Université Claude Bernard (() Lyo

M altrain an an

BSM Sensitivity of Rare Kaon Decays

Siavash Neshatpour, iP2i, Lyon University

Based on 2206.14748, 2311.04878, 2404.03643, 2409.06545 In collaboration with G. D'Ambrosio, A. Iyer and F. Mahmoudi

EPS-HEP 2025, Marseille 7-11 July 2025

AIN

Rare kaon decays

Rare Kaon decays take place via $s \rightarrow d$ Flavour Changing Neutral Current (FCNC) processes which are strongly suppressed in the SM

- Historical tools to study FCNC
- Interesting probe of New Physics (NP)
 - \rightarrow Requires reliable prediction in the SM

Weak effective Hamiltonian:
$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}}V_{ts}^*V_{td}\frac{\alpha_e}{4\pi}\sum_k C_k^\ell O_k^\ell$$

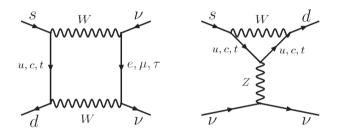
$$O_L^{\ell} = (\bar{s}\gamma_{\mu}P_Ld)(\bar{\nu}_{\ell}\gamma^{\mu}(1-\gamma_5)\nu_{\ell}), \quad O_9^{\ell} = (\bar{s}\gamma_{\mu}P_Ld)(\bar{\ell}\gamma^{\mu}\ell), \quad O_{10}^{\ell} = (\bar{s}\gamma_{\mu}P_Ld)(\bar{\ell}\gamma^{\mu}\gamma_5\ell) + \text{other operators}$$

New Physics contributions: $C_k \rightarrow C_k^{SM} + \delta C_k$

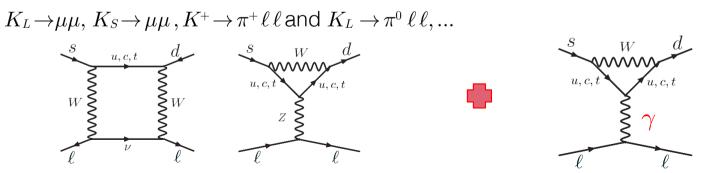
Rare kaon decays

• Short-Distance dominated

 $K^+ \rightarrow \pi^+ \nu \nu$ and $K_L \rightarrow \pi^0 \nu \nu$ (golden channels)



• Long-Distance dominated



SD-dominated

Siavash Neshatpour

$$K^+ \rightarrow \pi^+ \nu \nu$$

$$\operatorname{BR}(K^+ \to \pi^+ \nu \bar{\nu}) = \frac{\kappa_+ (1 + \Delta_{\operatorname{EM}})}{\lambda^{10}} \frac{1}{3} s_W^4 \sum_{\ell} \left[\operatorname{Im}^2 \left(\lambda_t C_L^\ell \right) + \operatorname{Re}^2 \left(-\frac{\lambda_c X_c}{s_w^2} + \lambda_t C_L^\ell \right) \right] \quad (\lambda_i = V_{is} V_{id})$$

• top loop: $C_{L,SM}^{\ell} = -X_{SM}(x_t)/s_W^2$ NNLO QCD and 2-loop EW

[Buchalla, Buras,'99; Misiak, Urban '99, Broad et al. '10]

- charm contribution: $X_c = \lambda^4 [P_c^{SD} + \delta P_{c,u}^{LD}]$ SD: NNLO QCD and NLO EW; LD: ChPT
- O_L matrix elements known from $K_{3\ell}$ branching ratios \rightarrow included in κ_+
- $\Gamma_{\rm SD}/\Gamma \!>\! 90\%$
- Sources of uncertainty: SD ~ 2%, LD ~ 3%, Parametric ~ 7%
- Sum over the three neutrino flavours

 $BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (7.86 \pm 0.61) \times 10^{-11}$

[D'Ambrosio, Iyer, Mahmoudi, SN '22]

Siavash Neshatpour

EPS-HEP 2025 – Marseille, 10 July 2025

SD:[Buras et al. '05; Brod et al. '08] LD:[Isidori et al.'05]

[Mescia, Smith '07]

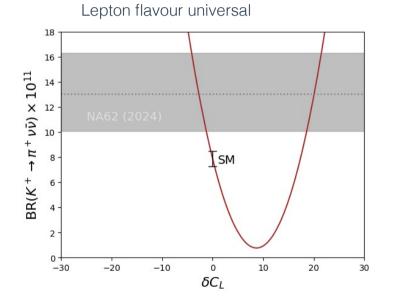
$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{NA62} = (13.0^{+3.3}_{-3.0}) \times 10^{-11}$$

[NA62, Cortinal Gil et al. '24]

$$K^+ \rightarrow \pi^+ \nu \nu$$

$$\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu}) = \frac{\kappa_+ (1 + \Delta_{\mathrm{EM}})}{\lambda^{10}} \frac{1}{3} s_W^4 \sum_{\ell} \left[\mathrm{Im}^2 \left(\lambda_t \underline{C_L^\ell} \right) + \mathrm{Re}^2 \left(-\frac{\lambda_c X_c}{s_w^2} + \lambda_t \underline{C_L^\ell} \right) \right] \quad (\lambda_i = V_{is} V_{id})$$

New Physics effects:



$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (7.86 \pm 0.61) \times 10^{-12}$$

[D'Ambrosio, Iyer, Mahmoudi, SN '22]

Siavash Neshatpour

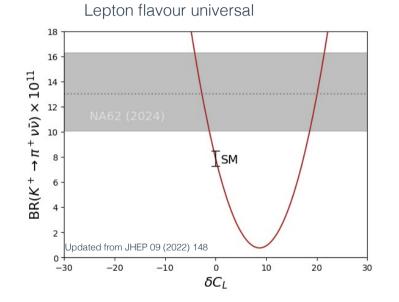
EPS-HEP 2025 – Marseille, 10 July 2025

 $BR(K^+ \to \pi^+ \nu \bar{\nu})_{NA62} = (13.0^{+3.3}_{-3.0}) \times 10^{-11}$

$$K^+ \rightarrow \pi^+ \nu \nu$$

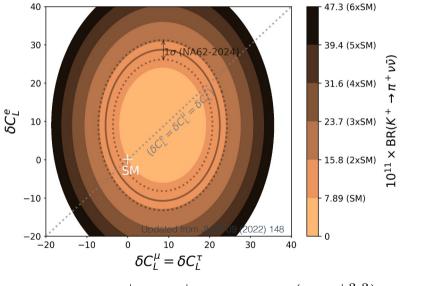
$$\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu}) = \frac{\kappa_+ (1 + \Delta_{\mathrm{EM}})}{\lambda^{10}} \frac{1}{3} s_W^4 \sum_{\ell} \left[\mathrm{Im}^2 \left(\lambda_t \overline{C_L^\ell} \right) + \mathrm{Re}^2 \left(-\frac{\lambda_c X_c}{s_w^2} + \lambda_t \overline{C_L^\ell} \right) \right] \quad (\lambda_i = V_{is} V_{id})$$

New Physics effects:



 $BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (7.86 \pm 0.61) \times 10^{-11}$

Lepton flavour universality violation



BR $(K^+ \to \pi^+ \nu \bar{\nu})_{\text{NA62}} = (13.0^{+3.3}_{-3.0}) \times 10^{-11}$

[D'Ambrosio, Iyer, Mahmoudi, SN '22]

[NA62, Cortinal Gil et al. '24]

Siavash Neshatpour

 $K_L \rightarrow \pi^0 \nu \nu$

$$BR(K_L \to \pi^0 \nu \bar{\nu}) = \frac{\kappa_L}{\lambda^{10}} \frac{1}{3} s_w^4 \sum_{\ell} Im^2 \left(\lambda_t C_L^{\ell} \right)$$

- $C_{L,SM}$ same as for $K^+ \rightarrow \pi^+ \nu \nu$
- Charm contributions below 1%
- 99% SD distance
- $\Gamma_{\rm SD}/\Gamma\!>\!99\%$
- Sources of uncertainty: SD ~ 2%, LD ~ 1%, Parametric ~ 11%
- Sum over the three neutrino flavours

 $BR(K_L \to \pi^0 \nu \nu)_{SM} = (2.68 \pm 0.30) \times 10^{-11}$

[D'Ambrosio, Iyer, Mahmoudi, SN '22]

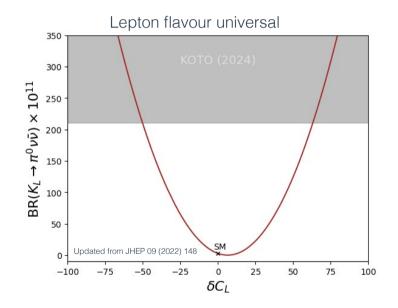
 $BR(K_L \to \pi^0 \nu \nu)_{KOTO} < 2.2 \times 10^{-9} \text{ at } 90\% CL$ [KOTO, Ahm et al. '24]

Siavash Neshatpour

 $K_L \rightarrow \pi^0 \nu \nu$

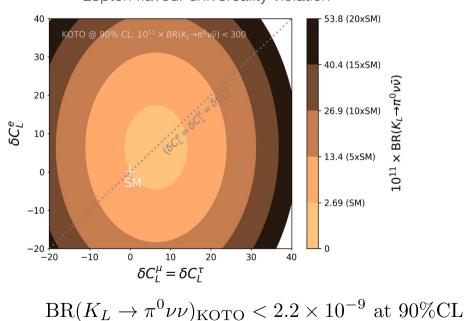
$$BR(K_L \to \pi^0 \nu \bar{\nu}) = \frac{\kappa_L}{\lambda^{10}} \frac{1}{3} s_w^4 \sum_{\ell} Im^2 \left(\lambda_t \underline{C_L^{\ell}}\right)$$

New Physics effects:



$$BR(K_L \to \pi^0 \nu \nu)_{SM} = (2.68 \pm 0.30) \times 10^{-11}$$

[D'Ambrosio, Iyer, Mahmoudi, SN '22]



Lepton flavour universality violation

[KOTO, Ahm et al. '24]

Siavash Neshatpour

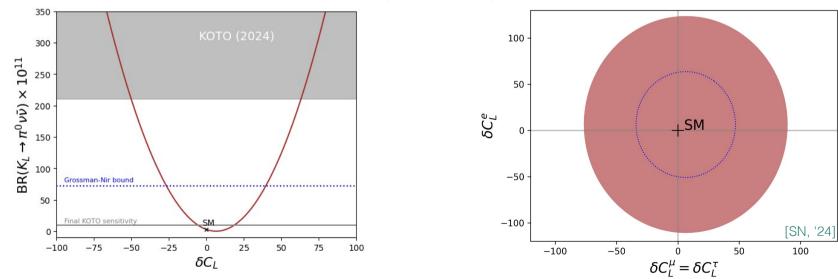
$K_L \rightarrow \pi^0 \nu \nu$

Matrix elements of $K_L \rightarrow \pi^0 \nu \nu$ and $K^+ \rightarrow \pi^+ \nu \nu$ are related via isospin resulting in the Grossman-Nir bound [Grossman, Nir '97]

$$BR(K_L \to \pi^0 \nu \nu) \le 4.3 \times BR(K^+ \to \pi^+ \nu \nu)$$

valid in the presence of most NP models

Considering the 2024 results of NA62 for $BR(K^+ \rightarrow \pi^+ \nu \nu)$



Siavash Neshatpour

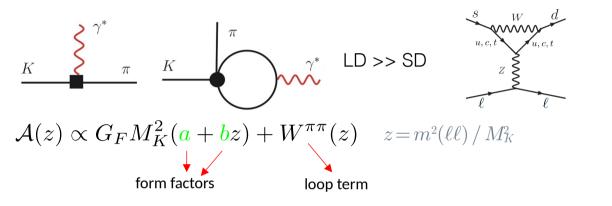
EPS-HEP 2025 – Marseille, 10 July 2025

LD-dominated

Siavash Neshatpour

LFUV in $K^+ \rightarrow \pi^+ \ell \ell$

 $K^+ \rightarrow \pi^+ \ell \ell$ is long distance dominated, mediated by single photon exchange $K^+ \rightarrow \pi^+ \gamma^*$



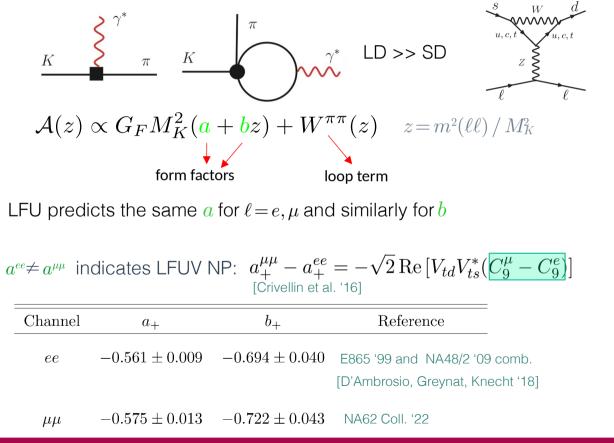
precise SM prediction not yet possible

LFU predicts the same a for $\ell = e, \mu$ and similarly for b

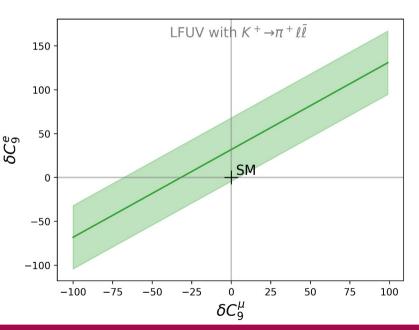
 $a^{ee} \neq a^{\mu\mu}$ indicates LFUV NP: $a^{\mu\mu}_{+} - a^{ee}_{+} = -\sqrt{2} \operatorname{Re} \left[V_{td} V^*_{ts} (C^{\mu}_{9} - C^{e}_{9}) \right]$ [Crivellin et al. '16]

LFUV in $K^+ \rightarrow \pi^+ \ell \ell$

 $K^+ \rightarrow \pi^+ \ell \ell$ is long distance dominated, mediated by single photon exchange $K^+ \rightarrow \pi^+ \gamma^*$

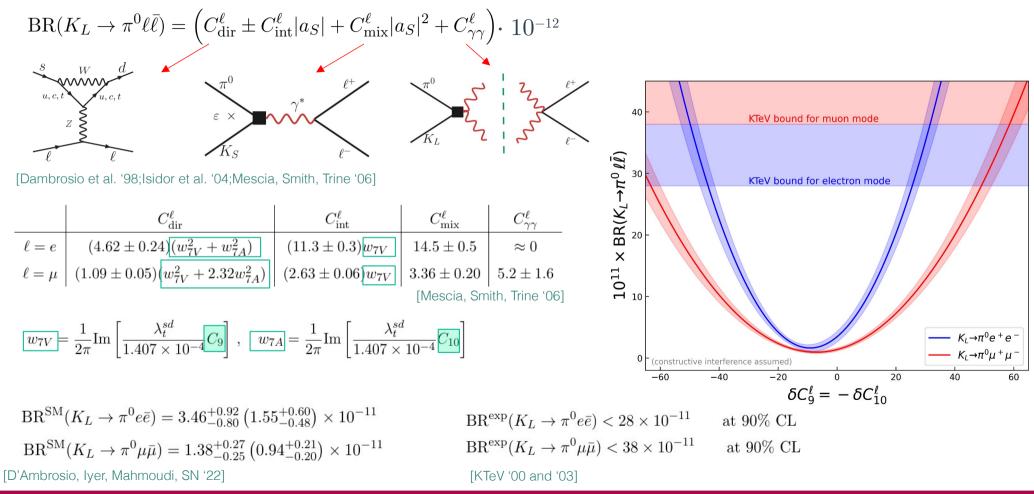


precise SM prediction not yet possible



Siavash Neshatpour

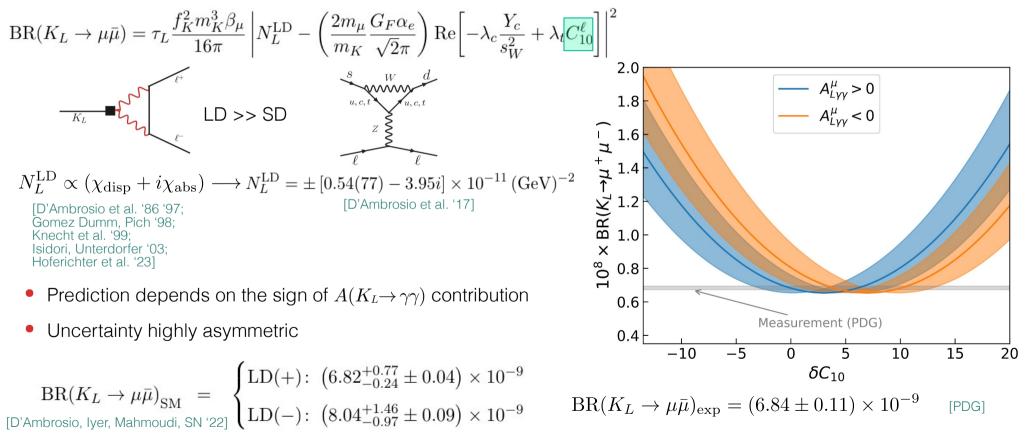
$K_L \rightarrow \pi^0 \ell \ell$



Siavash Neshatpour

$$K_L \rightarrow \mu \mu$$

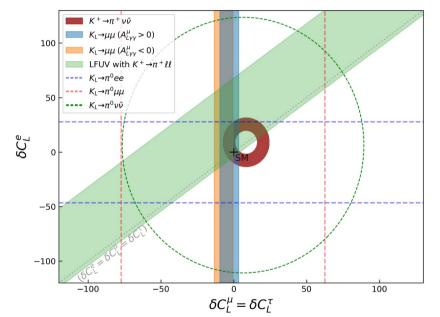
 $K_L \rightarrow \mu \mu$ is long distance dominated, mediated by two photons via $K_L \rightarrow \gamma^* \gamma^*$



Siavash Neshatpour

All observables

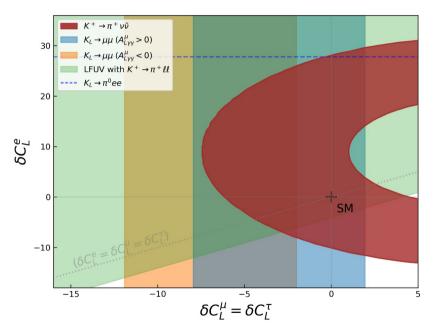
Rare kaon observables



We assume NP contributions of the charged and neutral leptons related to each other by the $SU(2)_L$ gauge symmetry and we work in the chiral basis

$$\delta C_L^\ell \equiv \delta C_9^\ell = -\delta C_{10}^\ell$$

$$\delta C_L^e \neq \delta C_L^\mu = \delta C_L^\tau$$

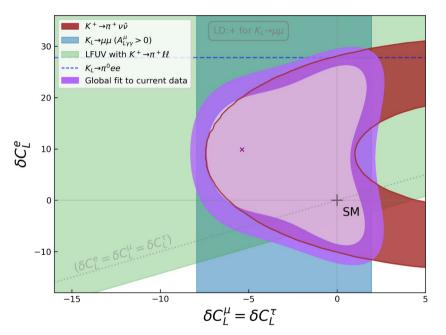


Bounds from individual observables:

Coloured regions: 68% CL measurements Dashed lines: 90% upper limits

All observables / Global fit

Global fit (with SuperIso public program) for positive LD contributions to $K_L \rightarrow \mu \mu$



Lighter / darker purple region: 68% / 95% CL of global fit

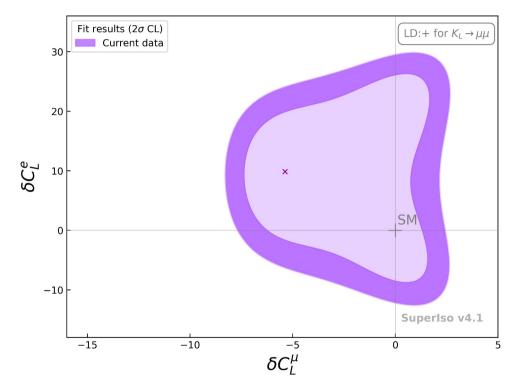
Main constraining observables $BR(K^+ \rightarrow \pi^+ \nu \nu)$ followed by $BR(K_L \rightarrow \mu \mu)$

Siavash Neshatpour

Prospects for future measurements

Siavash Neshatpour

Prospects for NA62 & KOTO-II



Current situation

Projection A

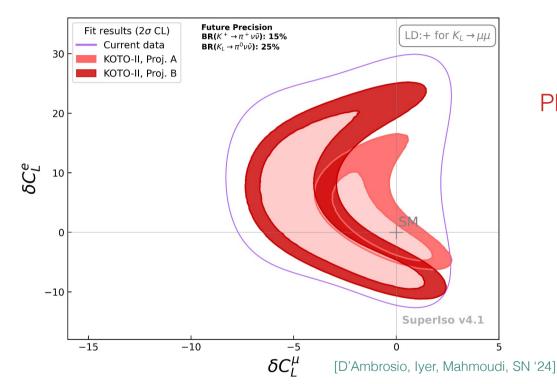
Observables already measured are kept, others assumed to match SM, with target precision of future NA62 & KOTO-II

Projection B

All measurements give current best-fit point with target precision of future NA62 & KOTO-II

Siavash Neshatpour

Prospects for NA62 & KOTO-II



Current situation

Phase 1

- NA62 final precision for $K^+ \rightarrow \pi^+ \nu \nu$ (15%)
- KOTO-II final precision for $K_L \rightarrow \pi^0 \nu \nu$ (25%)

[KOTO, Ahn et al. '25, KOTO & KOTO II Ahn et al. '25]

Projection A

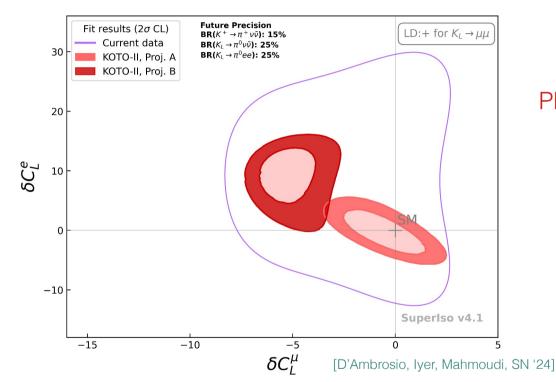
Observables already measured are kept, others assumed to match SM, with target precision of future NA62 & KOTO-II

Projection B

All measurements give current best-fit point with target precision of future NA62 & KOTO-II

Siavash Neshatpour

Prospects for NA62 & KOTO-II



Current situation

Phase 2

- NA62 final precision for $K^+ \rightarrow \pi^+ \nu \nu$ (15%)
- KOTO-II final precision for $K_L \rightarrow \pi^0 \nu \nu$ (25%)
- KOTO-II measurement of $K_L \rightarrow \pi^0 e^+ e^-$ (25%)

[KOTO, Ahn et al. '25, KOTO & KOTO II Ahn et al. '25]

Projection A

Observables already measured are kept, others assumed to match SM, with target precision of future NA62 & KOTO-II

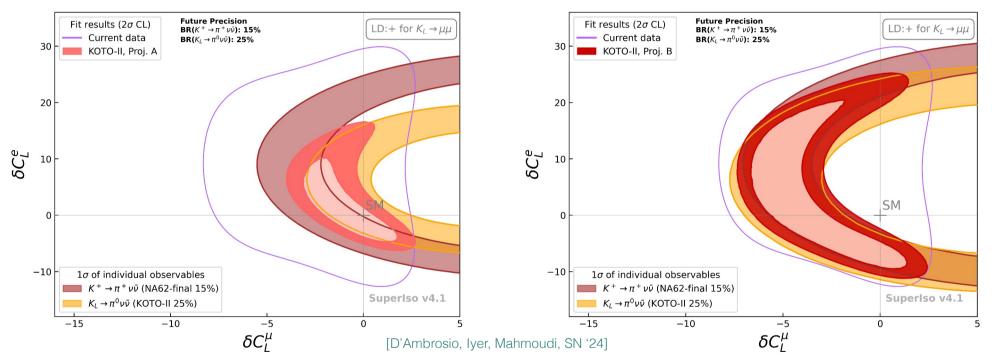
Projection B

All measurements give current best-fit point with target precision of future NA62 & KOTO-II

Siavash Neshatpour

Impact of projected measurements

Phase 1



Projection A

Observables already measured are kept, others assumed to match SM, with target precision of future NA62 & KOTO-II

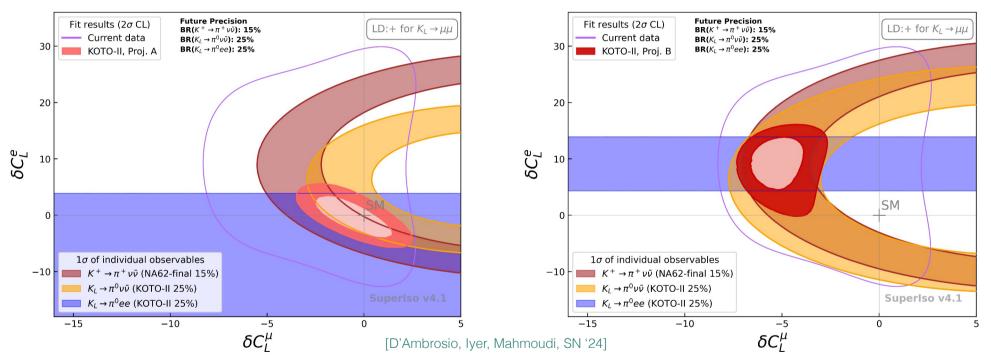
Projection B

All measurements give current best-fit point with target precision of future NA62 & KOTO-II

Siavash Neshatpour

Impact of projected measurements

Phase 2



Projection A

Observables already measured are kept, others assumed to match SM, with target precision of future NA62 & KOTO-II

Projection B

All measurements give current best-fit point with target precision of future NA62 & KOTO-II

Siavash Neshatpour

- Rare kaon decays offer interesting information on short distance physics, even those which are long-distance dominated
- Global analysis gives a stronger and more coherent bound on NP
- Measurement of $K_L \rightarrow \pi^0 \ell \ell$, although long-distance dominated, especially in the electron sector gives a very effective probe of new physics
- Future improvements of kaon measurements are crucial

- Rare kaon decays offer interesting information on short distance physics, even those which are long-distance dominated
- Global analysis gives a stronger and more coherent bound on NP
- Measurement of $K_L \rightarrow \pi^0 \ell \ell$, although long-distance dominated, especially in the electron sector gives a very effective probe of new physics
- Future improvements of kaon measurements are crucial

Backup

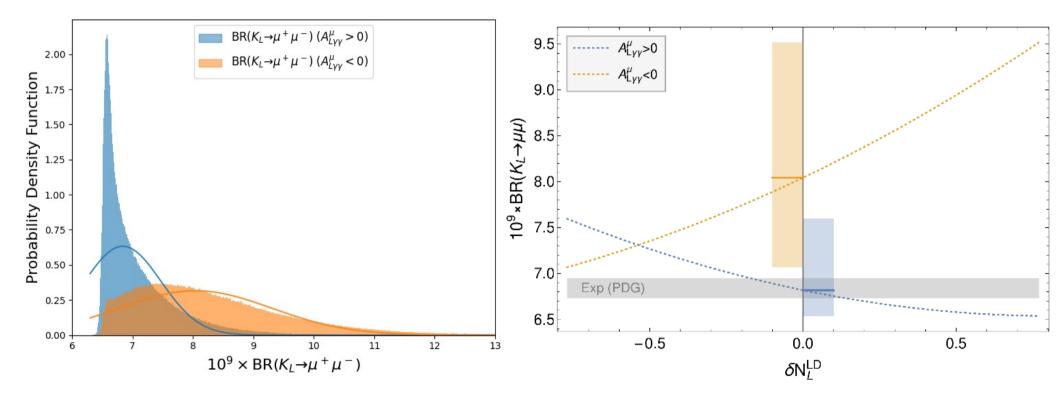
Siavash Neshatpour

Theory and experimental results used in the fit

Observable	SM prediction	Experimental results	Reference	Precision for projections	
${\rm BR}(K^+\to\pi^+\nu\bar\nu)$	$(7.86\pm0.61)\times10^{-11}$	$(10.6^{+4.0}_{-3.5}\pm0.9)\times10^{-11}$	[1]	15% 17	
${\rm BR}(K^0_L\to\pi^0\nu\bar\nu)$	$(2.68\pm0.30)\times10^{-11}$	$< 1.99 \times 10^{-9}$ @90% CL	[46]	25% 17	
$LFUV(a_+^{\mu\mu} - a_+^{ee})$	0	-0.014 ± 0.016	4.19]	Current	
${ m BR}(K_L o \mu \bar{\mu}) \ (+)$	$(6.82^{+0.77}_{-0.29}) \times 10^{-9}$	$(6.84 \pm 0.11) \times 10^{-9}$	47]	Current	
$BR(K_L \to \mu \bar{\mu}) \ (-)$	$(8.04^{+1.47}_{-0.98}) \times 10^{-9}$	(0.01 ± 0.11) / 10	<u> </u>	Guirons	
$BR(K_S \to \mu \bar{\mu})$	$(5.15 \pm 1.50) \times 10^{-12}$	$< 2.1(2.4) \times 10^{-10}$ @90(95)% CL $(0.9^{+0.7}_{-0.6} \times 10^{-10})$	5]	$< 6.4 \times 10^{-12}$ @95% CL (LHCb@300 fb ⁻¹ 32.33)	
$BR(K_L \to \pi^0 e\bar{e})(+)$	$(3.46^{+0.92}_{-0.80}) \times 10^{-11}$	$< 28 \times 10^{-11}$ @90% CL	11]	25% [17]	
${ m BR}(K_L o \pi^0 e ar e)(-)$	$(1.55^{+0.60}_{-0.48}) \times 10^{-11}$	20×10 000001		2070 111	
$BR(K_L \to \pi^0 \mu \bar{\mu})(+)$	$(1.38^{+0.27}_{-0.25}) \times 10^{-11}$	$< 38 \times 10^{-11}$ @90% CL	12]	25% 17	
$BR(K_L \to \pi^0 \mu \bar{\mu})(-)$	$(0.94^{+0.21}_{-0.20}) \times 10^{-11}$				

Uncertainties in $K_L \rightarrow \ell \ell$

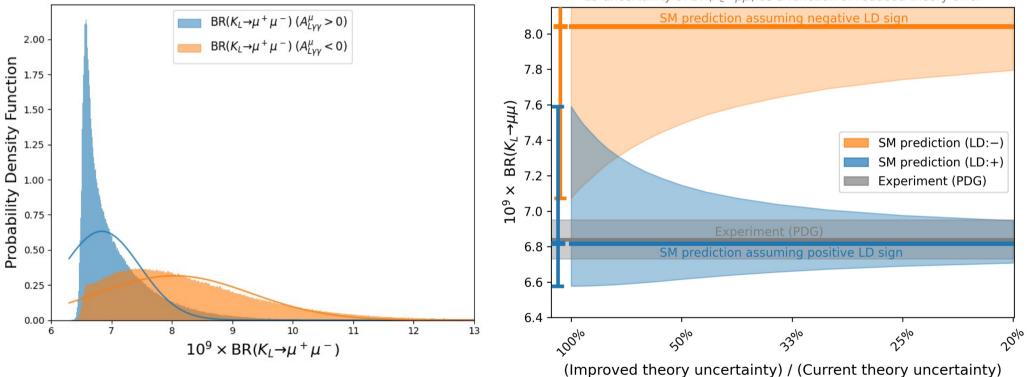
Asymmetric theoretical uncertainty of $K_L \rightarrow \mu \mu$



Siavash Neshatpour

Uncertainties in $K_L \rightarrow \ell \ell$

Asymmetric theoretical uncertainty of $K_L \rightarrow \mu \mu$

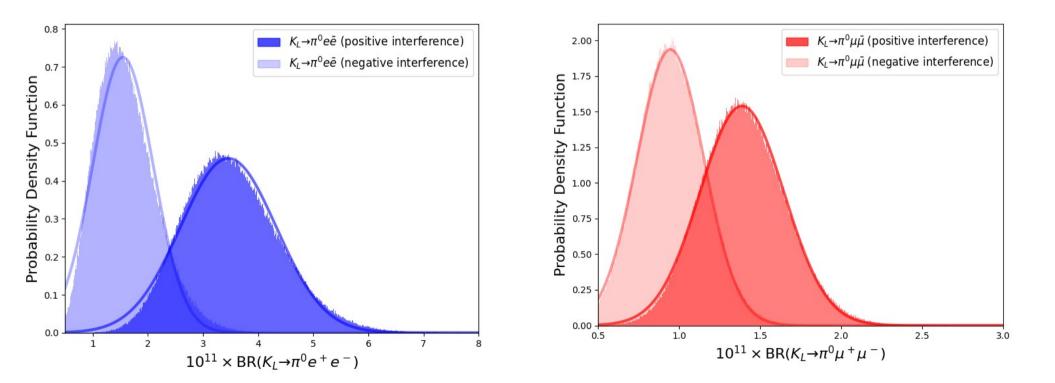


 1σ uncertainty of BR($K_L \rightarrow \mu\mu$) as a function of reduced theory error

Siavash Neshatpour

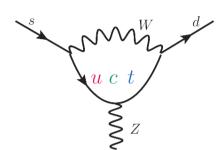
Uncertainties in $K_L \rightarrow \pi^0 \ell \ell$

Asymmetric theoretical uncertainty of $K_L \rightarrow \pi^0 \ell \ell$



Siavash Neshatpour

FCNC



CKM unitarity

$$\sum_{k} V_{ik} V_{jk}^{*} = 0 \qquad \frac{\lambda_{u}}{\lambda_{u}} + \lambda_{c} + \frac{\lambda_{t}}{\lambda_{t}} = 0$$

Amplitude = sum over all internal up-quarks:

$$\lambda_q \equiv V_{qd} V_{qs}^*$$
$$x_q \equiv m_q^2 / M_W^2$$

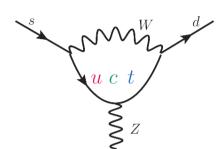
$$\Sigma_{q=u,c,t} \ \lambda_q F(x_q) = \frac{\lambda_u}{\lambda_u} F(x_u) + \lambda_c F(x_c) + \frac{\lambda_t}{\lambda_t} F(x_t)$$

CKM factor for B-mesons

 $\begin{aligned} Re(\lambda_{u}) \sim \lambda^{4}, & Re(\lambda_{c}) \sim \lambda^{3}, & Re(\lambda_{t}) \sim \lambda^{2} \\ Im(\lambda_{u}) = \lambda^{4}, & Im(\lambda_{c}) \sim \lambda^{8}, & Im(\lambda_{t}) \sim \lambda^{4} \end{aligned}$

$$s$$
 $w c t$ $z \gamma$

FCNC



CKM unitarity

$$\sum_{k} V_{ik} V_{jk}^{*} = 0 \qquad \frac{\lambda_{u}}{\lambda_{u}} + \lambda_{c} + \lambda_{t} = 0$$

Amplitude = sum over all internal up-quarks:

$$\lambda_q \equiv V_{qd} V_{qs}^*$$
$$x_q \equiv m_q^2 / M_W^2$$

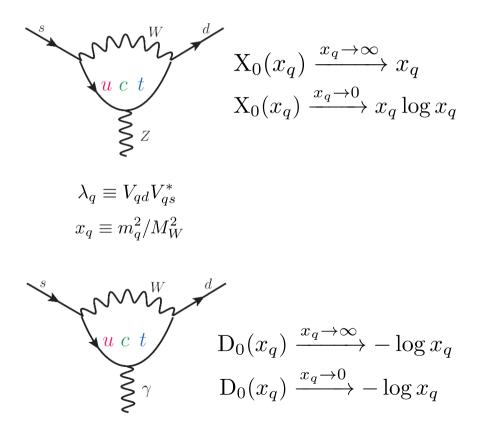
$$\Sigma_{q=u,c,t} \ \lambda_q F(x_q) = \frac{\lambda_u}{\lambda_u} F(x_u) + \lambda_c F(x_c) + \frac{\lambda_t}{\lambda_t} F(x_t)$$

CKM factor for Kaons

 $\begin{aligned} Re(\lambda_u) &\sim \lambda, & Re(\lambda_c) &\sim \lambda, & Re(\lambda_t) &\sim \lambda^5 \\ Im(\lambda_u) &= 0, & Im(\lambda_c) &\sim \lambda^5, & Im(\lambda_t) &\sim \lambda^5 \end{aligned}$

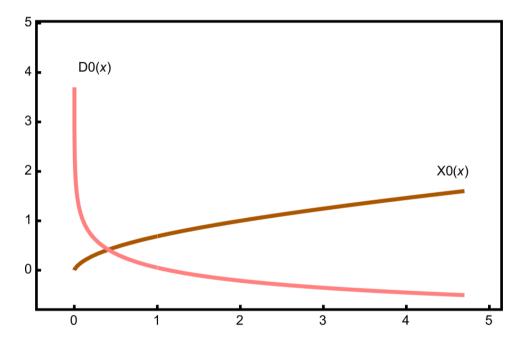
$$\sum_{i=1}^{\gamma}$$
Siavash Neshatpour

FCNC



Inami-Lim functions:

[Inami, Lim '81, Buchalla, Buras, Harlander '91]



No large suppression for u- and c-quark (unlike B-physics) ⇔large contribution of low-energy physics

Siavash Neshatpour

$K_S \rightarrow \mu \mu$

$$\operatorname{BR}(K_S \to \mu\bar{\mu}) = \tau_S \frac{f_K^2 m_K^3 \beta_\mu}{16\pi} \left\{ \beta_\mu^2 \left| N_S^{\mathrm{LD}} \right|^2 + \left(\frac{2m_\mu}{m_K} \frac{G_F \alpha_e}{\sqrt{2}\pi} \right)^2 \operatorname{Im}^2 \left[-\lambda_c \frac{Y_c}{s_W^2} + \lambda_t C_{10}^\ell \right] \right\}$$

The long-distance contribution is cleaner, as the leading $O(p^4)$ chiral contribution of $K_S \rightarrow \pi^+ \pi^- \rightarrow \gamma \gamma \rightarrow \mu^+ \mu^$ is theoretically under better control [Ecker, Pich '91]

LHCb bound @90% CL $BR(K_S \to \mu \bar{\mu})^{SM} = (5.15 \pm 1.50) \times 10^{-12}$ [D'Ambrosio, Iyer, Mahmoudi, SN '22] $BR(K_{5} \rightarrow \mu^{+} \mu^{-10})$ Prospect of LHCb limit @95% CL with 300 fb⁻¹ data $BR(K_S \to \mu \bar{\mu})^{LHCb} < 2.1(2.4) \times 10^{-10} \ @90(95)$ [LHCb '20] • $K_S \rightarrow \mu \mu$ not very sensitive to axial currents 10^{-11} Sensitive to new physics scenarios involving scalar and SM pseudoscalar contributions -20-4020 40 0

EPS-HEP 2025 – Marseille, 10 July 2025

 δC^{μ}_{10}

Siavash Neshatpour

Scalar and pseudoscalar contributions in $K_S ightarrow \mu \mu$

Adding scalar contributions

$$\mathcal{H}_{\text{eff}}^{\text{scalar}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{td} \frac{\alpha_e}{4\pi} \left[C_S^\ell O_S^\ell + C_P^\ell O_P^\ell \right]$$
$$O_S^\ell = (\bar{s}P_R d)(\bar{\ell}\ell), \quad O_P^\ell = (\bar{s}P_R d)(\bar{\ell}\gamma_5\ell)$$

$$BR(K_S \to \mu\bar{\mu}) = \tau_S \frac{f_K^2 m_K^3 \beta_\mu}{16\pi} \left\{ \beta_\mu^2 \left| N_S^{\text{LD}} - m_K \frac{G_F \alpha_e}{\sqrt{2}\pi} \text{Re} \left[\frac{\lambda_t C_S}{m_s + m_d} \right] \right|^2 + \left(\frac{G_F \alpha_e}{\sqrt{2}\pi} \right)^2 \left| \frac{2m_\mu}{m_K} \text{Im} \left[-\lambda_c \frac{Y_c}{s_W^2} + \lambda_t C_{10} \right] + \frac{M_K}{m_s + m_d} \text{Im} \left[\lambda_t C_P \right] \right|^2 \right\}$$
(Chobanova et al. '17)

- $K_S \rightarrow \mu \mu$ measurement currently two orders of magnitude above SM
- What can we say with current data about scalar and pseudoscalar contributions?

Siavash Neshatpour

Looking again into $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ in the presence of scalar contributions

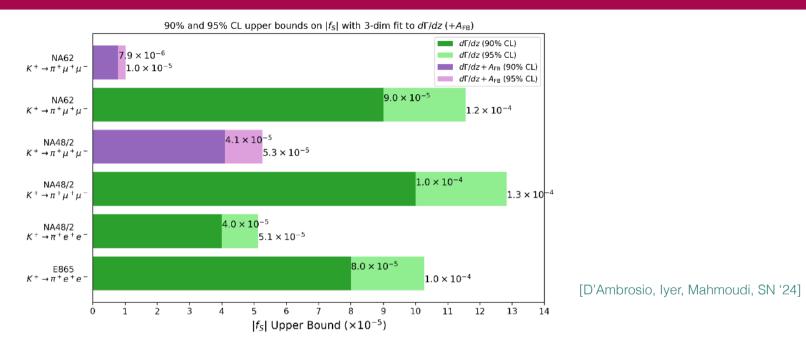
$$\mathcal{M} = \frac{\alpha G_F}{4\pi} f_V(z) (p_K + p_\pi)^{\mu} \bar{\ell} \gamma_{\mu} \ell + G_F m_K f_S \bar{\ell} \ell$$

$$\frac{d^2 \Gamma}{dz d \cos \theta} = \frac{G_F^2 m_K^5}{2^8 \pi^3} \beta_\ell \lambda^{1/2}(z) \times \left\{ |f_V|^2 \frac{\alpha_e^2}{16\pi^2} \lambda(z) (1 - \beta_\ell^2 \cos^2 \theta) \\ + |f_S|^2 z \beta_\ell^2 + \operatorname{Re}[f_V^* f_S] \frac{\alpha_e r_\ell}{\pi} \beta_\ell \lambda^{1/2}(z) \cos \theta \right\} \begin{array}{l} \lambda(z) = 1 + z^2 + r_\pi^4 - 2(z + r_\pi^2 + zr_\pi) \\ \lambda(z) = 1 + z^2 + r_\pi^4 + zr_\pi + zr_\pi)$$

$$A_{\rm FB}(z) = \frac{\int_0^1 \left(\frac{d\Gamma}{dzd\cos\theta}\right) d\cos\theta - \int_{-1}^0 \left(\frac{d\Gamma}{dzd\cos\theta}\right) d\cos\theta}{\int_0^1 \left(\frac{d\Gamma}{dzd\cos\theta}\right) d\cos\theta + \int_{-1}^0 \left(\frac{d\Gamma}{dzd\cos\theta}\right) d\cos\theta} \longrightarrow A_{\rm FB}(z) = \frac{\alpha_e G_F^2 m_K^5}{2^8 \pi^4} r_\ell \beta_\ell^2 \lambda(z) {\rm Re}[f_V^* f_S] / \left(\frac{d\Gamma(z)}{dz}\right)$$

- If assumed SM-like only f_V contributes
- $A_{\rm FB}$ only non-zero in case $f_S \neq 0$
- In the case of electron mode suppressed by electron mass

Scalar contributions in $K^+ \rightarrow \pi^+ \ell \ell$



- Only bound on f_s so far via study of BR $(K^+ \rightarrow \pi^+ e^+ e^-)$ from E865 data $f_s < 6.6 \times 10^{-5}$ at 90% CL
- In the muon mode also $A_{\rm FB}$ can be considered
- ~one order of magnitude stronger bound by analyzing simultaneously BR and $d\Gamma/dz$ with $f_S < 7.9 \times 10^{-6}$ at 90% CL

$K^{\!+}\!\to\!\pi^{\!+}\,\ell\,\ell$

$$\frac{d\Gamma}{dz} = \frac{\alpha^2 M_K}{12\pi (4\pi)^4} \lambda^{3/2} (1, z, r_\pi^2) \beta_\ell \left(1 + 2\frac{r_\ell^2}{z}\right) |W(z)|^2$$

$$W(z) = a \frac{r_V^2}{r_V^2 - z} \qquad \qquad r_V = \frac{M_V}{M_K}$$

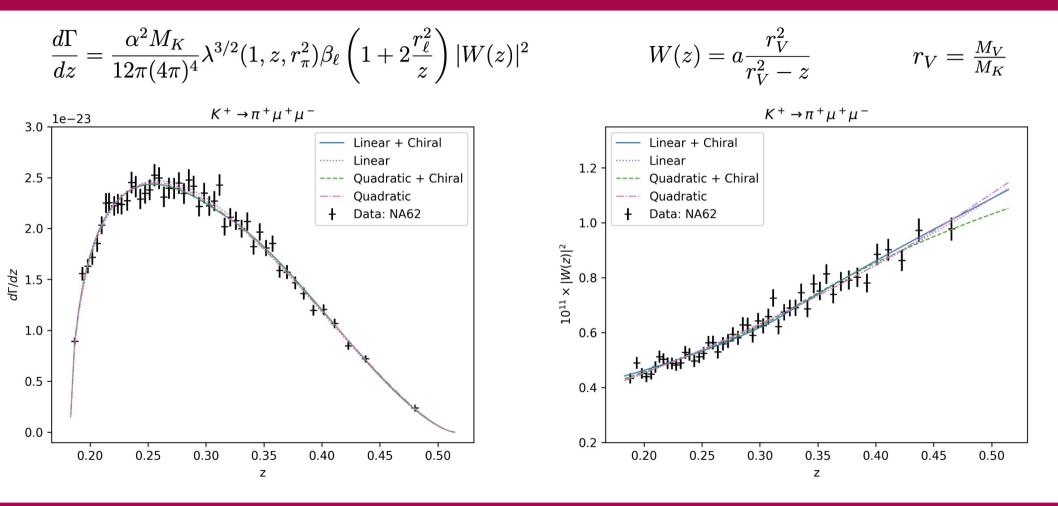
$W = G_F m_K^2 f_0 (1 + \delta z)$			$W = G_F m_K^2(a+bz) + W^{\pi\pi}(z)$		
	This paper $(d\Gamma/dz)$			This paper $(d\Gamma/dz)$	
f_0	0.486 ± 0.012		a	-0.589 ± 0.012	
δ	2.826 ± 0.150		b	-0.716 ± 0.040	
$ ho(f_0,\delta)$	-0.992		ho(a,b)	-0.973	
$\chi^2/{ m dof}$	49.9/48		$\chi^2/{ m dof}$	47.3/48	
$BR \times 10^8$	9.165 ± 0.059		$BR \times 10^8$	9.161 ± 0.056	

$W = G_F m_K^2 f_0 (1 + \delta z + \delta' z^2)$			$W = G_F m_K^2 (a + bz + cz^2) + W^{\pi\pi}(z)$		
		This paper $(d\Gamma/dz)$			This paper $(d\Gamma/dz)$
f_0		0.589 ± 0.048	a		-0.595 ± 0.047
δ		1.113 ± 0.643	b		-0.677 ± 0.322
δ'		1.998 ± 0.743	С		-0.065 ± 0.526
$\chi^2/{ m dof}$		45.0/47	$\chi^2/{ m dof}$		47.3/47
$BR \times 10^7$		9.165 ± 0.178	$BR \times 10^8$		9.161 ± 0.057

EPS-HEP 2025 – Marseille, 10 July 2025

Siavash Neshatpour

 $K^+ \rightarrow \pi^+ \ell \ell$



Siavash Neshatpour