802
	$X \rightarrow$ hadronic sta	tes Eur. Phys. J. C85 (2025) 571
•	Neutrino tagging	PLB 863 (2025) 139345

NA62 recent results

•	$K^{+} \rightarrow \pi^{+} \vee \nu$		Talk by A. Romano
	$BR(K^+ \rightarrow \pi^+ \vee \nu)$	JHEP 02 (2025) 191	
	spin-off: $K^+ \rightarrow \pi^+$	X JHEP 03 (2021) 58 paper on Run1+2 analysis in preparation	
•	Precision measure	ements	
	$K^{\scriptscriptstyle +} o \pi^{\scriptscriptstyle +} \gamma \gamma$	PLB 850 (2024) 138513	
	spin-off: $K^+ \rightarrow \pi^+$	$X, X \rightarrow \gamma \gamma$	
•	LFV/LNV decays		
	$K^{\scriptscriptstyle +} ightarrow \pi \mu e$	PRL 127 (2021) 131802	This talk
	${ m K}^{\scriptscriptstyle +} o \pi^{\scriptscriptstyle -} { m I}^{\scriptscriptstyle +} { m I}^{\scriptscriptstyle +}$	PLB 797 (2019) 134794; PLB830 (2022) 137172	
	$K^{\scriptscriptstyle +} ightarrow \pi^{\scriptscriptstyle -} \pi^0 e^{\scriptscriptstyle +} e^{\scriptscriptstyle +}$	PLB 830 (2022) 137172	
	${ m K}^{\scriptscriptstyle +} o \mu^{\scriptscriptstyle -} { m v} \; { m e}^{\scriptscriptstyle +} { m e}^{\scriptscriptstyle +}$	PLB 838 (2023) 137679	
	K⁺ → π ⁰ π μ e	PLB 859 (2024) 139122	
•	HNL production in	kaon decays	
	${\rm K}^{\scriptscriptstyle +} ightarrow {\rm I}^{\scriptscriptstyle +} {\rm N}$	PLB807 (2020) 135599, PLB816 (2021) 136259	
•	HNL production in	pion decays	
	$\pi^{+} \rightarrow e N$	Paper in preparation	
·	Beam dump searc	hes for Hidden Sectors	
	$A^{'} \rightarrow I^{+} I^{-}$	PRL 133 (2024) 111802	Talk by I. Rosa
	$X \rightarrow$ hadronic sta	Ites Eur. Phys. J. C85 (2025) 571	
•	Neutrino tagging	PLB 863 (2025) 139345	Talk by M. Perrin-Terrir

NA62 in the standard mode

[NA62 Detector Paper, 2017 JINST 12 P05025]

Primary beam:

400 GeV/c protons
3x10¹² protons per spill

Secondary beam:

■75 GeV/c (±1%)

Beam angular spread < 100 μrad
70% pions, 6% K⁺, 24% protons

Key detectors:

- ■PID: KTAG, RICH, LKr, MUV1-2, MUV3
- Momentum: GTK, STRAW
- •Time: GTK, KTAG, RICH, CHOD
- Photon veto: LAV, LKr, IRC, SAC

Hidden sector searches

Hidden sector paradigm

- Could explain Dark Matter
- Mediator particles: kinetic mixing with SM particles via portals
- Mass: MeV-GeV

Hidden sector searches @ NA62

- Production searches in $K \rightarrow \pi X$, $K \rightarrow I X$
- Decay searches in $K \rightarrow \pi X (X \rightarrow II, \gamma \gamma)$
- Decay searches in beam dump mode: $X \rightarrow II$, hadrons

Dark sector portals and PBC scenarios

NP particle	Туре	Minimal portal	Decay ($m \leq GeV$)	PBC*
Dark photon (A')	Vector	$-\frac{\epsilon}{2\cos\theta_W}F_{\mu\nu}'B^{\mu\nu}$	ll, 2π, 3π	BC1-2
Dark scalar (S)	Scalar	$(\mu S + \lambda S^2)H^{\dagger}H$	$ll, 2\pi$	BC4-5
ALP (<i>a</i>)	Pseudoscalar	$rac{C_{ff}}{\Lambda}\partial_{\mu}aar{f}\gamma^{\mu}\gamma^{5}f$, $rac{C_{VV}}{\Lambda}aV_{\mu\nu}\widetilde{V}^{\mu\nu}$	$\gamma\gamma$, ll, $2\pi\gamma$, 3π , $2\pi\eta$	BC10, BC9-11
HNL (<i>N</i>)	fermion	$F_{\alpha I}(\overline{L}_{\alpha}H)N_{I}$	$\pi l(\nu), l_1 l_2(\nu)$	BC6-8

*Physics Beyond Collider project at CERN [J. Phys. G47 (2020) 010501]

Searches for $K^+ \rightarrow \pi^+ X$ decays

$K^+ \rightarrow \pi^+ X$, X invisible

Data:

• Run 1 (2016-2018)

JHEP 03 (2021) 58

Main features

- Spin-off of the $K^+ \rightarrow \pi^+ \nu \nu$ analysis
- Observable: $m_{miss}^2 = (p_K p_\pi)^2$
- Mass/tau scan: 0-110 and 154-260 MeV and $\tau \ge 100$ ps
- Main bkg from $K^+ \rightarrow \pi^+ \nu \nu$

$K^+ \rightarrow \pi^+ \pi^0, \pi^0 \rightarrow \text{invisible}$

Main features

٠

Data:

•

0.16

0.15 m_{χ} [GeV/ c^2]

= 500 ps

0.12

0.11

10⁻¹

= 200 ps

0.13

 $T_{v} = 100 \text{ ps}$

0.14

 $K^+ \rightarrow \pi^+ X, X \rightarrow \gamma \gamma$

Data:

• Run 1 (2017-2018)

PLB 850 (2024) 138513

Main features

- Spin-off of the $K^+ \rightarrow \pi^+ \gamma \gamma$ analysis
- Prompt decays assumed for X
- Observable: $m_{miss} = \sqrt{(p_K p_\pi)^2}$
- Mass scan: 207-350 MeV
- Main bkg from $K^+ \rightarrow \pi^+ \gamma \gamma$

$K^+ \rightarrow \pi^+ X$ interpretation

Rept.Prog.Phys. 86 (2023) 016201

ALP with gluon coupling (BC11)

PLB 850 (2024) 138513

LFV/LNV decays

$K^+ \rightarrow \pi^- |^+ |^+$

Data:

- Run 1 (2016-2018) for $K \rightarrow \pi ee$
- 25% Run 1 (2017) for K→πμμ

PLB830 (2022) 137172 PLB797 (2019) 134794

mode	Expected bkg	N(observed)	UL(BR) @ 90% CL
$K^+ \rightarrow \pi^- e^+ e^+$	0.43(9)	0	5.3*10-11
$K^+ \rightarrow \pi^- \mu^+ \mu^+$	0.91(41)	1	4.2*10 ⁻¹¹

Data: • Run 1 (2017-2018)

PRL 127 (2021) 131802

mode	Expected bkg	N(observed)	UL(BR) @ 90% CL
$K^{\scriptscriptstyle +} ightarrow \pi^{\scriptscriptstyle -} \mu^{\scriptscriptstyle +} e^{\scriptscriptstyle +}$	1.07(20)	0	4.2*10 ⁻¹¹
$K^+ ightarrow \pi^+ \mu^- e^+$	0.92(34)	2	6.6*10 ⁻¹¹
$\pi^0 \rightarrow \mu^- e^+$			3.2*10 ⁻¹⁰

$K^+ \rightarrow \pi^- \pi^0 e^+ e^+ and K^+ \rightarrow \mu^- v e^+ e^+$

mode	Expected bkg	N(observed)	UL(BR) @ 90% CL
$K^+ \rightarrow \pi^- \pi^0 e^+ e^+$	0.044(20)	0	8.5*10 ⁻¹⁰
$K^{\scriptscriptstyle +} ightarrow \mu^{\scriptscriptstyle -} \nu \ e^{\scriptscriptstyle +} \ e^{\scriptscriptstyle +}$	0.26(4)	0	8.1*10 ⁻¹¹

Search for $K^+ \rightarrow \pi^0 \pi e \mu$

Mode	Expected bkg	N(observed)	UL(BR) @ 90%CL
$K^{\scriptscriptstyle +} o \pi^0 \pi^{\scriptscriptstyle -} \mu^{\scriptscriptstyle +} e^{\scriptscriptstyle +}$	0.33(7)	0	2.9*10 ⁻¹⁰
$K^{\scriptscriptstyle +} o \pi^0 \pi^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} e^{\scriptscriptstyle +}$	0.004(3)	0	3.1*10 ⁻¹⁰
$K^{\scriptscriptstyle +} o \pi^0 \pi^{\scriptscriptstyle +} \mu^{\scriptscriptstyle +} e^{\scriptscriptstyle -}$	0.29(7)	0	5.0*10 ⁻¹⁰

LFV/LNV decays @ NA62: state of the art

Searches for HNL in $K^+ \rightarrow I^+ N$ and $\pi^+ \rightarrow e^+ N$ decays

 $K^+ \rightarrow I^+ N$

Data: e: Run 1 (2017-2018) μ: Run 1 (2016-2018)

PLB807 (2020) 135599 PLB816 (2021) 136259

Main features

- Observable: $m_{miss}^2 = (P_K P_I)^2$
- Mass scan: expected bkg from sidebands, CLs to set UL(N)
- N lifetime > 50 ns

mode	Νκ	Mass scan range	Main bkg
$\mathrm{K}^{\scriptscriptstyle +} \rightarrow \mathrm{e}^{\scriptscriptstyle +} \mathrm{N}$	3.5*10 ¹²	144-462 MeV	$K^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \nu \ (\mu^{\scriptscriptstyle +} \rightarrow e^{\scriptscriptstyle +} \nu \ \nu)$
$\mathrm{K}^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \mathrm{N}$	4.3*10 ⁹ Downscaled min. bias trigger	200-384 MeV	$\mathrm{K}^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \nu \gamma$

HNL production in K decays

BC6,7: $|U_{\ell_4}|$ 2 limits vs m_{HNL} from production & decay searches

Rept.Prog.Phys. 86 (2023) 016201

Search for HNL in $\pi^+ \rightarrow e^+$ N decays

Data:

- Run 1 (2016-2018)
- Run 2 (2021-2024)

Paper in preparation

Main features

- Pion decays from pileup
- Observable: $m_{miss}^2 = (P_{\pi} P_e)^2$
- $N_{\pi} = 6.54(3) \times 10^{12}$
- Mass scan: 95-126 MeV, expected bkg from sidebands, CLs to set UL(N)
- Main bkg from $\pi^+ \rightarrow \mu^+ \nu$

Normalisation:

- $\pi^+ \rightarrow e^+ \nu$
- bkg from K decays normalised to $K^+ \rightarrow e^+ v$

- For all mass hypotheses UL(BR) ~10⁻⁸
- Local significance <3σ

HNL production in pion decays

• Limits comparable with PIENU

• Extension to lower masses wrt K decays

Paper in preparation

Conclusions

Search for hidden sectors

- \Box K⁺ $\rightarrow \pi^+$ X: dark scalar (BC4), ALP (BC10, 11)
- $\Box K^{+} \rightarrow I^{+} X, \pi^{+} \rightarrow e^{+} X: HNL(BC6, 7)$

Search for LFV/LNV decays

- \square NA62 has already collected N_K~O(10¹³)
- □ Stringent limits UL(BR) with Run 1 data at $10^{-9} 10^{-10}$

Future plans

- Collect data in 2025-2026 (both standard and beam dump mode)
- Improvement in sensitivity: factor $\sim N_{K}$ for small bkg signatures, $\sim \sqrt{N_{K}}$ for bkg dominated signatures

$K^+ \rightarrow \pi^+ e^+ e^- e^-$ analysis strategy

Data: Run 1 (2017-2018)

Main features

- 5 tracks without PID, just kinematic cuts
- Kinematic variables: $m_{\pi 4e} = m(\pi eeee)$, $\Delta p = p(\pi eeee) p_{K}$
- $|m_{eeee} m_{\pi 0}| > 10 \text{ MeV}$
- Masked signal region in terms of $m_{\pi 4e}^{}$ and Δp
- A(sig, SM) = 1.85x10⁻⁴
- N_K= 8.58(46)x10¹¹

Normalisation:

- $\bullet \quad K^+ {\rightarrow} \pi^+ \, \pi^0 \ , \ \pi^0 {\rightarrow} \gamma \ \gamma, \ \ \gamma {\rightarrow} e^+ \, e^-$
- $|m_{eeee} m_{\pi 0}| < 10 \text{ MeV}$
- $N(K^+ \rightarrow \pi^+ \pi^0, \pi^0 \rightarrow \gamma \gamma, \gamma \rightarrow e^+ e^-) = 2023$

Expected bkg: N = 0.18(6)

BR(K⁺ $\rightarrow \pi^+ e^+ e^- e^+ e^-$) < 1.4 x 10⁻⁸ (90% CL)

- First upper limit
- Factor of 200 far from BR(SM, expected) = 7.2x10⁻¹¹

$K^+ \rightarrow \pi^+ e^+ e^- e^- : NP limits$

$K^+ \rightarrow \pi^+ S, S \rightarrow A' A', A' \rightarrow e^+ e^ K^+ \rightarrow \pi^+ a a, a \rightarrow e^+ e^-$ 0050 MeV/c² 3 10^{-8} S 200 150 10⁻⁹ 100 ⊣ 0.5 50 0 20 40 60 80 100 120 140 160 40 60 80 100 120 140 160 20 Axion mass [MeV/c²] A' mass [MeV/c²] 17 MeV anomaly $m_{\pi 0}$ region: low acceptance due to explanation with QCD axion $|m_{eeee} - m_{\pi 0}| > 10 \text{ MeV}$ excluded (UL = 2.1×10^{-9}) Excluded from the search Best limit at 155 MeV Best limit at $m_{a'}$ = 150 MeV, m_s = 300 MeV $UL = 3.7 \times 10^{-10}$ $UL = 2.5 \times 10^{-10}$

Mass scan

- Multiple hypotheses tested
- 10 < m_a < 170 MeV, 5 MeV step
- 20 < m_s < 340 MeV and 10 < m_{A'} < 170 MeV, 5 MeV step
- CLs to set UL(BR)