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In the inclusive  decay, the CP-averaged photon-energy spectrum is given by  B → Xsγ

 = Wilson coefficients of the Weak Effective Theory (WET)Ci

[1003.5012: Benzke, Lee, Neubert, Paz]
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In the inclusive  decay, the CP-averaged photon-energy spectrum is given by  B → Xsγ

 = Wilson coefficients of the Weak Effective Theory (WET)Ci

Current uncertainties of the  interference: 𝒪1 − 𝒪7

• Estimated contribution (largest uncertainty) 
• Large scale ambiguity (not included in the above estimates)

≈ (5.15 ± 2.55) %
≈ 40 %

[2006.00624: Benzke, Hurth]

[1003.5012: Benzke, Lee, Neubert, Paz]
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In the inclusive  decay, the CP-averaged photon-energy spectrum is given by  B → Xsγ

 = Wilson coefficients of the Weak Effective Theory (WET)Ci

NLO analysis and Renormalisation Group Evolution (RGE) will reduce this ambiguity 

Current uncertainties of the  interference: 𝒪1 − 𝒪7

• Estimated contribution (largest uncertainty) 
• Large scale ambiguity (not included in the above estimates)

≈ (5.15 ± 2.55) %
≈ 40 %
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Factorisation in Soft Collinear Effective Theory



EPS, Marseille, 11/7/2025 Riccardo Bartocci

Factorisation

5

Factorisation              Scale separation              Perturbative and non-perturbative separation
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From the LO diagrams of the  interference: 𝒪1 − 𝒪7

we write:

Factorisation theorem:

This large scale ambiguity and the large charm-mass dependence strongly motivate

a systematic calculation of the O(↵s) radiative corrections within renormalisation-group

(RG) improved perturbation theory. Starting point for such an analysis is a factorisation

formula for the subleading non-local contributions in terms of hard functions H, jet func-

tions J and J̄ and soft functions. At LO this has been established in [16]. More recently,

a partial failure of that factorisation formula was healed in [31] by using new refactori-

sation techniques [32–35]. The present paper provides the first step towards including

the radiative corrections, focusing on the largest resolved contribution from the Qc

1 � Q7�

interference. The respective LO factorisation formula takes the schematic form

d�(B̄ ! Xs�) ⇠ H · J ⌦ g17 ⌦ J̄ , (1.2)

where the ⌦ symbol indicates a convolution integral. We here calculate the one-loop

anomalous dimension of the respective soft function in the factorisation theorem – the

subleading shape function g17(!, !1, µ).

Conceptually, our analysis also reveals new insights about the renormalisation of a

specific set of soft functions. Whereas for example the leading-power shape function (and

also conventional light-cone distribution amplitudes in exclusive B-meson decays),

S(!; µ) =
1

2MB

Z
dt

2⇡
e�i!t hB̄v|(h̄vSn)(tn) (S†

nhv)(0)|B̄vi , (1.3)

whose renormalisation has been studied in [36, 37], is defined by an operator that only

contains soft fields smeared along one common light-cone vector nµ in the direction of the

energetic s-quark, a technical complication in the case of g17(!, !1; µ) is that the underlying

operator contains fields smeared along two di↵erent light-cones, see the definition below

in (2.3) and (2.4). The reason is that the soft gluon in Fig. 1 couples to the quark loop

that converts into the energetic photon in the direction opposite to that of the s-quark.

Such soft functions with a dependence on multiple light-cone directions will become

relevant in various power-corrections to inclusive and exclusive processes, see e.g. [16, 38–

41], or when QED corrections are included and the external particles are electrically

charged [42–48] (see also [49] for a summary of QED corrections in the factorisation ap-

proach, and [50–55] for recent analyses of other subleading-power soft functions relevant for

the Drell-Yan process as well as H ! �� and H ! gg decays). In the context of B-meson

decays, their renormalisation was first rigorously studied in [47] for the QED-generalized

B-meson light-cone distribution amplitude. Most importantly, in the present article we

find that the anomalous dimension of such a multi-light-cone operator contains terms that

are irrelevant in factorisation theorems (and hence for physical quantities), generalizing

an observation made in [47]. This allows one to solve considerably simpler “reduced”

renormalisation-group (RG) equations. As an example, we simplify a recent analysis of

the RG evolution for an amplitude-level soft function that appears in the factorisation of

exclusive B̄d,s ! �� decays, and has recently been studied in [40].

As a cross-check of this simplification, we have confirmed that all 1/" singularities

cancel at next-to-leading order (NLO) between the hard, (anti-)hard-collinear and soft

loops. Whereas the NLO corrections to the quark jet function and the hard matching

– 3 –

[1003.5012: Benzke, Lee, Neubert, Paz]

Figure 1: Leading-order contribution to the B̄ ! Xs� decay rate from the Qc

1 � Q7�

interference. Symmetric diagrams are not shown.

coe�cients are well-known, we have computed all 1/" singularities of the anti-hard-collinear

two-loop diagrams from gluon attachments to the quark loop. These corrections turn out

to be identical for the inclusive and exclusive process. We have used the fact that the

massless-quark limit can be taken smoothly to simplify the calculation. This represents

a further important step towards a consistent RG analysis, and will be discussed in a

forthcoming publication [56].

We also note that all results on the shape function g17 which we derive in the present

manuscript can directly be used also in the case of the B̄ ! Xs`+`� mode.

The remainder of the article is organized as follows. In section 2, we compute the

ultraviolet singularities of the soft operator underlying the subleading shape function. An

analytic solution to the corresponding RG equation in momentum-space is presented in

section 3, and some phenomenological implications of the scale evolution are discussed. In

section 4, we compare our calculation to a closely related soft function at the amplitude

level, which is relevant for penguin contributions to exclusive processes. We conclude in

section 5.

2 Renormalisation of the subleading shape function g17

The B̄ ! Xs� decay rate cannot be expressed as the imaginary part of a B-meson forward

matrix element of time-ordered operators, because not all possible cuts also contribute to

the b ! s� decay. Instead, it is related to a restricted discontinuity of the forward matrix

element of the product of two e↵ective weak Hamiltonians,

d�(B̄ ! Xs�) / Disc restr.

h
i

Z
d4x hB̄|H†

e↵(x) He↵(0)|B̄i
i
, (2.1)

where restricted means that at leading order only the cuts including the photon and the

strange quark are considered. The dominant resolved-photon contribution arises from the

interference of the current-current operator Qq

1 with the electromagnetic dipole operator

Q7� . The leading order contribution to the decay rate is shown in Fig. 1.

We remind the reader that taking restricted cuts using Cutkosky cutting rules implies

that on the left side of the cut one uses standard Feynman rules, whereas on the right

– 4 –
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Factorisation formula at LO:
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1. Hard function ( ) at LO ~ 1 (perturbative)μ2 ∼ m2
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1. Hard function ( ) at LO ~ 1 (perturbative)μ2 ∼ m2
b

2. Jet function ( ) (perturbative)μ2 ∼ mbΛQCD
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2. Jet function ( ) (perturbative)μ2 ∼ mbΛQCD
3. Subleading shape function ( ) (non-perturbative)μ2 ∼ Λ2
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Recall that the relevant integrals that contribute to the B̄ ! Xs� decay rate contain

cuts. In particular, at leading order, the n-jet function is given by the discontinuity of the

hard-collinear s-quark propagator, whereas the n̄-jet function is defined at the amplitude

level and arises from the anti-hard-collinear momentum configuration in the quark-loop in

Fig. 1. While the potentially problematic terms vanish after convolution with the time-

ordered propagators, they certainly do not when convoluted with the physically relevant

n-jet function. However, it turns out that both terms in �Z17 arise from soft gluons con-

necting the amplitude with the complex conjugate amplitude. Since taking the cut enforces

t > 0 from the positive-energy constraint, a definition of the shape function g17(!,!1; µ)

that contains the relevant cut-propagators would directly eliminate �Z17. In summary,

the contribution �Z17, which is non-zero only for t < 0, is irrelevant in both cases, since

either taking the cut or the convolution with the time-ordered jet function enforces t > 0.

As already mentioned above, the B̄ ! Xs� decay rate cannot be expressed as the

imaginary part of a B-meson forward matrix element of time-ordered operators because

not all possible cuts also contribute to the b ! s� decay. Thus, a precise prescription is

needed how to implement the restricted cuts when radiative corrections to the process are

taken into account. A path-integral method to evaluate such cut diagrams is given by the

Keldysh formalism [58, 59], see also [60] for a concise summary. Here one introduces fields

with a subscript “+” that belong to the amplitude and are evaluated with standard HQET

Feynman rules from time-ordered products. On the other hand, fields with a subscript

“�” belong to the complex conjugate amplitude and are evaluated with complex-conjugate

Feynman rules from anti-time-ordered products. The Feynman rule for the contraction of

two fields with di↵erent indices, i.e. a propagator that connects the amplitude with the

complex conjugate amplitude, is evaluated using the on-shell condition on the right-hand

side in (2.2). On a diagrammatic level, these rules precisely correspond to the cutting-rules

explained in the beginning of this section. However, since the shape function g17 is defined

by a hadronic matrix element, a non-perturbative definition at the level of the path integral

is required. The soft operator (2.4) that defines the shape function g17 should, thus, be

written as

O17(t, r) ! (h̄vSn)�(tn) /̄n(S†
nSn̄)+(0) i�?

↵ n̄� (S†
n̄ gsG

↵�

s Sn̄)+(rn̄) (S†
n̄hv)+(0) . (2.37)

This prescription does not a↵ect the Feynman rules for the e↵ective vertex provided in

Section 2.1, but the use of cut propagators from (2.2) introduces some relevant di↵erences

in a few diagrams. Indeed, evaluating all diagrams in Fig. 3 with these cutting rules

leaves most of the results from the previous two subsections unchanged. In particular

the Abelian part of the Z-factor, as well as the sum of diagrams (a) and (c)-(f) remain

una↵ected. Notable di↵erences are that the contribution (2.27) becomes UV-finite, and

second, the expression in (2.29) becomes

�↵sCA
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⇢
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"
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��

µ

◆
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✓
✓(!1 � !0

1)
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1 + �̄

+ �(!1 � !0
1) ln

�̄

µ

◆�
+ O("0) . (2.38)
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side one uses complex-conjugate Feynman rules. More precisely, on the left of the cut one

uses the standard Feynman rules for propagators i/(k2 + i0) from time-ordered products

as well as for vertices, whereas on the right of the cut one uses complex-conjugate propaga-

tors (�i)/(k2 � i0) from anti-time-ordered products as well as complex-conjugate vertices.

Propagators that cross the cut are set on-shell with a positive-energy constraint,2

i

`2 + i0
! 2⇡�(`2)✓(`0) . (2.2)

The other equivalent option is to consider the absolute-square of the amplitude and sum

over the intermediate states X in |hB̄|He↵ |Xi|2= hB̄|He↵ |XihB̄|He↵ |Xi⇤. A path integral

formulation for the evaluation of matrix elements with (restricted) cuts is given by the

so-called Keldysh formalism [58, 59] to which we come back below.

The subleading shape-function g17(!, !1; µ), introduced in [16], is the relevant soft

function, that captures the non-perturbative low-energy QCD dynamics in the factorisa-

tion formula of this resolved contribution, which is part of the restricted discontinuity of

the forward matrix element given in (2.1). The soft function is defined as the Fourier-

transformed forward matrix element between two static B̄-meson states,

g17(!, !1; µ) =
1

2MB

Z
dr

2⇡
e�i!1r

Z
dt

2⇡
e�i!t hB̄v|O17(t, r)|B̄vi , (2.3)

of an operator in Heavy-Quark E↵ective Theory (HQET),

O17(t, r) = (h̄vSn)(tn) /̄n(S†
nSn̄)(0) i�?

↵ n̄� (S†
n̄ gsG

↵�

s Sn̄)(rn̄) (S†
n̄hv)(0) . (2.4)

Here, nµ is a light-like vector that points into the direction of the energetic s-quark (the

collinear direction), and, the energetic photon has momentum in the opposite n̄µ direction

(the anti-collinear direction). Furthermore, the Sn are soft Wilson lines from the decou-

pling of the hard-collinear s-quark propagator, and correspondingly the Sn̄ arise from the

decoupling of anti-hard-collinear propagators in the quark-loop, see Fig. 1 and Fig. 2.

Importantly, the Wilson-lines in both light-cone directions combine to segments of finite

length. In the following three subsections we calculate the ultraviolet (UV) singularities of

the operator O17(t, r) using standard HQET Feynman rules from time-ordered products

in a B-meson forward matrix element without implementing the necessary cuts. However,

once ↵s corrections are considered, we have to implement the restricted cuts, because g17 is

a soft function of a squared amplitude. We will address this task in Section 2.4. However,

the calculation using time-ordered fields reveals an interesting and surprising feature: the

anomalous dimension contains terms that are irrelevant in the factorisation theorem. We

use this observation to simplify an amplitude-level soft function for an exclusive decay in

Section 4.

2.1 UV singularities of O17

We compute the ultraviolet (UV) singularities of the momentum-space operator

eO(bare)
17 (!, !1) =

Z
dr

2⇡
e�i!1r

Z
dt

2⇡
e�i!t O(bare)

17 (t, r) (2.5)

2
See for example eq. (06-128) in the Quantum Field Theory textbook by C. Itzykson and J.-B. Zuber [57].

– 5 –

The subleading shape function is given by the forward matrix element between two B-meson states 

where the operator is defined as
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hard-collinear s-quark propagator, whereas the n̄-jet function is defined at the amplitude

level and arises from the anti-hard-collinear momentum configuration in the quark-loop in

Fig. 1. While the potentially problematic terms vanish after convolution with the time-

ordered propagators, they certainly do not when convoluted with the physically relevant

n-jet function. However, it turns out that both terms in �Z17 arise from soft gluons con-

necting the amplitude with the complex conjugate amplitude. Since taking the cut enforces

t > 0 from the positive-energy constraint, a definition of the shape function g17(!,!1; µ)

that contains the relevant cut-propagators would directly eliminate �Z17. In summary,

the contribution �Z17, which is non-zero only for t < 0, is irrelevant in both cases, since

either taking the cut or the convolution with the time-ordered jet function enforces t > 0.

As already mentioned above, the B̄ ! Xs� decay rate cannot be expressed as the

imaginary part of a B-meson forward matrix element of time-ordered operators because

not all possible cuts also contribute to the b ! s� decay. Thus, a precise prescription is

needed how to implement the restricted cuts when radiative corrections to the process are

taken into account. A path-integral method to evaluate such cut diagrams is given by the

Keldysh formalism [58, 59], see also [60] for a concise summary. Here one introduces fields

with a subscript “+” that belong to the amplitude and are evaluated with standard HQET

Feynman rules from time-ordered products. On the other hand, fields with a subscript

“�” belong to the complex conjugate amplitude and are evaluated with complex-conjugate

Feynman rules from anti-time-ordered products. The Feynman rule for the contraction of

two fields with di↵erent indices, i.e. a propagator that connects the amplitude with the

complex conjugate amplitude, is evaluated using the on-shell condition on the right-hand

side in (2.2). On a diagrammatic level, these rules precisely correspond to the cutting-rules

explained in the beginning of this section. However, since the shape function g17 is defined

by a hadronic matrix element, a non-perturbative definition at the level of the path integral

is required. The soft operator (2.4) that defines the shape function g17 should, thus, be

written as

O17(t, r) ! (h̄vSn)�(tn) /̄n(S†
nSn̄)+(0) i�?

↵ n̄� (S†
n̄ gsG

↵�

s Sn̄)+(rn̄) (S†
n̄hv)+(0) . (2.37)

This prescription does not a↵ect the Feynman rules for the e↵ective vertex provided in

Section 2.1, but the use of cut propagators from (2.2) introduces some relevant di↵erences

in a few diagrams. Indeed, evaluating all diagrams in Fig. 3 with these cutting rules

leaves most of the results from the previous two subsections unchanged. In particular

the Abelian part of the Z-factor, as well as the sum of diagrams (a) and (c)-(f) remain

una↵ected. Notable di↵erences are that the contribution (2.27) becomes UV-finite, and

second, the expression in (2.29) becomes
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side one uses complex-conjugate Feynman rules. More precisely, on the left of the cut one

uses the standard Feynman rules for propagators i/(k2 + i0) from time-ordered products

as well as for vertices, whereas on the right of the cut one uses complex-conjugate propaga-

tors (�i)/(k2 � i0) from anti-time-ordered products as well as complex-conjugate vertices.

Propagators that cross the cut are set on-shell with a positive-energy constraint,2

i

`2 + i0
! 2⇡�(`2)✓(`0) . (2.2)

The other equivalent option is to consider the absolute-square of the amplitude and sum

over the intermediate states X in |hB̄|He↵ |Xi|2= hB̄|He↵ |XihB̄|He↵ |Xi⇤. A path integral

formulation for the evaluation of matrix elements with (restricted) cuts is given by the

so-called Keldysh formalism [58, 59] to which we come back below.

The subleading shape-function g17(!, !1; µ), introduced in [16], is the relevant soft

function, that captures the non-perturbative low-energy QCD dynamics in the factorisa-

tion formula of this resolved contribution, which is part of the restricted discontinuity of

the forward matrix element given in (2.1). The soft function is defined as the Fourier-

transformed forward matrix element between two static B̄-meson states,

g17(!, !1; µ) =
1

2MB

Z
dr

2⇡
e�i!1r

Z
dt

2⇡
e�i!t hB̄v|O17(t, r)|B̄vi , (2.3)

of an operator in Heavy-Quark E↵ective Theory (HQET),

O17(t, r) = (h̄vSn)(tn) /̄n(S†
nSn̄)(0) i�?

↵ n̄� (S†
n̄ gsG

↵�

s Sn̄)(rn̄) (S†
n̄hv)(0) . (2.4)

Here, nµ is a light-like vector that points into the direction of the energetic s-quark (the

collinear direction), and, the energetic photon has momentum in the opposite n̄µ direction

(the anti-collinear direction). Furthermore, the Sn are soft Wilson lines from the decou-

pling of the hard-collinear s-quark propagator, and correspondingly the Sn̄ arise from the

decoupling of anti-hard-collinear propagators in the quark-loop, see Fig. 1 and Fig. 2.

Importantly, the Wilson-lines in both light-cone directions combine to segments of finite

length. In the following three subsections we calculate the ultraviolet (UV) singularities of

the operator O17(t, r) using standard HQET Feynman rules from time-ordered products

in a B-meson forward matrix element without implementing the necessary cuts. However,

once ↵s corrections are considered, we have to implement the restricted cuts, because g17 is

a soft function of a squared amplitude. We will address this task in Section 2.4. However,

the calculation using time-ordered fields reveals an interesting and surprising feature: the

anomalous dimension contains terms that are irrelevant in the factorisation theorem. We

use this observation to simplify an amplitude-level soft function for an exclusive decay in

Section 4.

2.1 UV singularities of O17

We compute the ultraviolet (UV) singularities of the momentum-space operator

eO(bare)
17 (!, !1) =

Z
dr

2⇡
e�i!1r

Z
dt

2⇡
e�i!t O(bare)

17 (t, r) (2.5)

2
See for example eq. (06-128) in the Quantum Field Theory textbook by C. Itzykson and J.-B. Zuber [57].
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Recall that the relevant integrals that contribute to the B̄ ! Xs� decay rate contain

cuts. In particular, at leading order, the n-jet function is given by the discontinuity of the

hard-collinear s-quark propagator, whereas the n̄-jet function is defined at the amplitude

level and arises from the anti-hard-collinear momentum configuration in the quark-loop in

Fig. 1. While the potentially problematic terms vanish after convolution with the time-

ordered propagators, they certainly do not when convoluted with the physically relevant

n-jet function. However, it turns out that both terms in �Z17 arise from soft gluons con-

necting the amplitude with the complex conjugate amplitude. Since taking the cut enforces

t > 0 from the positive-energy constraint, a definition of the shape function g17(!,!1; µ)

that contains the relevant cut-propagators would directly eliminate �Z17. In summary,

the contribution �Z17, which is non-zero only for t < 0, is irrelevant in both cases, since

either taking the cut or the convolution with the time-ordered jet function enforces t > 0.

As already mentioned above, the B̄ ! Xs� decay rate cannot be expressed as the

imaginary part of a B-meson forward matrix element of time-ordered operators because

not all possible cuts also contribute to the b ! s� decay. Thus, a precise prescription is

needed how to implement the restricted cuts when radiative corrections to the process are

taken into account. A path-integral method to evaluate such cut diagrams is given by the

Keldysh formalism [58, 59], see also [60] for a concise summary. Here one introduces fields

with a subscript “+” that belong to the amplitude and are evaluated with standard HQET

Feynman rules from time-ordered products. On the other hand, fields with a subscript

“�” belong to the complex conjugate amplitude and are evaluated with complex-conjugate

Feynman rules from anti-time-ordered products. The Feynman rule for the contraction of

two fields with di↵erent indices, i.e. a propagator that connects the amplitude with the

complex conjugate amplitude, is evaluated using the on-shell condition on the right-hand

side in (2.2). On a diagrammatic level, these rules precisely correspond to the cutting-rules

explained in the beginning of this section. However, since the shape function g17 is defined

by a hadronic matrix element, a non-perturbative definition at the level of the path integral

is required. The soft operator (2.4) that defines the shape function g17 should, thus, be

written as

O17(t, r) ! (h̄vSn)�(tn) /̄n(S†
nSn̄)+(0) i�?

↵ n̄� (S†
n̄ gsG

↵�

s Sn̄)+(rn̄) (S†
n̄hv)+(0) . (2.37)

This prescription does not a↵ect the Feynman rules for the e↵ective vertex provided in

Section 2.1, but the use of cut propagators from (2.2) introduces some relevant di↵erences

in a few diagrams. Indeed, evaluating all diagrams in Fig. 3 with these cutting rules

leaves most of the results from the previous two subsections unchanged. In particular

the Abelian part of the Z-factor, as well as the sum of diagrams (a) and (c)-(f) remain

una↵ected. Notable di↵erences are that the contribution (2.27) becomes UV-finite, and

second, the expression in (2.29) becomes
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side one uses complex-conjugate Feynman rules. More precisely, on the left of the cut one

uses the standard Feynman rules for propagators i/(k2 + i0) from time-ordered products

as well as for vertices, whereas on the right of the cut one uses complex-conjugate propaga-

tors (�i)/(k2 � i0) from anti-time-ordered products as well as complex-conjugate vertices.

Propagators that cross the cut are set on-shell with a positive-energy constraint,2

i

`2 + i0
! 2⇡�(`2)✓(`0) . (2.2)

The other equivalent option is to consider the absolute-square of the amplitude and sum

over the intermediate states X in |hB̄|He↵ |Xi|2= hB̄|He↵ |XihB̄|He↵ |Xi⇤. A path integral

formulation for the evaluation of matrix elements with (restricted) cuts is given by the

so-called Keldysh formalism [58, 59] to which we come back below.

The subleading shape-function g17(!, !1; µ), introduced in [16], is the relevant soft

function, that captures the non-perturbative low-energy QCD dynamics in the factorisa-

tion formula of this resolved contribution, which is part of the restricted discontinuity of

the forward matrix element given in (2.1). The soft function is defined as the Fourier-

transformed forward matrix element between two static B̄-meson states,

g17(!, !1; µ) =
1

2MB

Z
dr

2⇡
e�i!1r

Z
dt

2⇡
e�i!t hB̄v|O17(t, r)|B̄vi , (2.3)

of an operator in Heavy-Quark E↵ective Theory (HQET),

O17(t, r) = (h̄vSn)(tn) /̄n(S†
nSn̄)(0) i�?

↵ n̄� (S†
n̄ gsG

↵�

s Sn̄)(rn̄) (S†
n̄hv)(0) . (2.4)

Here, nµ is a light-like vector that points into the direction of the energetic s-quark (the

collinear direction), and, the energetic photon has momentum in the opposite n̄µ direction

(the anti-collinear direction). Furthermore, the Sn are soft Wilson lines from the decou-

pling of the hard-collinear s-quark propagator, and correspondingly the Sn̄ arise from the

decoupling of anti-hard-collinear propagators in the quark-loop, see Fig. 1 and Fig. 2.

Importantly, the Wilson-lines in both light-cone directions combine to segments of finite

length. In the following three subsections we calculate the ultraviolet (UV) singularities of

the operator O17(t, r) using standard HQET Feynman rules from time-ordered products

in a B-meson forward matrix element without implementing the necessary cuts. However,

once ↵s corrections are considered, we have to implement the restricted cuts, because g17 is

a soft function of a squared amplitude. We will address this task in Section 2.4. However,

the calculation using time-ordered fields reveals an interesting and surprising feature: the

anomalous dimension contains terms that are irrelevant in the factorisation theorem. We

use this observation to simplify an amplitude-level soft function for an exclusive decay in

Section 4.

2.1 UV singularities of O17

We compute the ultraviolet (UV) singularities of the momentum-space operator

eO(bare)
17 (!, !1) =

Z
dr

2⇡
e�i!1r

Z
dt

2⇡
e�i!t O(bare)

17 (t, r) (2.5)

2
See for example eq. (06-128) in the Quantum Field Theory textbook by C. Itzykson and J.-B. Zuber [57].
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Recall that the relevant integrals that contribute to the B̄ ! Xs� decay rate contain

cuts. In particular, at leading order, the n-jet function is given by the discontinuity of the

hard-collinear s-quark propagator, whereas the n̄-jet function is defined at the amplitude

level and arises from the anti-hard-collinear momentum configuration in the quark-loop in

Fig. 1. While the potentially problematic terms vanish after convolution with the time-

ordered propagators, they certainly do not when convoluted with the physically relevant

n-jet function. However, it turns out that both terms in �Z17 arise from soft gluons con-

necting the amplitude with the complex conjugate amplitude. Since taking the cut enforces

t > 0 from the positive-energy constraint, a definition of the shape function g17(!,!1; µ)

that contains the relevant cut-propagators would directly eliminate �Z17. In summary,

the contribution �Z17, which is non-zero only for t < 0, is irrelevant in both cases, since

either taking the cut or the convolution with the time-ordered jet function enforces t > 0.

As already mentioned above, the B̄ ! Xs� decay rate cannot be expressed as the

imaginary part of a B-meson forward matrix element of time-ordered operators because

not all possible cuts also contribute to the b ! s� decay. Thus, a precise prescription is

needed how to implement the restricted cuts when radiative corrections to the process are

taken into account. A path-integral method to evaluate such cut diagrams is given by the

Keldysh formalism [58, 59], see also [60] for a concise summary. Here one introduces fields

with a subscript “+” that belong to the amplitude and are evaluated with standard HQET

Feynman rules from time-ordered products. On the other hand, fields with a subscript

“�” belong to the complex conjugate amplitude and are evaluated with complex-conjugate

Feynman rules from anti-time-ordered products. The Feynman rule for the contraction of

two fields with di↵erent indices, i.e. a propagator that connects the amplitude with the

complex conjugate amplitude, is evaluated using the on-shell condition on the right-hand

side in (2.2). On a diagrammatic level, these rules precisely correspond to the cutting-rules

explained in the beginning of this section. However, since the shape function g17 is defined

by a hadronic matrix element, a non-perturbative definition at the level of the path integral

is required. The soft operator (2.4) that defines the shape function g17 should, thus, be

written as

O17(t, r) ! (h̄vSn)�(tn) /̄n(S†
nSn̄)+(0) i�?

↵ n̄� (S†
n̄ gsG

↵�

s Sn̄)+(rn̄) (S†
n̄hv)+(0) . (2.37)

This prescription does not a↵ect the Feynman rules for the e↵ective vertex provided in

Section 2.1, but the use of cut propagators from (2.2) introduces some relevant di↵erences

in a few diagrams. Indeed, evaluating all diagrams in Fig. 3 with these cutting rules

leaves most of the results from the previous two subsections unchanged. In particular

the Abelian part of the Z-factor, as well as the sum of diagrams (a) and (c)-(f) remain

una↵ected. Notable di↵erences are that the contribution (2.27) becomes UV-finite, and

second, the expression in (2.29) becomes
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side one uses complex-conjugate Feynman rules. More precisely, on the left of the cut one

uses the standard Feynman rules for propagators i/(k2 + i0) from time-ordered products

as well as for vertices, whereas on the right of the cut one uses complex-conjugate propaga-

tors (�i)/(k2 � i0) from anti-time-ordered products as well as complex-conjugate vertices.

Propagators that cross the cut are set on-shell with a positive-energy constraint,2

i
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The other equivalent option is to consider the absolute-square of the amplitude and sum

over the intermediate states X in |hB̄|He↵ |Xi|2= hB̄|He↵ |XihB̄|He↵ |Xi⇤. A path integral

formulation for the evaluation of matrix elements with (restricted) cuts is given by the

so-called Keldysh formalism [58, 59] to which we come back below.

The subleading shape-function g17(!, !1; µ), introduced in [16], is the relevant soft

function, that captures the non-perturbative low-energy QCD dynamics in the factorisa-

tion formula of this resolved contribution, which is part of the restricted discontinuity of

the forward matrix element given in (2.1). The soft function is defined as the Fourier-

transformed forward matrix element between two static B̄-meson states,

g17(!, !1; µ) =
1

2MB

Z
dr

2⇡
e�i!1r

Z
dt

2⇡
e�i!t hB̄v|O17(t, r)|B̄vi , (2.3)

of an operator in Heavy-Quark E↵ective Theory (HQET),

O17(t, r) = (h̄vSn)(tn) /̄n(S†
nSn̄)(0) i�?

↵ n̄� (S†
n̄ gsG

↵�

s Sn̄)(rn̄) (S†
n̄hv)(0) . (2.4)

Here, nµ is a light-like vector that points into the direction of the energetic s-quark (the

collinear direction), and, the energetic photon has momentum in the opposite n̄µ direction

(the anti-collinear direction). Furthermore, the Sn are soft Wilson lines from the decou-

pling of the hard-collinear s-quark propagator, and correspondingly the Sn̄ arise from the

decoupling of anti-hard-collinear propagators in the quark-loop, see Fig. 1 and Fig. 2.

Importantly, the Wilson-lines in both light-cone directions combine to segments of finite

length. In the following three subsections we calculate the ultraviolet (UV) singularities of

the operator O17(t, r) using standard HQET Feynman rules from time-ordered products

in a B-meson forward matrix element without implementing the necessary cuts. However,

once ↵s corrections are considered, we have to implement the restricted cuts, because g17 is

a soft function of a squared amplitude. We will address this task in Section 2.4. However,

the calculation using time-ordered fields reveals an interesting and surprising feature: the

anomalous dimension contains terms that are irrelevant in the factorisation theorem. We

use this observation to simplify an amplitude-level soft function for an exclusive decay in

Section 4.

2.1 UV singularities of O17

We compute the ultraviolet (UV) singularities of the momentum-space operator

eO(bare)
17 (!, !1) =

Z
dr

2⇡
e�i!1r

Z
dt

2⇡
e�i!t O(bare)

17 (t, r) (2.5)

2
See for example eq. (06-128) in the Quantum Field Theory textbook by C. Itzykson and J.-B. Zuber [57].
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Recall that the relevant integrals that contribute to the B̄ ! Xs� decay rate contain

cuts. In particular, at leading order, the n-jet function is given by the discontinuity of the

hard-collinear s-quark propagator, whereas the n̄-jet function is defined at the amplitude

level and arises from the anti-hard-collinear momentum configuration in the quark-loop in

Fig. 1. While the potentially problematic terms vanish after convolution with the time-

ordered propagators, they certainly do not when convoluted with the physically relevant

n-jet function. However, it turns out that both terms in �Z17 arise from soft gluons con-

necting the amplitude with the complex conjugate amplitude. Since taking the cut enforces

t > 0 from the positive-energy constraint, a definition of the shape function g17(!,!1; µ)

that contains the relevant cut-propagators would directly eliminate �Z17. In summary,

the contribution �Z17, which is non-zero only for t < 0, is irrelevant in both cases, since

either taking the cut or the convolution with the time-ordered jet function enforces t > 0.

As already mentioned above, the B̄ ! Xs� decay rate cannot be expressed as the

imaginary part of a B-meson forward matrix element of time-ordered operators because

not all possible cuts also contribute to the b ! s� decay. Thus, a precise prescription is

needed how to implement the restricted cuts when radiative corrections to the process are

taken into account. A path-integral method to evaluate such cut diagrams is given by the

Keldysh formalism [58, 59], see also [60] for a concise summary. Here one introduces fields

with a subscript “+” that belong to the amplitude and are evaluated with standard HQET

Feynman rules from time-ordered products. On the other hand, fields with a subscript

“�” belong to the complex conjugate amplitude and are evaluated with complex-conjugate

Feynman rules from anti-time-ordered products. The Feynman rule for the contraction of

two fields with di↵erent indices, i.e. a propagator that connects the amplitude with the

complex conjugate amplitude, is evaluated using the on-shell condition on the right-hand

side in (2.2). On a diagrammatic level, these rules precisely correspond to the cutting-rules

explained in the beginning of this section. However, since the shape function g17 is defined

by a hadronic matrix element, a non-perturbative definition at the level of the path integral

is required. The soft operator (2.4) that defines the shape function g17 should, thus, be

written as

O17(t, r) ! (h̄vSn)�(tn) /̄n(S†
nSn̄)+(0) i�?

↵ n̄� (S†
n̄ gsG

↵�

s Sn̄)+(rn̄) (S†
n̄hv)+(0) . (2.37)

This prescription does not a↵ect the Feynman rules for the e↵ective vertex provided in

Section 2.1, but the use of cut propagators from (2.2) introduces some relevant di↵erences

in a few diagrams. Indeed, evaluating all diagrams in Fig. 3 with these cutting rules

leaves most of the results from the previous two subsections unchanged. In particular

the Abelian part of the Z-factor, as well as the sum of diagrams (a) and (c)-(f) remain

una↵ected. Notable di↵erences are that the contribution (2.27) becomes UV-finite, and

second, the expression in (2.29) becomes
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side one uses complex-conjugate Feynman rules. More precisely, on the left of the cut one

uses the standard Feynman rules for propagators i/(k2 + i0) from time-ordered products

as well as for vertices, whereas on the right of the cut one uses complex-conjugate propaga-

tors (�i)/(k2 � i0) from anti-time-ordered products as well as complex-conjugate vertices.

Propagators that cross the cut are set on-shell with a positive-energy constraint,2
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The other equivalent option is to consider the absolute-square of the amplitude and sum

over the intermediate states X in |hB̄|He↵ |Xi|2= hB̄|He↵ |XihB̄|He↵ |Xi⇤. A path integral

formulation for the evaluation of matrix elements with (restricted) cuts is given by the

so-called Keldysh formalism [58, 59] to which we come back below.

The subleading shape-function g17(!, !1; µ), introduced in [16], is the relevant soft

function, that captures the non-perturbative low-energy QCD dynamics in the factorisa-

tion formula of this resolved contribution, which is part of the restricted discontinuity of

the forward matrix element given in (2.1). The soft function is defined as the Fourier-

transformed forward matrix element between two static B̄-meson states,

g17(!, !1; µ) =
1

2MB

Z
dr

2⇡
e�i!1r

Z
dt

2⇡
e�i!t hB̄v|O17(t, r)|B̄vi , (2.3)

of an operator in Heavy-Quark E↵ective Theory (HQET),

O17(t, r) = (h̄vSn)(tn) /̄n(S†
nSn̄)(0) i�?

↵ n̄� (S†
n̄ gsG

↵�

s Sn̄)(rn̄) (S†
n̄hv)(0) . (2.4)

Here, nµ is a light-like vector that points into the direction of the energetic s-quark (the

collinear direction), and, the energetic photon has momentum in the opposite n̄µ direction

(the anti-collinear direction). Furthermore, the Sn are soft Wilson lines from the decou-

pling of the hard-collinear s-quark propagator, and correspondingly the Sn̄ arise from the

decoupling of anti-hard-collinear propagators in the quark-loop, see Fig. 1 and Fig. 2.

Importantly, the Wilson-lines in both light-cone directions combine to segments of finite

length. In the following three subsections we calculate the ultraviolet (UV) singularities of

the operator O17(t, r) using standard HQET Feynman rules from time-ordered products

in a B-meson forward matrix element without implementing the necessary cuts. However,

once ↵s corrections are considered, we have to implement the restricted cuts, because g17 is

a soft function of a squared amplitude. We will address this task in Section 2.4. However,

the calculation using time-ordered fields reveals an interesting and surprising feature: the

anomalous dimension contains terms that are irrelevant in the factorisation theorem. We

use this observation to simplify an amplitude-level soft function for an exclusive decay in

Section 4.

2.1 UV singularities of O17

We compute the ultraviolet (UV) singularities of the momentum-space operator

eO(bare)
17 (!, !1) =

Z
dr

2⇡
e�i!1r

Z
dt

2⇡
e�i!t O(bare)

17 (t, r) (2.5)

2
See for example eq. (06-128) in the Quantum Field Theory textbook by C. Itzykson and J.-B. Zuber [57].
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Recall that the relevant integrals that contribute to the B̄ ! Xs� decay rate contain

cuts. In particular, at leading order, the n-jet function is given by the discontinuity of the

hard-collinear s-quark propagator, whereas the n̄-jet function is defined at the amplitude

level and arises from the anti-hard-collinear momentum configuration in the quark-loop in

Fig. 1. While the potentially problematic terms vanish after convolution with the time-

ordered propagators, they certainly do not when convoluted with the physically relevant

n-jet function. However, it turns out that both terms in �Z17 arise from soft gluons con-

necting the amplitude with the complex conjugate amplitude. Since taking the cut enforces

t > 0 from the positive-energy constraint, a definition of the shape function g17(!,!1; µ)

that contains the relevant cut-propagators would directly eliminate �Z17. In summary,

the contribution �Z17, which is non-zero only for t < 0, is irrelevant in both cases, since

either taking the cut or the convolution with the time-ordered jet function enforces t > 0.

As already mentioned above, the B̄ ! Xs� decay rate cannot be expressed as the

imaginary part of a B-meson forward matrix element of time-ordered operators because

not all possible cuts also contribute to the b ! s� decay. Thus, a precise prescription is

needed how to implement the restricted cuts when radiative corrections to the process are

taken into account. A path-integral method to evaluate such cut diagrams is given by the

Keldysh formalism [58, 59], see also [60] for a concise summary. Here one introduces fields

with a subscript “+” that belong to the amplitude and are evaluated with standard HQET

Feynman rules from time-ordered products. On the other hand, fields with a subscript

“�” belong to the complex conjugate amplitude and are evaluated with complex-conjugate

Feynman rules from anti-time-ordered products. The Feynman rule for the contraction of

two fields with di↵erent indices, i.e. a propagator that connects the amplitude with the

complex conjugate amplitude, is evaluated using the on-shell condition on the right-hand

side in (2.2). On a diagrammatic level, these rules precisely correspond to the cutting-rules

explained in the beginning of this section. However, since the shape function g17 is defined

by a hadronic matrix element, a non-perturbative definition at the level of the path integral

is required. The soft operator (2.4) that defines the shape function g17 should, thus, be

written as

O17(t, r) ! (h̄vSn)�(tn) /̄n(S†
nSn̄)+(0) i�?

↵ n̄� (S†
n̄ gsG

↵�

s Sn̄)+(rn̄) (S†
n̄hv)+(0) . (2.37)

This prescription does not a↵ect the Feynman rules for the e↵ective vertex provided in

Section 2.1, but the use of cut propagators from (2.2) introduces some relevant di↵erences

in a few diagrams. Indeed, evaluating all diagrams in Fig. 3 with these cutting rules

leaves most of the results from the previous two subsections unchanged. In particular

the Abelian part of the Z-factor, as well as the sum of diagrams (a) and (c)-(f) remain

una↵ected. Notable di↵erences are that the contribution (2.27) becomes UV-finite, and

second, the expression in (2.29) becomes

�↵sCA

4⇡

1

"

⇢
� 1

"
�(! � !0)�(!1 � !0

1) + �(!1 � !0
1)

✓
✓(!0 � !)

!0 � ! � �
+ �(! � !0) ln

��

µ

◆

+ �(! � !0)

✓
✓(!1 � !0

1)

!1 � !0
1 + �̄

+ �(!1 � !0
1) ln

�̄

µ

◆�
+ O("0) . (2.38)
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side one uses complex-conjugate Feynman rules. More precisely, on the left of the cut one

uses the standard Feynman rules for propagators i/(k2 + i0) from time-ordered products

as well as for vertices, whereas on the right of the cut one uses complex-conjugate propaga-

tors (�i)/(k2 � i0) from anti-time-ordered products as well as complex-conjugate vertices.

Propagators that cross the cut are set on-shell with a positive-energy constraint,2

i

`2 + i0
! 2⇡�(`2)✓(`0) . (2.2)
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formulation for the evaluation of matrix elements with (restricted) cuts is given by the

so-called Keldysh formalism [58, 59] to which we come back below.
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function, that captures the non-perturbative low-energy QCD dynamics in the factorisa-
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Here, nµ is a light-like vector that points into the direction of the energetic s-quark (the

collinear direction), and, the energetic photon has momentum in the opposite n̄µ direction

(the anti-collinear direction). Furthermore, the Sn are soft Wilson lines from the decou-

pling of the hard-collinear s-quark propagator, and correspondingly the Sn̄ arise from the

decoupling of anti-hard-collinear propagators in the quark-loop, see Fig. 1 and Fig. 2.

Importantly, the Wilson-lines in both light-cone directions combine to segments of finite

length. In the following three subsections we calculate the ultraviolet (UV) singularities of

the operator O17(t, r) using standard HQET Feynman rules from time-ordered products

in a B-meson forward matrix element without implementing the necessary cuts. However,

once ↵s corrections are considered, we have to implement the restricted cuts, because g17 is

a soft function of a squared amplitude. We will address this task in Section 2.4. However,

the calculation using time-ordered fields reveals an interesting and surprising feature: the

anomalous dimension contains terms that are irrelevant in the factorisation theorem. We

use this observation to simplify an amplitude-level soft function for an exclusive decay in

Section 4.

2.1 UV singularities of O17

We compute the ultraviolet (UV) singularities of the momentum-space operator

eO(bare)
17 (!, !1) =

Z
dr

2⇡
e�i!1r

Z
dt

2⇡
e�i!t O(bare)

17 (t, r) (2.5)

2
See for example eq. (06-128) in the Quantum Field Theory textbook by C. Itzykson and J.-B. Zuber [57].
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We compute QCD corrections, employing the previous Feynman rules, calculating the following diagrams:
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We compute QCD corrections, employing the previous Feynman rules, calculating the following diagrams:

For the anomalous dimension we get:

This is indeed the sum of (2.27) and (2.29) apart from the two terms in �Z17. In other

words, one finds the same soft UV poles when computing time-ordered diagrams and drop-

ping irrelevant terms that vanish after convolution with the jet functions, or by directly

computing cut diagrams. The reason for this is likely the absence of imaginary parts in

the non-vanishing soft contributions, as in that case the cuts in the respective diagrams

for the decay rate only a↵ect the s-quark propagator, which belongs to the n-jet function.

The shape function g17 that appears in the factorisation theorem for the B̄ ! Xs� de-

cay rate, and is convoluted with the discontinuity of the n-jet function, is given by the

operator (2.37) including the cuts through the Keldysh formalism. We will adopt this

prescription in the following. Evaluating the matrix element with time-ordered products,

on the other hand, would be the relevant soft function that appears in the factorisation of

the B-meson forward matrix element of time-ordered weak Hamiltonians, i.e. before the

restricted cuts are taken.

Interestingly, such irrelevant contributions also arise for soft functions defined at the

amplitude level, for example in exclusive B decays. In this case indeed only ordinary (time-

ordered) Feynman diagrams contribute. We will discuss an example from the literature [40]

in greater detail in section 4.

3 Analytic solution to the renormalisation-group equation

In this section we present an analytic solution to the RG equation for the subleading shape

function g17(!,!1; µ) as defined using time-ordered and anti-time-ordered fields in (2.37),

d

d ln µ
g17(!, !1; µ) = �

Z
d!0

Z
d!01 �17(!,!1, !

0, !01; µ) g17(!
0, !01; µ) , (3.1)

in momentum space. To do so, let us first recall that the anomalous dimension which

governs the scale evolution of g17(!, !1; µ) is defined as

�17(!, !1, !
0, !01; µ) = �

Z
d!̂

Z
d!̂1

dZ17(!, !1, !̂, !̂1; µ)

d ln µ
Z�117 (!̂, !̂1, !

0, !01; µ) , (3.2)

with the Z-factor from (2.20) and (2.32) without �Z17. At O(↵s), we can decompose the

anomalous dimension as a sum of two pieces, each of which is associated with only one of

the two light-cone directions,

�17(!, !1, !
0, !01; µ) =

↵s

⇡

n
CF �(!1 � !01)�n(!,!0; µ) +

CA

2
�(! � !0)�n̄(!1, !

0
1; µ)

o
. (3.3)

The Abelian part

�n(!, !0; µ) =

✓
ln

µ2

!2
� 1

◆
�(! � !0) � 2✓(!)


✓(!0 � !)

!0(!0 � !)

�

+

!0 � 2✓(�!)


✓(!0 � !)

!0 � !

�

 
(3.4)

only acts on the soft variables associated with the collinear direction, and the non-Abelian

part

�n̄(!1, !
0
1; µ) = ln

µ2

!2
1

�(!1�!01)�ReH(!1, !
0
1)+

2!1

(!01)
2
[✓(!1)✓(!

0
1�!1)�✓(�!1)✓(!1�!01)]

(3.5)
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ping irrelevant terms that vanish after convolution with the jet functions, or by directly

computing cut diagrams. The reason for this is likely the absence of imaginary parts in

the non-vanishing soft contributions, as in that case the cuts in the respective diagrams

for the decay rate only a↵ect the s-quark propagator, which belongs to the n-jet function.

The shape function g17 that appears in the factorisation theorem for the B̄ ! Xs� de-

cay rate, and is convoluted with the discontinuity of the n-jet function, is given by the

operator (2.37) including the cuts through the Keldysh formalism. We will adopt this

prescription in the following. Evaluating the matrix element with time-ordered products,

on the other hand, would be the relevant soft function that appears in the factorisation of

the B-meson forward matrix element of time-ordered weak Hamiltonians, i.e. before the

restricted cuts are taken.

Interestingly, such irrelevant contributions also arise for soft functions defined at the

amplitude level, for example in exclusive B decays. In this case indeed only ordinary (time-

ordered) Feynman diagrams contribute. We will discuss an example from the literature [40]

in greater detail in section 4.

3 Analytic solution to the renormalisation-group equation

In this section we present an analytic solution to the RG equation for the subleading shape

function g17(!,!1; µ) as defined using time-ordered and anti-time-ordered fields in (2.37),
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governs the scale evolution of g17(!, !1; µ) is defined as
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with the Z-factor from (2.20) and (2.32) without �Z17. At O(↵s), we can decompose the

anomalous dimension as a sum of two pieces, each of which is associated with only one of

the two light-cone directions,
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only acts on the soft variables associated with the collinear direction, and the non-Abelian
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DEFINITION

For diagram (g) we also need the three-gluon emission Feynman rule, which is a quite

lengthy expression. However, most of the contractions vanish in Feynman gauge, or due to

rotational symmetry, and here we only quote the relevant piece that gives a non-vanishing

contraction in diagram (g):

k� k

l1, µ, a

k� k

l1, µ, al2, ⌫, b

k� k

l1, µ, al3, �, c
l2, ⌫, b

(a) (b) (a)

(d) (e)

(c)

(b)

Figure 3: Diagrams built from the one gluon Feynman rule

2

3 � nµ

`1+

⇣
�(! � k+ � `1+) � �(! � k+)

⌘
ig3sf

bcdtatd /̄n (2.10)

⇥
h
�(!1 � `2� � `3�)�⌫

?n̄⇢ +
n̄⌫

`2�

⇣
�(!1 � l2� � `3�) � �(!1 � l3�)

⌘⇣
/̀3?n̄⇢ � �⇢

?`3�
⌘i

+ permutations .

We regulate UV-divergences in dimensional regularization, i.e. by evaluating the loop

integrals in d = 4 � 2" space-time dimensions. After the integrations have been carried

out, the respective expressions need to be expanded around " = 0 in the distribution sense.

Besides the standard plus-distributions,
Z

d!0 [ . . . ]+ f(!0) ⌘
Z

d!0 [ . . . ] (f(!0) � f(!)) , (2.11)

one also needs the modified plus-distributions,
Z

d!0 [ . . . ]�/ f(!0) ⌘
Z

d!0 [ . . . ] (f(!0) � ✓(±!0)f(!)) , (2.12)

which arise because the variables ! and !1 can take both positive and negative values. It

turns out to be convenient to define

F>(!, !0) =


! ✓(!0 � !)

!0 (!0 � !)

�

+

+


✓(! � !0)

! � !0

�

�
,

F<(!,!0) =


! ✓(! � !0)

!0 (! � !0)

�

+

+


✓(!0 � !)

!0 � !

�

 
,

G>(!,!0) = (! + !0)


✓(!0 � !)

!0 (!0 � !)

�

+

� i⇡�(! � !0) ,

G<(!, !0) = (! + !0)


✓(! � !0)

!0 (! � !0)

�

+

+ i⇡�(! � !0) , (2.13)

as well as the linear combinations

H±(!,!0) = ✓(±!)F>(<)(!,!0) + ✓(⌥!)G<(>)(!,!0) , (2.14)

which have been introduced in the study of QED corrections to the B-meson light-cone

distribution amplitude in [47].
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We regulate UV-divergences in dimensional regularization, i.e. by evaluating the loop

integrals in d = 4 � 2" space-time dimensions. After the integrations have been carried

out, the respective expressions need to be expanded around " = 0 in the distribution sense.

Besides the standard plus-distributions,
Z
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Modified distributions: 

This is indeed the sum of (2.27) and (2.29) apart from the two terms in �Z17. In other

words, one finds the same soft UV poles when computing time-ordered diagrams and drop-

ping irrelevant terms that vanish after convolution with the jet functions, or by directly

computing cut diagrams. The reason for this is likely the absence of imaginary parts in

the non-vanishing soft contributions, as in that case the cuts in the respective diagrams

for the decay rate only a↵ect the s-quark propagator, which belongs to the n-jet function.

The shape function g17 that appears in the factorisation theorem for the B̄ ! Xs� de-

cay rate, and is convoluted with the discontinuity of the n-jet function, is given by the

operator (2.37) including the cuts through the Keldysh formalism. We will adopt this

prescription in the following. Evaluating the matrix element with time-ordered products,

on the other hand, would be the relevant soft function that appears in the factorisation of

the B-meson forward matrix element of time-ordered weak Hamiltonians, i.e. before the

restricted cuts are taken.

Interestingly, such irrelevant contributions also arise for soft functions defined at the

amplitude level, for example in exclusive B decays. In this case indeed only ordinary (time-

ordered) Feynman diagrams contribute. We will discuss an example from the literature [40]

in greater detail in section 4.

3 Analytic solution to the renormalisation-group equation

In this section we present an analytic solution to the RG equation for the subleading shape

function g17(!, !1; µ) as defined using time-ordered and anti-time-ordered fields in (2.37),

d

d ln µ
g17(!, !1; µ) = �

Z
d!0

Z
d!01 �17(!,!1, !

0, !01; µ) g17(!
0, !01; µ) , (3.1)

in momentum space. To do so, let us first recall that the anomalous dimension which

governs the scale evolution of g17(!, !1; µ) is defined as
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with the Z-factor from (2.20) and (2.32) without �Z17. At O(↵s), we can decompose the

anomalous dimension as a sum of two pieces, each of which is associated with only one of
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This is indeed the sum of (2.27) and (2.29) apart from the two terms in �Z17. In other
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RG evolution of the shape function
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Given the previous anomalous dimension, the RG equation can be solved using the Mellin transform method. 

“Factorisation” of two light-cones 

Solving (3.22) for the two branches g̃>,<

17 yields

g̃>,<

17 (!, ⌘1; µ) = � eV1+2�Ea1

✓
µ

µ0

◆
⌘1 �(�⌘1)�(2 � ⌘1)�(1 + ⌘1 + a1)

�(2 � ⌘1 � a1)


(3.26)

1

⇡
sin

⇣
(⌘1 +
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2

)⇡
⌘

g̃>,<

17 (!, ⌘1 + a1; µ) +
1

⇡
sin

⇣a1⇡

2

⌘
g̃<,>

17 (!, ⌘1 + a1; µ)

�
.

After replacing the sine functions by gamma functions via the reflection formula, the inverse

Mellin transform can be expressed in terms of Meijer-G functions, which are defined by

the complex contour integral

Gm,n

p,q

✓
a

b

����z
◆

=

Z
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2⇡i
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Q
m
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Q

n

j=1 �(1 � aj + ⌘)
Q

q

j=m+1 �(1 � bj + ⌘)
Q

p

j=n+1 �(aj � ⌘)
(3.27)

for integer 0  m  q and 0  n  p, where a = (a1, . . . , ap) and b = (b1, . . . , bq). Further

details and properties of these functions are e.g. outlined in Appendix D of [47]. The

resulting momentum-space solution reads

g17(!,!1; µ) =

Z
d!0

1

|!0
1|

U (17)
n̄ (!1, !

0
1; µ, µ0)g17(!,!0

1; µ0) , (3.28)

with the evolution function
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0
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2

⌘
✓(�⌧)�(1 + a1)�(3 + a1)(�⌧)1+a1

2F1(1 + a1, 3 + a1, 3; ⌧)

�
,

where we defined the ratio ⌧ = !0
1/!1.

The appearing Meijer-G function can be reduced to a hypergeometric function on the

interval 1 > ⌧ > �1 via

G1,2
3,3
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a1 + 1, a1 � 1, a1/2

���� ⌧
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=
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2

⌘
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2F1(1 + a1, 3 + a1, 3; ⌧) , (3.30)

where the variable ⌧ is implicitly supplemented with an +i0 prescription. From this identity

it follows that the evolution function in (3.29) is continuous at ⌧ = 0.

3.3 Phenomenological implications

To summarize, the solution to the RG equation takes the factorized form

g17(!,!1; µ) =

Z ⇤̄

!

d!0

!0 � !
U (17)
n (!,!0; µ, µ0)

Z 1

�1

d!0
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U (17)
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0
1; µ, µ0) g17(!

0, !0
1; µ0) ,

(3.31)

with the evolution function for the soft momenta associated with the nµ light-cone,

U (17)
n (!, !0; µ, µ0) =

e2V+2�Ea

�(�2a)

✓
µ0

!0 � !

◆2a

, (3.32)
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All order properties of  are preserved in the RGE: 
•  is real (from PT invariance) 

• The function  is even (from HQET 

trace formalism) 

g17
g17

h17 = ∫ dωg17
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Figure 4: Scale evolution of the function h17(!1; µ), using the model (3.40) with n  2

Hermite polynomials at the low scale µ0 = 1 GeV (black curve). The blue curve shows

the analytic solution (3.39) for µ = 2 GeV, which is in good agreement with the numeric

solution from discretisation of the momentum-space RG equation (blue dots). The latter

is obtained using N = 600 points that are logarithmically distributed on the intervals

[�⌦, �"] and [", ⌦], with " = 10�9 GeV and ⌦ = 103 GeV. The strong coupling constant

is evaluated with one-loop running and nf = 4 quark flavors, using ↵s(µ0) = 0.48. We

emphasize that the blue curve only includes the non-Abelian piece (3.5) of the anomalous

dimension.

A specific model for the function h17(!1; µ0) has been introduced in [28], and expands

the function in Hermite polynomials multiplied by a Gaussian of width �,

h17(!1; µ0) =
X

n

a2nH2n

✓
!1p
2�

◆
e�

!2
1

2�2 . (3.40)

Here the sum runs only over even integers to ensure that h17 is an even function. In

the following, we restrict ourselves to the first two terms n 2 (0, 1), in which case the

coe�cients a0 and a2 can be related to positive moments of the function h17 [28],

a0 =
h!0

1 h17ip
2⇡|�|

, a2 =
h!2

1 h17i � �2h!0
1 h17i

4
p

2⇡|�|3
. (3.41)

As representative numerical values we use h!0
1 h17i = 0.25 GeV2, h!2

1 h17i = 0.1 GeV4,

and � = 0.3 GeV, which lie within the bounds quoted in [28]. Fig. 4 shows this function

at the two di↵erent scales µ0 = 1 GeV and µ = 2 GeV, where the latter function is

obtained analytically using the evolution function (3.37) for symmetric initial functions,

and numerically by discretisation of the momentum-space RG equation (see caption of

Fig. 4 for more details). The appearing integrals can be performed analytically, using e.g.

– 23 –

RGE for the function  h17
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(8)

d�(B̄ ! Xs�) ⇠ H · J ⌦ g17 ⌦ J̄ , (9)

d�(B̄ ! Xs�) ⇠ H⌦J ⌦ g17 ⌦ J̄ , (10)

h17 =

Z
d! g17 (11)

2
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The exclusive counterpart

13

In exclusive decays, such as , analogous soft functions appear B̄d,s → γγ

2

amplitude, in striking contrast to the three-particle B-
meson LCDAs [50], which can be attributed to the soft-
gluon interaction between the two Wilson lines in distinct
light-cone directions. Phenomenological implications of
the evolution e↵ect due to the one-loop anomalous di-
mension will be further discussed with one sample model
for the generalized bottom-meson distribution amplitude.

THE RG EVOLUTION EQUATION

The generalized bottom-meson distribution amplitude
�G entering the factorization formula for the soft-gluon
radiative corrections to B̄q ! �� is defined by the non-
local HQET matrix element [65]

h0|(q̄sSn)(⌧1n) (S
†
n
Sn̄)(0) (S

†
n̄ gs Gµ⌫ Sn̄)(⌧2n̄) n̄

⌫
6n�

µ

?�5 (S
†
n̄hv)(0)|B̄vi

= 2FB(µ)mB

Z +1

�1
d!1

Z +1

�1
d!2 exp [�i(!1⌧1 + !2⌧2)] �G(!1,!2, µ) , (1)

where the soft Wilson lines Sn and Sn̄ along the distinct
light-cone directions of n and n̄ are introduced to main-
tain gauge invariance. To determine the RG equation of
�G, we first express the renormalized operator O

ren
G in

terms of the corresponding bare operator

O
ren
G (!1,!2, µ) =

Z +1

�1
d!

0
1

Z +1

�1
d!

0
2ZG(!1,!2,!

0
1,!

0
2, µ)

⇥O
bare
G (!0

1,!
0
2) , (2)

where OG stands for the two-dimensional Fourier trans-
form of the non-local operator on the left-hand side of
(1). The convolutions in !

0
1,2 arise from the fact that the

composite operators with di↵erent momentum variables
!1,2 can mix into each other under the ultraviolet (UV)
renormalization. The renormalization constant ZG cal-
culable in perturbation theory enables us to derive the
anomalous dimension in the RG evolution equation

d

d lnµ
�G(!1,!2, µ) = �

Z +1

�1
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0
1

Z +1

�1
d!

0
2 �G(!

0
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0
2, µ)

⇥�G(!1,!2,!
0
1,!

0
2, µ) , (3)

by virtue of the customary relation

�G =

Z +1

�1
d!

00
1

Z +1

�1
d!

00
2 ZG(!1,!2,!

00
1 ,!

00
2 , µ)

⇥
dZ

�1
G (!00
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00
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0
1,!

0
2, µ)

d lnµ

+ �(!1 � !
0
1) �(!2 � !

0
2)

d lnFB(µ)

d lnµ
. (4)

The renormalization-scale dependence of FB(µ) has been
determined at four loops [77]. The renormalization con-
stant ZG can be obtained by evaluating the matrix el-
ement of OG(!1,!2) with the partonic external state
h0|OG(!1,!2)|q̄(!0

1)g(!
0
2, ⌘)hvi. The variables !0

1 ⌘ n ·k1

and !
0
2 ⌘ n̄ · k2 correspond to the particular light-cone

components of the soft quark and gluon momenta, while
⌘ represents the polarization vector of the external gluon.

(a) (b) (c) (d) (e)

FIG. 1. Sample Feynman diagrams for evaluating the one-
loop QCD correction to the soft function �G. The non-local
vertices with two and three gluons include all possible combi-
nations of the gluon emanating from the field strength tensor
and from the soft Wilson lines Sn and Sn̄.

The sample Feynman diagrams for evaluating the
renormalization factor ZG at O(↵s) are explicitly dis-
played in Figure 1. We adopt dimensional regulariza-
tion with space-time dimension d = 4� 2✏ to extract the
UV singularities and implement o↵-shell regularization
to isolate the infrared (IR) divergences of the considered
partonic matrix element. In analogy to the O(↵s) correc-
tion to �

+
B
(!, µ) [32, 36, 78, 79], the soft-gluon exchange

between the e↵ective heavy quark and the light quark
does not yield the UV-divergent contribution in Feynman
gauge which is employed throughout our calculation. In
addition, the one-gluon exchange between the light quark
and the external gluon field is UV finite, on the basis of
the power-counting analysis of the transverse-momentum
`? integration. Moreover, connecting one soft gluon from
Gµ⌫(⌧2n̄) to the external bottom quark generates a van-
ishing correction, since the yielding integrand is an odd
function of `?. The one-particle irreducible diagram from
attaching the single gluon field of Gµ⌫(⌧2n̄) to the exter-
nal light quark also brings about the UV finite e↵ect, in
terms of the power-counting analysis of the `? integral.

The most distinctive feature of �G stems from the di-
agram (e) in Figure 1 comprising of four independent
pieces: I) both two gluons in the loop from the soft Wil-
son lines while the external gluon from the field strength
tensor; II) the two gluons in the loop from the Wilson
lines along the n direction and Gµ⌫(⌧2n̄) while the exter-
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and from the soft Wilson lines Sn and Sn̄.

The sample Feynman diagrams for evaluating the
renormalization factor ZG at O(↵s) are explicitly dis-
played in Figure 1. We adopt dimensional regulariza-
tion with space-time dimension d = 4� 2✏ to extract the
UV singularities and implement o↵-shell regularization
to isolate the infrared (IR) divergences of the considered
partonic matrix element. In analogy to the O(↵s) correc-
tion to �

+
B
(!, µ) [32, 36, 78, 79], the soft-gluon exchange

between the e↵ective heavy quark and the light quark
does not yield the UV-divergent contribution in Feynman
gauge which is employed throughout our calculation. In
addition, the one-gluon exchange between the light quark
and the external gluon field is UV finite, on the basis of
the power-counting analysis of the transverse-momentum
`? integration. Moreover, connecting one soft gluon from
Gµ⌫(⌧2n̄) to the external bottom quark generates a van-
ishing correction, since the yielding integrand is an odd
function of `?. The one-particle irreducible diagram from
attaching the single gluon field of Gµ⌫(⌧2n̄) to the exter-
nal light quark also brings about the UV finite e↵ect, in
terms of the power-counting analysis of the `? integral.

The most distinctive feature of �G stems from the di-
agram (e) in Figure 1 comprising of four independent
pieces: I) both two gluons in the loop from the soft Wil-
son lines while the external gluon from the field strength
tensor; II) the two gluons in the loop from the Wilson
lines along the n direction and Gµ⌫(⌧2n̄) while the exter-

2

amplitude, in striking contrast to the three-particle B-
meson LCDAs [50], which can be attributed to the soft-
gluon interaction between the two Wilson lines in distinct
light-cone directions. Phenomenological implications of
the evolution e↵ect due to the one-loop anomalous di-
mension will be further discussed with one sample model
for the generalized bottom-meson distribution amplitude.

THE RG EVOLUTION EQUATION

The generalized bottom-meson distribution amplitude
�G entering the factorization formula for the soft-gluon
radiative corrections to B̄q ! �� is defined by the non-
local HQET matrix element [65]

h0|(q̄sSn)(⌧1n) (S
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where the soft Wilson lines Sn and Sn̄ along the distinct
light-cone directions of n and n̄ are introduced to main-
tain gauge invariance. To determine the RG equation of
�G, we first express the renormalized operator O

ren
G in

terms of the corresponding bare operator
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where OG stands for the two-dimensional Fourier trans-
form of the non-local operator on the left-hand side of
(1). The convolutions in !

0
1,2 arise from the fact that the

composite operators with di↵erent momentum variables
!1,2 can mix into each other under the ultraviolet (UV)
renormalization. The renormalization constant ZG cal-
culable in perturbation theory enables us to derive the
anomalous dimension in the RG evolution equation
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The renormalization-scale dependence of FB(µ) has been
determined at four loops [77]. The renormalization con-
stant ZG can be obtained by evaluating the matrix el-
ement of OG(!1,!2) with the partonic external state
h0|OG(!1,!2)|q̄(!0

1)g(!
0
2, ⌘)hvi. The variables !0

1 ⌘ n ·k1

and !
0
2 ⌘ n̄ · k2 correspond to the particular light-cone

components of the soft quark and gluon momenta, while
⌘ represents the polarization vector of the external gluon.
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FIG. 1. Sample Feynman diagrams for evaluating the one-
loop QCD correction to the soft function �G. The non-local
vertices with two and three gluons include all possible combi-
nations of the gluon emanating from the field strength tensor
and from the soft Wilson lines Sn and Sn̄.

The sample Feynman diagrams for evaluating the
renormalization factor ZG at O(↵s) are explicitly dis-
played in Figure 1. We adopt dimensional regulariza-
tion with space-time dimension d = 4� 2✏ to extract the
UV singularities and implement o↵-shell regularization
to isolate the infrared (IR) divergences of the considered
partonic matrix element. In analogy to the O(↵s) correc-
tion to �

+
B
(!, µ) [32, 36, 78, 79], the soft-gluon exchange

between the e↵ective heavy quark and the light quark
does not yield the UV-divergent contribution in Feynman
gauge which is employed throughout our calculation. In
addition, the one-gluon exchange between the light quark
and the external gluon field is UV finite, on the basis of
the power-counting analysis of the transverse-momentum
`? integration. Moreover, connecting one soft gluon from
Gµ⌫(⌧2n̄) to the external bottom quark generates a van-
ishing correction, since the yielding integrand is an odd
function of `?. The one-particle irreducible diagram from
attaching the single gluon field of Gµ⌫(⌧2n̄) to the exter-
nal light quark also brings about the UV finite e↵ect, in
terms of the power-counting analysis of the `? integral.

The most distinctive feature of �G stems from the di-
agram (e) in Figure 1 comprising of four independent
pieces: I) both two gluons in the loop from the soft Wil-
son lines while the external gluon from the field strength
tensor; II) the two gluons in the loop from the Wilson
lines along the n direction and Gµ⌫(⌧2n̄) while the exter-
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The exclusive counterpart
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In exclusive decays, such as , analogous soft functions appear B̄d,s → γγ
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amplitude, in striking contrast to the three-particle B-
meson LCDAs [50], which can be attributed to the soft-
gluon interaction between the two Wilson lines in distinct
light-cone directions. Phenomenological implications of
the evolution e↵ect due to the one-loop anomalous di-
mension will be further discussed with one sample model
for the generalized bottom-meson distribution amplitude.

THE RG EVOLUTION EQUATION

The generalized bottom-meson distribution amplitude
�G entering the factorization formula for the soft-gluon
radiative corrections to B̄q ! �� is defined by the non-
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where OG stands for the two-dimensional Fourier trans-
form of the non-local operator on the left-hand side of
(1). The convolutions in !

0
1,2 arise from the fact that the

composite operators with di↵erent momentum variables
!1,2 can mix into each other under the ultraviolet (UV)
renormalization. The renormalization constant ZG cal-
culable in perturbation theory enables us to derive the
anomalous dimension in the RG evolution equation
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The renormalization-scale dependence of FB(µ) has been
determined at four loops [77]. The renormalization con-
stant ZG can be obtained by evaluating the matrix el-
ement of OG(!1,!2) with the partonic external state
h0|OG(!1,!2)|q̄(!0

1)g(!
0
2, ⌘)hvi. The variables !0

1 ⌘ n ·k1

and !
0
2 ⌘ n̄ · k2 correspond to the particular light-cone

components of the soft quark and gluon momenta, while
⌘ represents the polarization vector of the external gluon.
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FIG. 1. Sample Feynman diagrams for evaluating the one-
loop QCD correction to the soft function �G. The non-local
vertices with two and three gluons include all possible combi-
nations of the gluon emanating from the field strength tensor
and from the soft Wilson lines Sn and Sn̄.

The sample Feynman diagrams for evaluating the
renormalization factor ZG at O(↵s) are explicitly dis-
played in Figure 1. We adopt dimensional regulariza-
tion with space-time dimension d = 4� 2✏ to extract the
UV singularities and implement o↵-shell regularization
to isolate the infrared (IR) divergences of the considered
partonic matrix element. In analogy to the O(↵s) correc-
tion to �

+
B
(!, µ) [32, 36, 78, 79], the soft-gluon exchange

between the e↵ective heavy quark and the light quark
does not yield the UV-divergent contribution in Feynman
gauge which is employed throughout our calculation. In
addition, the one-gluon exchange between the light quark
and the external gluon field is UV finite, on the basis of
the power-counting analysis of the transverse-momentum
`? integration. Moreover, connecting one soft gluon from
Gµ⌫(⌧2n̄) to the external bottom quark generates a van-
ishing correction, since the yielding integrand is an odd
function of `?. The one-particle irreducible diagram from
attaching the single gluon field of Gµ⌫(⌧2n̄) to the exter-
nal light quark also brings about the UV finite e↵ect, in
terms of the power-counting analysis of the `? integral.

The most distinctive feature of �G stems from the di-
agram (e) in Figure 1 comprising of four independent
pieces: I) both two gluons in the loop from the soft Wil-
son lines while the external gluon from the field strength
tensor; II) the two gluons in the loop from the Wilson
lines along the n direction and Gµ⌫(⌧2n̄) while the exter-
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amplitude, in striking contrast to the three-particle B-
meson LCDAs [50], which can be attributed to the soft-
gluon interaction between the two Wilson lines in distinct
light-cone directions. Phenomenological implications of
the evolution e↵ect due to the one-loop anomalous di-
mension will be further discussed with one sample model
for the generalized bottom-meson distribution amplitude.

THE RG EVOLUTION EQUATION

The generalized bottom-meson distribution amplitude
�G entering the factorization formula for the soft-gluon
radiative corrections to B̄q ! �� is defined by the non-
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where OG stands for the two-dimensional Fourier trans-
form of the non-local operator on the left-hand side of
(1). The convolutions in !
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1,2 arise from the fact that the

composite operators with di↵erent momentum variables
!1,2 can mix into each other under the ultraviolet (UV)
renormalization. The renormalization constant ZG cal-
culable in perturbation theory enables us to derive the
anomalous dimension in the RG evolution equation
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The renormalization-scale dependence of FB(µ) has been
determined at four loops [77]. The renormalization con-
stant ZG can be obtained by evaluating the matrix el-
ement of OG(!1,!2) with the partonic external state
h0|OG(!1,!2)|q̄(!0

1)g(!
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2, ⌘)hvi. The variables !0

1 ⌘ n ·k1

and !
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2 ⌘ n̄ · k2 correspond to the particular light-cone

components of the soft quark and gluon momenta, while
⌘ represents the polarization vector of the external gluon.
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FIG. 1. Sample Feynman diagrams for evaluating the one-
loop QCD correction to the soft function �G. The non-local
vertices with two and three gluons include all possible combi-
nations of the gluon emanating from the field strength tensor
and from the soft Wilson lines Sn and Sn̄.

The sample Feynman diagrams for evaluating the
renormalization factor ZG at O(↵s) are explicitly dis-
played in Figure 1. We adopt dimensional regulariza-
tion with space-time dimension d = 4� 2✏ to extract the
UV singularities and implement o↵-shell regularization
to isolate the infrared (IR) divergences of the considered
partonic matrix element. In analogy to the O(↵s) correc-
tion to �

+
B
(!, µ) [32, 36, 78, 79], the soft-gluon exchange

between the e↵ective heavy quark and the light quark
does not yield the UV-divergent contribution in Feynman
gauge which is employed throughout our calculation. In
addition, the one-gluon exchange between the light quark
and the external gluon field is UV finite, on the basis of
the power-counting analysis of the transverse-momentum
`? integration. Moreover, connecting one soft gluon from
Gµ⌫(⌧2n̄) to the external bottom quark generates a van-
ishing correction, since the yielding integrand is an odd
function of `?. The one-particle irreducible diagram from
attaching the single gluon field of Gµ⌫(⌧2n̄) to the exter-
nal light quark also brings about the UV finite e↵ect, in
terms of the power-counting analysis of the `? integral.

The most distinctive feature of �G stems from the di-
agram (e) in Figure 1 comprising of four independent
pieces: I) both two gluons in the loop from the soft Wil-
son lines while the external gluon from the field strength
tensor; II) the two gluons in the loop from the Wilson
lines along the n direction and Gµ⌫(⌧2n̄) while the exter-
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amplitude, in striking contrast to the three-particle B-
meson LCDAs [50], which can be attributed to the soft-
gluon interaction between the two Wilson lines in distinct
light-cone directions. Phenomenological implications of
the evolution e↵ect due to the one-loop anomalous di-
mension will be further discussed with one sample model
for the generalized bottom-meson distribution amplitude.
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The generalized bottom-meson distribution amplitude
�G entering the factorization formula for the soft-gluon
radiative corrections to B̄q ! �� is defined by the non-
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The renormalization-scale dependence of FB(µ) has been
determined at four loops [77]. The renormalization con-
stant ZG can be obtained by evaluating the matrix el-
ement of OG(!1,!2) with the partonic external state
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FIG. 1. Sample Feynman diagrams for evaluating the one-
loop QCD correction to the soft function �G. The non-local
vertices with two and three gluons include all possible combi-
nations of the gluon emanating from the field strength tensor
and from the soft Wilson lines Sn and Sn̄.

The sample Feynman diagrams for evaluating the
renormalization factor ZG at O(↵s) are explicitly dis-
played in Figure 1. We adopt dimensional regulariza-
tion with space-time dimension d = 4� 2✏ to extract the
UV singularities and implement o↵-shell regularization
to isolate the infrared (IR) divergences of the considered
partonic matrix element. In analogy to the O(↵s) correc-
tion to �

+
B
(!, µ) [32, 36, 78, 79], the soft-gluon exchange

between the e↵ective heavy quark and the light quark
does not yield the UV-divergent contribution in Feynman
gauge which is employed throughout our calculation. In
addition, the one-gluon exchange between the light quark
and the external gluon field is UV finite, on the basis of
the power-counting analysis of the transverse-momentum
`? integration. Moreover, connecting one soft gluon from
Gµ⌫(⌧2n̄) to the external bottom quark generates a van-
ishing correction, since the yielding integrand is an odd
function of `?. The one-particle irreducible diagram from
attaching the single gluon field of Gµ⌫(⌧2n̄) to the exter-
nal light quark also brings about the UV finite e↵ect, in
terms of the power-counting analysis of the `? integral.

The most distinctive feature of �G stems from the di-
agram (e) in Figure 1 comprising of four independent
pieces: I) both two gluons in the loop from the soft Wil-
son lines while the external gluon from the field strength
tensor; II) the two gluons in the loop from the Wilson
lines along the n direction and Gµ⌫(⌧2n̄) while the exter-

[2312.15439: Huang et al.]

With few modifications to the previous computation, we get the anomalous dimension 

d�

dE�

=
GF↵|VtbV ⇤

ts
|2

2⇡4
mb

2
(µ)E3

�


|H�(µ)|2

Z
d!mbJ(mb(! + p+);µ)S(!;µ)

+
1

mb

X

i<j

Re[C⇤
i
(µ)Cj(µ)]Fij(E� ;µ) + ...

� (7)

d� ⇠ Re

Z ⇤

�1
d!�(! + p+)

Z +1

�1
d!1g17(!,!1;µ)

1

!1 + i✏


1� F

✓
m2

c
� i✏

2E�!1

◆�
, F (x) = 4x arctan2

✓
1p

4x� 1

◆

(8)

d�(B̄ ! Xs�) ⇠ H · J ⌦ g17 ⌦ J̄ , (9)

d�(B̄ ! Xs�) ⇠ H⌦J ⌦ g17 ⌦ J̄ , (10)

h17 =

Z
d! g17 (11)

�G(!,!1,!
0,!0

1;µ) =
↵sCF

⇡

✓
ln

µ

! � i0
� 1

2

◆
�(! � !0

)�H+(!,!
0
)

�
�(!1 � !0

1)

+
↵sCA

⇡

✓
ln

µ

!1 � i0
+

i⇡

2

◆
�(!1 � !0

1)�H+(!1,!
0
1)

!1

(!0
1)

2
[✓(!1)✓(!

0
1 � !1)� ✓(�!1)✓(!1 � !0

1)]

�
�(! � !0

)

+
↵s

⇡
��G(!,!1;!

0,!0
1;µ) , (12)

with

��G =
i

4

CA

⇡
[�H(!,!0

)� 2i⇡�(! � !0
)] [�H(!1,!

0
1)� 2i⇡�(!1 � !0

1)] , (13)

�G(!,!1,!
0,!0

1;µ) = �
n

G
(!,!0

) + �
n̄

G
(!1,!

0
1) +

↵s

⇡

i

4

CA

⇡
�H(!,!0

)�H(!1,!
0
1)

(14)

2

“mixing”: spoil of factorisation theorem?



EPS, Marseille, 11/7/2025 Riccardo Bartocci

The exclusive counterpart

13

In exclusive decays, such as , analogous soft functions appear B̄d,s → γγ

2

amplitude, in striking contrast to the three-particle B-
meson LCDAs [50], which can be attributed to the soft-
gluon interaction between the two Wilson lines in distinct
light-cone directions. Phenomenological implications of
the evolution e↵ect due to the one-loop anomalous di-
mension will be further discussed with one sample model
for the generalized bottom-meson distribution amplitude.
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The renormalization-scale dependence of FB(µ) has been
determined at four loops [77]. The renormalization con-
stant ZG can be obtained by evaluating the matrix el-
ement of OG(!1,!2) with the partonic external state
h0|OG(!1,!2)|q̄(!0

1)g(!
0
2, ⌘)hvi. The variables !0

1 ⌘ n ·k1

and !
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2 ⌘ n̄ · k2 correspond to the particular light-cone

components of the soft quark and gluon momenta, while
⌘ represents the polarization vector of the external gluon.
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FIG. 1. Sample Feynman diagrams for evaluating the one-
loop QCD correction to the soft function �G. The non-local
vertices with two and three gluons include all possible combi-
nations of the gluon emanating from the field strength tensor
and from the soft Wilson lines Sn and Sn̄.

The sample Feynman diagrams for evaluating the
renormalization factor ZG at O(↵s) are explicitly dis-
played in Figure 1. We adopt dimensional regulariza-
tion with space-time dimension d = 4� 2✏ to extract the
UV singularities and implement o↵-shell regularization
to isolate the infrared (IR) divergences of the considered
partonic matrix element. In analogy to the O(↵s) correc-
tion to �

+
B
(!, µ) [32, 36, 78, 79], the soft-gluon exchange

between the e↵ective heavy quark and the light quark
does not yield the UV-divergent contribution in Feynman
gauge which is employed throughout our calculation. In
addition, the one-gluon exchange between the light quark
and the external gluon field is UV finite, on the basis of
the power-counting analysis of the transverse-momentum
`? integration. Moreover, connecting one soft gluon from
Gµ⌫(⌧2n̄) to the external bottom quark generates a van-
ishing correction, since the yielding integrand is an odd
function of `?. The one-particle irreducible diagram from
attaching the single gluon field of Gµ⌫(⌧2n̄) to the exter-
nal light quark also brings about the UV finite e↵ect, in
terms of the power-counting analysis of the `? integral.

The most distinctive feature of �G stems from the di-
agram (e) in Figure 1 comprising of four independent
pieces: I) both two gluons in the loop from the soft Wil-
son lines while the external gluon from the field strength
tensor; II) the two gluons in the loop from the Wilson
lines along the n direction and Gµ⌫(⌧2n̄) while the exter-

2

amplitude, in striking contrast to the three-particle B-
meson LCDAs [50], which can be attributed to the soft-
gluon interaction between the two Wilson lines in distinct
light-cone directions. Phenomenological implications of
the evolution e↵ect due to the one-loop anomalous di-
mension will be further discussed with one sample model
for the generalized bottom-meson distribution amplitude.
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vertices with two and three gluons include all possible combi-
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The sample Feynman diagrams for evaluating the
renormalization factor ZG at O(↵s) are explicitly dis-
played in Figure 1. We adopt dimensional regulariza-
tion with space-time dimension d = 4� 2✏ to extract the
UV singularities and implement o↵-shell regularization
to isolate the infrared (IR) divergences of the considered
partonic matrix element. In analogy to the O(↵s) correc-
tion to �
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B
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between the e↵ective heavy quark and the light quark
does not yield the UV-divergent contribution in Feynman
gauge which is employed throughout our calculation. In
addition, the one-gluon exchange between the light quark
and the external gluon field is UV finite, on the basis of
the power-counting analysis of the transverse-momentum
`? integration. Moreover, connecting one soft gluon from
Gµ⌫(⌧2n̄) to the external bottom quark generates a van-
ishing correction, since the yielding integrand is an odd
function of `?. The one-particle irreducible diagram from
attaching the single gluon field of Gµ⌫(⌧2n̄) to the exter-
nal light quark also brings about the UV finite e↵ect, in
terms of the power-counting analysis of the `? integral.

The most distinctive feature of �G stems from the di-
agram (e) in Figure 1 comprising of four independent
pieces: I) both two gluons in the loop from the soft Wil-
son lines while the external gluon from the field strength
tensor; II) the two gluons in the loop from the Wilson
lines along the n direction and Gµ⌫(⌧2n̄) while the exter-
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meson LCDAs [50], which can be attributed to the soft-
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light-cone directions. Phenomenological implications of
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FIG. 1. Sample Feynman diagrams for evaluating the one-
loop QCD correction to the soft function �G. The non-local
vertices with two and three gluons include all possible combi-
nations of the gluon emanating from the field strength tensor
and from the soft Wilson lines Sn and Sn̄.

The sample Feynman diagrams for evaluating the
renormalization factor ZG at O(↵s) are explicitly dis-
played in Figure 1. We adopt dimensional regulariza-
tion with space-time dimension d = 4� 2✏ to extract the
UV singularities and implement o↵-shell regularization
to isolate the infrared (IR) divergences of the considered
partonic matrix element. In analogy to the O(↵s) correc-
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+
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between the e↵ective heavy quark and the light quark
does not yield the UV-divergent contribution in Feynman
gauge which is employed throughout our calculation. In
addition, the one-gluon exchange between the light quark
and the external gluon field is UV finite, on the basis of
the power-counting analysis of the transverse-momentum
`? integration. Moreover, connecting one soft gluon from
Gµ⌫(⌧2n̄) to the external bottom quark generates a van-
ishing correction, since the yielding integrand is an odd
function of `?. The one-particle irreducible diagram from
attaching the single gluon field of Gµ⌫(⌧2n̄) to the exter-
nal light quark also brings about the UV finite e↵ect, in
terms of the power-counting analysis of the `? integral.

The most distinctive feature of �G stems from the di-
agram (e) in Figure 1 comprising of four independent
pieces: I) both two gluons in the loop from the soft Wil-
son lines while the external gluon from the field strength
tensor; II) the two gluons in the loop from the Wilson
lines along the n direction and Gµ⌫(⌧2n̄) while the exter-
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With few modifications to the previous computation, we get the anomalous dimension 
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“mixing”: spoil of factorisation theorem?

[2411.16634: RB, Böer, Hurth]

However, it must be convoluted with the jet functions!
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Due to the location of the poles, this “mixing” term vanishes saving factorisation and making the evolution factorised again.

https://arxiv.org/pdf/2411.16634
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The “penguin”-jet function at NLO

15

The “penguin”-jet function is the anti-hard collinear region of .b → sγg
[to appear: RB, Böer, Hurth]

(f) (g)

(h) (i)

Figure 2: Diagrams built from the two gluon Feynman rule

1 Anti-jet function

In order to cross-check our result for the poles of the g17 we compute the poles of the

corresponding anti-jet function. For phenomenological purposes the process b ! s�g with

the charm quark running in the loop has to be considered. However, the poles of the

function with charm-loop and the poles of the function with up-loop (massless case) are

the same. Therefore, we compute the antijet function for the up-quark case. The sum of

the two one-loop diagrams for the anti-jet function is finite

and given by
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We split the two-loop contributions to the antijet function in two categories: connections

within the quark-loop and Wilson line diagrams, where the quark loop is connected to the

external b and s lines. The first category is given by the following diagrams

– 2 –

Figure 1: One-loop b ! s�g diagrams.

3 Pole cancellation at NLO

In order to cross-check our result for the poles of the soft function g17 we have to compute

the poles of the corresponding anti-hardcollinear jet functions. The 1/✏ singularities of the

hard and hardcollinear function are in principle known in the literature.

3.1 Soft function

In [9] we found the following anomalous dimensions of the soft function:....

3.2 Anti-hardcollinear jet function

For phenomenological purposes the process b ! s�g with the charm quark running in the

loop has to be considered. However, the poles of the function with the charm-quark loop

and the poles of the function with the up-quark loop (massless case) are the same when

using a mass-independent regularisation scheme. Moreover, the massless limit is a smooth.

Therefore, we can extract the poles from the massless two-loop diagrams.

The sum of the two one-loop diagrams for the anti-hardcollinear jet function is finite

and given by
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We split the two-loop contributions to the antijet function in two categories: connec-

tions within the quark-loop and Wilson line diagrams, where the quark loop is connected

to the external b and s lines. The first category is given by the following diagrams The red

crosses represent alternative insertions of the quark self energy. As for the one loop case,

for each of to these diagrams also the corresponding graph with external photon and gluon

exchanged has to be considered. In the following all the results correspond to the sum of

these two contributions.

The poles of the previous diagrams normalised to the one-loop result (more precisely?)

give:
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Figure 3: Antijet function diagrams where the gluon corrections connect di↵erent points

of the quark-loop.

The red crosses represent alternative insertions of the quark self energy. As for the one

loop case, for each of to these diagrams also the corresponding graph with external photon

and gluon exchanged has to be considered. In the following all the results correspond to

the sum of these two contributions.

The poles of the previous diagrams normalised to the one-loop result (Full results to

be added. I don’t have them for E (only expansion) and F (to be done with the program))

give:
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The sum of the poles coming from the previous set of diagrams gives zero for both CF and

CA terms. The second category of diagrams is
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Figure 4: Antijet function diagrams where the gluon corrections connect the quark-loop

to the external quark lines.
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The “penguin”-jet function is the anti-hard collinear region of .b → sγg
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In order to cross-check our result for the poles of the g17 we compute the poles of the

corresponding anti-jet function. For phenomenological purposes the process b ! s�g with

the charm quark running in the loop has to be considered. However, the poles of the

function with charm-loop and the poles of the function with up-loop (massless case) are

the same. Therefore, we compute the antijet function for the up-quark case. The sum of

the two one-loop diagrams for the anti-jet function is finite

and given by
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We split the two-loop contributions to the antijet function in two categories: connections
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external b and s lines. The first category is given by the following diagrams
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3 Pole cancellation at NLO

In order to cross-check our result for the poles of the soft function g17 we have to compute

the poles of the corresponding anti-hardcollinear jet functions. The 1/✏ singularities of the

hard and hardcollinear function are in principle known in the literature.

3.1 Soft function

In [9] we found the following anomalous dimensions of the soft function:....

3.2 Anti-hardcollinear jet function

For phenomenological purposes the process b ! s�g with the charm quark running in the

loop has to be considered. However, the poles of the function with the charm-quark loop

and the poles of the function with the up-quark loop (massless case) are the same when

using a mass-independent regularisation scheme. Moreover, the massless limit is a smooth.

Therefore, we can extract the poles from the massless two-loop diagrams.

The sum of the two one-loop diagrams for the anti-hardcollinear jet function is finite

and given by
gSQue

8⇡2
E��̄(s)

hc,L
/n

2

⇥
/✏⇤

?, /A
s
?
⇤
bL (3.1)

whereas in D-dimensions is

gSQue

8⇡2
E�

✓
�2E�!1

µ2

◆�✏

e✏�E (1 + ✏)
�(1 + ✏)�(1 � ✏)2

(1 � ✏)�(2 � 2✏)
�̄(s)

hc,L
/n

2

⇥
/✏⇤

?, /A
s
?
⇤
bL (3.2)

We split the two-loop contributions to the antijet function in two categories: connec-

tions within the quark-loop and Wilson line diagrams, where the quark loop is connected

to the external b and s lines. The first category is given by the following diagrams The red

crosses represent alternative insertions of the quark self energy. As for the one loop case,

for each of to these diagrams also the corresponding graph with external photon and gluon

exchanged has to be considered. In the following all the results correspond to the sum of

these two contributions.
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The red crosses represent alternative insertions of the quark self energy. As for the one

loop case, for each of to these diagrams also the corresponding graph with external photon

and gluon exchanged has to be considered. In the following all the results correspond to

the sum of these two contributions.
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The sum of the poles coming from the previous set of diagrams gives zero for both CF and

CA terms. The second category of diagrams is
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In order to cross-check our result for the poles of the g17 we compute the poles of the

corresponding anti-jet function. For phenomenological purposes the process b ! s�g with

the charm quark running in the loop has to be considered. However, the poles of the

function with charm-loop and the poles of the function with up-loop (massless case) are

the same. Therefore, we compute the antijet function for the up-quark case. The sum of

the two one-loop diagrams for the anti-jet function is finite

and given by
gSQue

8⇡2 E��̄(s)
hc,L

/n

2

⇥
/✏⇤

?, /A
s
?
⇤
bL (1.1)

whereas in D-dimensions is

gSQue

8⇡2 E�

✓
�2E�!1

µ2

◆�✏

e✏�E (1 + ✏)
�(1 + ✏)�(1 � ✏)2

(1 � ✏)�(2 � 2✏)
�̄(s)

hc,L
/n

2

⇥
/✏⇤

?, /A
s
?
⇤
bL (1.2)

We split the two-loop contributions to the antijet function in two categories: connections

within the quark-loop and Wilson line diagrams, where the quark loop is connected to the

external b and s lines. The first category is given by the following diagrams
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3 Pole cancellation at NLO

In order to cross-check our result for the poles of the soft function g17 we have to compute

the poles of the corresponding anti-hardcollinear jet functions. The 1/✏ singularities of the

hard and hardcollinear function are in principle known in the literature.

3.1 Soft function

In [9] we found the following anomalous dimensions of the soft function:....

3.2 Anti-hardcollinear jet function

For phenomenological purposes the process b ! s�g with the charm quark running in the

loop has to be considered. However, the poles of the function with the charm-quark loop

and the poles of the function with the up-quark loop (massless case) are the same when

using a mass-independent regularisation scheme. Moreover, the massless limit is a smooth.

Therefore, we can extract the poles from the massless two-loop diagrams.

The sum of the two one-loop diagrams for the anti-hardcollinear jet function is finite

and given by
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We split the two-loop contributions to the antijet function in two categories: connec-

tions within the quark-loop and Wilson line diagrams, where the quark loop is connected

to the external b and s lines. The first category is given by the following diagrams The red

crosses represent alternative insertions of the quark self energy. As for the one loop case,

for each of to these diagrams also the corresponding graph with external photon and gluon

exchanged has to be considered. In the following all the results correspond to the sum of

these two contributions.

The poles of the previous diagrams normalised to the one-loop result (more precisely?)

give:
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The red crosses represent alternative insertions of the quark self energy. As for the one

loop case, for each of to these diagrams also the corresponding graph with external photon

and gluon exchanged has to be considered. In the following all the results correspond to

the sum of these two contributions.
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be added. I don’t have them for E (only expansion) and F (to be done with the program))
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CA terms. The second category of diagrams is
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1 Anti-jet function

In order to cross-check our result for the poles of the g17 we compute the poles of the

corresponding anti-jet function. For phenomenological purposes the process b ! s�g with

the charm quark running in the loop has to be considered. However, the poles of the

function with charm-loop and the poles of the function with up-loop (massless case) are

the same. Therefore, we compute the antijet function for the up-quark case. The sum of

the two one-loop diagrams for the anti-jet function is finite
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We split the two-loop contributions to the antijet function in two categories: connections

within the quark-loop and Wilson line diagrams, where the quark loop is connected to the

external b and s lines. The first category is given by the following diagrams
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3 Pole cancellation at NLO

In order to cross-check our result for the poles of the soft function g17 we have to compute

the poles of the corresponding anti-hardcollinear jet functions. The 1/✏ singularities of the

hard and hardcollinear function are in principle known in the literature.

3.1 Soft function

In [9] we found the following anomalous dimensions of the soft function:....

3.2 Anti-hardcollinear jet function

For phenomenological purposes the process b ! s�g with the charm quark running in the

loop has to be considered. However, the poles of the function with the charm-quark loop

and the poles of the function with the up-quark loop (massless case) are the same when

using a mass-independent regularisation scheme. Moreover, the massless limit is a smooth.

Therefore, we can extract the poles from the massless two-loop diagrams.

The sum of the two one-loop diagrams for the anti-hardcollinear jet function is finite

and given by
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We split the two-loop contributions to the antijet function in two categories: connec-

tions within the quark-loop and Wilson line diagrams, where the quark loop is connected

to the external b and s lines. The first category is given by the following diagrams The red

crosses represent alternative insertions of the quark self energy. As for the one loop case,

for each of to these diagrams also the corresponding graph with external photon and gluon

exchanged has to be considered. In the following all the results correspond to the sum of

these two contributions.

The poles of the previous diagrams normalised to the one-loop result (more precisely?)

give:
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and taking the ratio with the one-loop amplitude in D-dimensions we get the poles of the
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The “penguin”-jet function is the anti-hard collinear region of .b → sγg
[to appear: RB, Böer, Hurth]

Status:
• All diagrams have been computed assuming a massless quark in the loop (up-quark)
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Figure 2: Diagrams built from the two gluon Feynman rule

1 Anti-jet function

In order to cross-check our result for the poles of the g17 we compute the poles of the

corresponding anti-jet function. For phenomenological purposes the process b ! s�g with

the charm quark running in the loop has to be considered. However, the poles of the

function with charm-loop and the poles of the function with up-loop (massless case) are

the same. Therefore, we compute the antijet function for the up-quark case. The sum of

the two one-loop diagrams for the anti-jet function is finite

and given by
gSQue

8⇡2 E��̄(s)
hc,L

/n

2

⇥
/✏⇤

?, /A
s
?
⇤
bL (1.1)

whereas in D-dimensions is

gSQue

8⇡2 E�

✓
�2E�!1

µ2

◆�✏

e✏�E (1 + ✏)
�(1 + ✏)�(1 � ✏)2

(1 � ✏)�(2 � 2✏)
�̄(s)

hc,L
/n

2

⇥
/✏⇤

?, /A
s
?
⇤
bL (1.2)

We split the two-loop contributions to the antijet function in two categories: connections

within the quark-loop and Wilson line diagrams, where the quark loop is connected to the

external b and s lines. The first category is given by the following diagrams
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Figure 1: One-loop b ! s�g diagrams.

3 Pole cancellation at NLO

In order to cross-check our result for the poles of the soft function g17 we have to compute

the poles of the corresponding anti-hardcollinear jet functions. The 1/✏ singularities of the

hard and hardcollinear function are in principle known in the literature.

3.1 Soft function

In [9] we found the following anomalous dimensions of the soft function:....

3.2 Anti-hardcollinear jet function

For phenomenological purposes the process b ! s�g with the charm quark running in the

loop has to be considered. However, the poles of the function with the charm-quark loop

and the poles of the function with the up-quark loop (massless case) are the same when

using a mass-independent regularisation scheme. Moreover, the massless limit is a smooth.

Therefore, we can extract the poles from the massless two-loop diagrams.

The sum of the two one-loop diagrams for the anti-hardcollinear jet function is finite

and given by
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We split the two-loop contributions to the antijet function in two categories: connec-

tions within the quark-loop and Wilson line diagrams, where the quark loop is connected

to the external b and s lines. The first category is given by the following diagrams The red

crosses represent alternative insertions of the quark self energy. As for the one loop case,

for each of to these diagrams also the corresponding graph with external photon and gluon

exchanged has to be considered. In the following all the results correspond to the sum of

these two contributions.

The poles of the previous diagrams normalised to the one-loop result (more precisely?)

give:
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Figure 3: Antijet function diagrams where the gluon corrections connect di↵erent points

of the quark-loop.

The red crosses represent alternative insertions of the quark self energy. As for the one

loop case, for each of to these diagrams also the corresponding graph with external photon

and gluon exchanged has to be considered. In the following all the results correspond to

the sum of these two contributions.

The poles of the previous diagrams normalised to the one-loop result (Full results to
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The sum of the poles coming from the previous set of diagrams gives zero for both CF and

CA terms. The second category of diagrams is
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• The  limit is smooth, therefore we have all the poles of the four functionsmc → 0
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1 Anti-jet function

In order to cross-check our result for the poles of the g17 we compute the poles of the

corresponding anti-jet function. For phenomenological purposes the process b ! s�g with

the charm quark running in the loop has to be considered. However, the poles of the

function with charm-loop and the poles of the function with up-loop (massless case) are

the same. Therefore, we compute the antijet function for the up-quark case. The sum of

the two one-loop diagrams for the anti-jet function is finite

and given by
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We split the two-loop contributions to the antijet function in two categories: connections

within the quark-loop and Wilson line diagrams, where the quark loop is connected to the

external b and s lines. The first category is given by the following diagrams
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3 Pole cancellation at NLO

In order to cross-check our result for the poles of the soft function g17 we have to compute

the poles of the corresponding anti-hardcollinear jet functions. The 1/✏ singularities of the

hard and hardcollinear function are in principle known in the literature.

3.1 Soft function

In [9] we found the following anomalous dimensions of the soft function:....

3.2 Anti-hardcollinear jet function

For phenomenological purposes the process b ! s�g with the charm quark running in the

loop has to be considered. However, the poles of the function with the charm-quark loop

and the poles of the function with the up-quark loop (massless case) are the same when

using a mass-independent regularisation scheme. Moreover, the massless limit is a smooth.

Therefore, we can extract the poles from the massless two-loop diagrams.

The sum of the two one-loop diagrams for the anti-hardcollinear jet function is finite

and given by
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We split the two-loop contributions to the antijet function in two categories: connec-

tions within the quark-loop and Wilson line diagrams, where the quark loop is connected

to the external b and s lines. The first category is given by the following diagrams The red

crosses represent alternative insertions of the quark self energy. As for the one loop case,

for each of to these diagrams also the corresponding graph with external photon and gluon

exchanged has to be considered. In the following all the results correspond to the sum of

these two contributions.

The poles of the previous diagrams normalised to the one-loop result (more precisely?)

give:
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of the quark-loop.

The red crosses represent alternative insertions of the quark self energy. As for the one

loop case, for each of to these diagrams also the corresponding graph with external photon

and gluon exchanged has to be considered. In the following all the results correspond to

the sum of these two contributions.

The poles of the previous diagrams normalised to the one-loop result (Full results to

be added. I don’t have them for E (only expansion) and F (to be done with the program))
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The sum of the poles coming from the previous set of diagrams gives zero for both CF and
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The “penguin”-jet function is the anti-hard collinear region of .b → sγg
[to appear: RB, Böer, Hurth]

Status:
• All diagrams have been computed assuming a massless quark in the loop (up-quark)
• The  limit is smooth, therefore we have all the poles of the four functionsmc → 0
• All poles cancel providing a non-trivial check of our results

(f) (g)

(h) (i)

Figure 2: Diagrams built from the two gluon Feynman rule

1 Anti-jet function

In order to cross-check our result for the poles of the g17 we compute the poles of the

corresponding anti-jet function. For phenomenological purposes the process b ! s�g with

the charm quark running in the loop has to be considered. However, the poles of the

function with charm-loop and the poles of the function with up-loop (massless case) are

the same. Therefore, we compute the antijet function for the up-quark case. The sum of

the two one-loop diagrams for the anti-jet function is finite

and given by
gSQue

8⇡2 E��̄(s)
hc,L

/n

2

⇥
/✏⇤

?, /A
s
?
⇤
bL (1.1)

whereas in D-dimensions is

gSQue

8⇡2 E�

✓
�2E�!1

µ2

◆�✏

e✏�E (1 + ✏)
�(1 + ✏)�(1 � ✏)2

(1 � ✏)�(2 � 2✏)
�̄(s)

hc,L
/n

2

⇥
/✏⇤

?, /A
s
?
⇤
bL (1.2)

We split the two-loop contributions to the antijet function in two categories: connections

within the quark-loop and Wilson line diagrams, where the quark loop is connected to the

external b and s lines. The first category is given by the following diagrams
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Figure 1: One-loop b ! s�g diagrams.

3 Pole cancellation at NLO

In order to cross-check our result for the poles of the soft function g17 we have to compute

the poles of the corresponding anti-hardcollinear jet functions. The 1/✏ singularities of the

hard and hardcollinear function are in principle known in the literature.

3.1 Soft function

In [9] we found the following anomalous dimensions of the soft function:....

3.2 Anti-hardcollinear jet function

For phenomenological purposes the process b ! s�g with the charm quark running in the

loop has to be considered. However, the poles of the function with the charm-quark loop

and the poles of the function with the up-quark loop (massless case) are the same when

using a mass-independent regularisation scheme. Moreover, the massless limit is a smooth.

Therefore, we can extract the poles from the massless two-loop diagrams.

The sum of the two one-loop diagrams for the anti-hardcollinear jet function is finite

and given by
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We split the two-loop contributions to the antijet function in two categories: connec-

tions within the quark-loop and Wilson line diagrams, where the quark loop is connected

to the external b and s lines. The first category is given by the following diagrams The red

crosses represent alternative insertions of the quark self energy. As for the one loop case,

for each of to these diagrams also the corresponding graph with external photon and gluon

exchanged has to be considered. In the following all the results correspond to the sum of

these two contributions.

The poles of the previous diagrams normalised to the one-loop result (more precisely?)

give:
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NLO is a two-loop amplitude

• Diagrams A-F: only one region
• Diagrams G-I: expansion of external leg propagator (linear propagator)
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Distribution definition

For diagram (g) we also need the three-gluon emission Feynman rule, which is a quite

lengthy expression. However, most of the contractions vanish in Feynman gauge, or due to

rotational symmetry, and here we only quote the relevant piece that gives a non-vanishing

contraction in diagram (g):

k� k

l1, µ, a

k� k

l1, µ, al2, ⌫, b

k� k

l1, µ, al3, �, c
l2, ⌫, b

(a) (b) (a)

(d) (e)

(c)

(b)

Figure 3: Diagrams built from the one gluon Feynman rule
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We regulate UV-divergences in dimensional regularization, i.e. by evaluating the loop

integrals in d = 4 � 2" space-time dimensions. After the integrations have been carried

out, the respective expressions need to be expanded around " = 0 in the distribution sense.

Besides the standard plus-distributions,
Z

d!0 [ . . . ]+ f(!0) ⌘
Z

d!0 [ . . . ] (f(!0) � f(!)) , (2.11)

one also needs the modified plus-distributions,
Z

d!0 [ . . . ]�/ f(!0) ⌘
Z

d!0 [ . . . ] (f(!0) � ✓(±!0)f(!)) , (2.12)

which arise because the variables ! and !1 can take both positive and negative values. It

turns out to be convenient to define

F>(!, !0) =


! ✓(!0 � !)

!0 (!0 � !)

�

+

+


✓(! � !0)

! � !0

�

�
,

F<(!,!0) =


! ✓(! � !0)

!0 (! � !0)

�

+

+


✓(!0 � !)

!0 � !

�

 
,

G>(!,!0) = (! + !0)


✓(!0 � !)

!0 (!0 � !)

�

+

� i⇡�(! � !0) ,

G<(!, !0) = (! + !0)


✓(! � !0)

!0 (! � !0)

�

+

+ i⇡�(! � !0) , (2.13)

as well as the linear combinations

H±(!, !0) = ✓(±!)F>(<)(!,!0) + ✓(⌥!)G<(>)(!,!0) , (2.14)
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Plus-distribution: 
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k� k

l1, µ, al3, �, c
l2, ⌫, b

(a) (b) (a)

(d) (e)

(c)

(b)

Figure 3: Diagrams built from the one gluon Feynman rule
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Modified distributions: 

3

nal gluon again from the field strength tensor; III) the
two gluons in the loop from the Wilson lines along the
n direction and Gµ⌫(⌧2n̄) while the external gluon from
the Wilson lines; IV) both two gluons in the loop from
Gµ⌫(⌧2n̄) while the external gluon from the soft Wilson
lines. The third type of the O(↵s) correction vanishes,
because the obtained integrand of the `? integral turns
out to be an odd function. Contracting the two gluon
fields from the non-Abelian term in the field strength
tensor (namely, the fourth type mechanism) evidently
generates a vanishing contribution. Moreover, the second
class of the QCD correction is cancelled by the relevant
contribution from the diagram (d). The remaining type-I
correction from the diagram (e) can be cast in the form
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where we have introduced the two primitive kernels
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0
i
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0
i
)+✓(⌥!i)G<(>)(!i,!

0
i
)

as defined in [80] (see also [81] for an overview). The
superscripts “>” and “<” characterize the positive and
negative light-cone momentum !i, respectively. The
manifest expressions for F>(<) and G

>(<) read

F
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The standard definition of the “+” distribution in the
variable !0

i
[36] has been employed. We further introduce

the modified “� ” and “ ” distributions to regulate the
integrals of the non-local terms ✓(!i�!

0
i
)/(!i�!

0
i
) (with

!
(0)
i

> 0) and ✓(!0
i
� !i)/(!0i � !i) (with !

(0)
i

< 0) [80]

Z +1

�1
d!
0
i
[f(!i,!

0
i
)]�/ '(!0

i
)

=

Z +1

�1
d!
0
i
f(!i,!

0
i
) ['(!0

i
)� ✓(±!

0
i
)'(!i)] . (7)

The modified “ � ” distribution in F
>(!i,!

0
i
) generates

an interesting pattern of evolving the negative !
0
i
into

the positive !i, while the modified “  ” distribution in
F

<(!i,!
0
i
) yields the novel mixing from !

0
i
> 0 to !i < 0

as already noticed in [80]. Consequently, the support
region of �G(!1,!2, µ) must be extended to the entire
real axes �1 < !1,2 < +1.
The next-to-leading-order (NLO) contributions from

the two diagrams (a) and (b) with !
0
1,2 > 0 can be ex-

tracted from the counterpart expressions for the twist-
three bottom-meson LCDA �3(!1,!2, µ) [82], by invok-
ing the exchange symmetry of n $ n̄ in the diagram-
matic computations (only valid at O(↵s) accuracy). The
intriguing UV divergences in the negative support region
from these two diagrams are captured by the modified
“�” functions and by the emerged ✓(�!i) terms with the
standard “ + ” distributions. The UV divergent contri-
butions of the diagram (c) arise from attaching the gluon
field of the Wilson line in the n direction to the external
light quark (while the external gluon state from the field
strength). The yielding UV divergences in the positive
support region can be inferred from the corresponding
result of the leading-twist B-meson LCDA [36, 79]. The
one-loop renormalization constant from this diagram in
the negative support region can be obtained by imple-
menting the replacement rules !1 ! �!1 and !

0
1 ! �!

0
1

in the determined expression at !1 > 0 and !
0
1 > 0.

Collecting all the individual pieces together, we can
readily derive the one-loop anomalous dimension
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It is straightforward to verify that the peculiar terms in
(8) with the colour factor CF for !1 > 0 and !

0
1 > 0

(apart from an overall factor of �(!2 � !
0
2)) recovers

the well-known Lange-Neubert kernel of the twist-two

B-meson LCDA [36]. We further note that the one-
loop anomalous dimension (8) becomes complex due
to the soft-parton rescattering, in analogy to the ear-
lier observation on the QED-generalized bottom-meson
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(8) with the colour factor CF for !1 > 0 and !

0
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(apart from an overall factor of �(!2 � !
0
2)) recovers

the well-known Lange-Neubert kernel of the twist-two

B-meson LCDA [36]. We further note that the one-
loop anomalous dimension (8) becomes complex due
to the soft-parton rescattering, in analogy to the ear-
lier observation on the QED-generalized bottom-meson

H-distributions: 
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(G.1) (G.2) (H)

(I.1) (I.2)

Figure 4: Antijet function diagrams where the gluon corrections connect the quark-loop

to the external quark lines.

The following two-loops results are normalised to the expression �̄
(s)
hc,L

/n

2

⇥
/✏
⇤
?, /A

s
?
⇤
bL

appearing in the one-loop result given in Eq. 1.1.
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Summing all the Wilson line diagrams one gets:

�
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and taking the ratio with the one-loop amplitude in D-dimensions we get the poles of the

antijet function.
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(A)

⇥
⇥

(B) (C)

(D) (E) (F)

Figure 3: Antijet function diagrams where the gluon corrections connect di↵erent points

of the quark-loop.

The red crosses represent alternative insertions of the quark self energy. As for the one

loop case, for each of to these diagrams also the corresponding graph with external photon

and gluon exchanged has to be considered. In the following all the results correspond to

the sum of these two contributions.

The poles of the previous diagrams normalised to the one-loop result (Full results to

be added. I don’t have them for E (only expansion) and F (to be done with the program))

give:
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(B) = 0 (1.4)
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The sum of the poles coming from the previous set of diagrams gives zero for both CF and

CA terms. The second category of diagrams is
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The “penguin”-jet function corresponds to the anti-hard collinear region of  with the charm quark running in the loop.b → sγg

Remarks: 
• The LO contains charm-loop, therefore NLO is a two-loop amplitude 
• The upper diagrams (A-F) have only one region 
• The lower diagrams (G-I) need the expansion of the propagator of the external legs

Status: 
• All diagrams have been computed assuming a massless quark in the loop (up-quark) 
• The  limit is smooth, therefore we have all the poles of the four functions 
• All poles cancel providing a non-trivial check of our results

mc → 0

Outlook: 
• Remaining task: complete  correction to have the final NLO resultmc

[in progress: RB, Böer, Hurth]

(f) (g)

(h) (i)

Figure 2: Diagrams built from the two gluon Feynman rule

1 Anti-jet function

In order to cross-check our result for the poles of the g17 we compute the poles of the

corresponding anti-jet function. For phenomenological purposes the process b ! s�g with

the charm quark running in the loop has to be considered. However, the poles of the

function with charm-loop and the poles of the function with up-loop (massless case) are

the same. Therefore, we compute the antijet function for the up-quark case. The sum of

the two one-loop diagrams for the anti-jet function is finite

and given by
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whereas in D-dimensions is
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We split the two-loop contributions to the antijet function in two categories: connections

within the quark-loop and Wilson line diagrams, where the quark loop is connected to the

external b and s lines. The first category is given by the following diagrams
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Figure 1: One-loop b ! s�g diagrams.

3 Pole cancellation at NLO

In order to cross-check our result for the poles of the soft function g17 we have to compute

the poles of the corresponding anti-hardcollinear jet functions. The 1/✏ singularities of the

hard and hardcollinear function are in principle known in the literature.

3.1 Soft function

In [9] we found the following anomalous dimensions of the soft function:....

3.2 Anti-hardcollinear jet function

For phenomenological purposes the process b ! s�g with the charm quark running in the

loop has to be considered. However, the poles of the function with the charm-quark loop

and the poles of the function with the up-quark loop (massless case) are the same when

using a mass-independent regularisation scheme. Moreover, the massless limit is a smooth.

Therefore, we can extract the poles from the massless two-loop diagrams.

The sum of the two one-loop diagrams for the anti-hardcollinear jet function is finite

and given by
gSQue

8⇡2
E��̄(s)
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/n
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⇥
/✏⇤

?, /A
s
?
⇤
bL (3.1)

whereas in D-dimensions is

gSQue
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?, /A
s
?
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We split the two-loop contributions to the antijet function in two categories: connec-

tions within the quark-loop and Wilson line diagrams, where the quark loop is connected

to the external b and s lines. The first category is given by the following diagrams The red

crosses represent alternative insertions of the quark self energy. As for the one loop case,

for each of to these diagrams also the corresponding graph with external photon and gluon

exchanged has to be considered. In the following all the results correspond to the sum of

these two contributions.

The poles of the previous diagrams normalised to the one-loop result (more precisely?)

give:

(A) = �
↵S

4⇡

2

✏
CF (3.3)
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This is indeed the sum of (2.27) and (2.29) apart from the two terms in �Z17. In other

words, one finds the same soft UV poles when computing time-ordered diagrams and drop-

ping irrelevant terms that vanish after convolution with the jet functions, or by directly

computing cut diagrams. The reason for this is likely the absence of imaginary parts in

the non-vanishing soft contributions, as in that case the cuts in the respective diagrams

for the decay rate only a↵ect the s-quark propagator, which belongs to the n-jet function.

The shape function g17 that appears in the factorisation theorem for the B̄ ! Xs� de-

cay rate, and is convoluted with the discontinuity of the n-jet function, is given by the

operator (2.37) including the cuts through the Keldysh formalism. We will adopt this

prescription in the following. Evaluating the matrix element with time-ordered products,

on the other hand, would be the relevant soft function that appears in the factorisation of

the B-meson forward matrix element of time-ordered weak Hamiltonians, i.e. before the

restricted cuts are taken.

Interestingly, such irrelevant contributions also arise for soft functions defined at the

amplitude level, for example in exclusive B decays. In this case indeed only ordinary (time-

ordered) Feynman diagrams contribute. We will discuss an example from the literature [40]

in greater detail in section 4.

3 Analytic solution to the renormalisation-group equation

In this section we present an analytic solution to the RG equation for the subleading shape

function g17(!, !1; µ) as defined using time-ordered and anti-time-ordered fields in (2.37),

d

d ln µ
g17(!, !1; µ) = �

Z
d!0

Z
d!01 �17(!, !1, !

0, !01; µ) g17(!
0, !01; µ) , (3.1)

in momentum space. To do so, let us first recall that the anomalous dimension which

governs the scale evolution of g17(!, !1; µ) is defined as

�17(!, !1, !
0, !01; µ) = �

Z
d!̂

Z
d!̂1

dZ17(!, !1, !̂, !̂1; µ)

d ln µ
Z�117 (!̂, !̂1, !

0, !01; µ) , (3.2)

with the Z-factor from (2.20) and (2.32) without �Z17. At O(↵s), we can decompose the

anomalous dimension as a sum of two pieces, each of which is associated with only one of

the two light-cone directions,

�17(!, !1, !
0, !01; µ) =

↵s

⇡

n
CF �(!1 � !01)�n(!, !0; µ) +

CA

2
�(! � !0)�n̄(!1, !

0
1; µ)

o
. (3.3)

The Abelian part
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�

 
(3.4)

only acts on the soft variables associated with the collinear direction, and the non-Abelian

part

�n̄(!1, !
0
1; µ) = ln

µ2

!2
1

�(!1�!01)�ReH(!1, !
0
1)+

2!1

(!01)
2
[✓(!1)✓(!

0
1�!1)�✓(�!1)✓(!1�!01)]

(3.5)
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ordered) Feynman diagrams contribute. We will discuss an example from the literature [40]

in greater detail in section 4.
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with the Z-factor from (2.20) and (2.32) without �Z17. At O(↵s), we can decompose the

anomalous dimension as a sum of two pieces, each of which is associated with only one of

the two light-cone directions,

�17(!, !1, !
0, !01; µ) =

↵s

⇡

n
CF �(!1 � !01)�n(!,!0; µ) +

CA

2
�(! � !0)�n̄(!1, !

0
1; µ)

o
. (3.3)

The Abelian part

�n(!, !0; µ) =

✓
ln

µ2

!2
� 1

◆
�(! � !0) � 2✓(!)


✓(!0 � !)

!0(!0 � !)

�

+

!0 � 2✓(�!)


✓(!0 � !)

!0 � !

�

 
(3.4)

only acts on the soft variables associated with the collinear direction, and the non-Abelian
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Figure 2: The left-hand side shows the non-local space-time structure of the soft fields

and Wilson lines as they appear in the e↵ective operator O17 in (2.4). Here, dashed lines

denote soft Wilson lines in the n̄µ direction from the decoupling of anti-hard-collinear

quark fields, and similarly the dotted line represents a soft Wilson line in the nµ direction.

Throughout this paper, we simply represent the non-local field configuration through an

e↵ective vertex denoted by the ⌦ symbol on the right-hand side of the equation. Note that

at higher orders, more than one gluon can be emitted from the e↵ective vertex due to the

presence of the Wilson lines.

at one-loop order, and extract its Z-factor in the MS-scheme from

eO(bare)
17 (!, !1) =

Z
d!0

Z
d!0

1 Z�1
17 (!,!1, !

0, !0
1; µ) eO(ren)

17 (!, !1; µ) . (2.6)

Despite the non-perturbative nature of the shape function g17, the UV-singularities of the

defining operator can safely be computed in perturbation theory using partonic external

states. More specifically, in the following we compute one-loop corrections to the matrix

element h eO(bare)
17 (!, !0)i ⌘ hhv(k, s)g(kg, �)| eO(bare)

17 (!, !0)|hv(k0, s0)i. As a consequence of

the space-time arguments of the fields in (2.4), it su�ces at tree-level to set the residual

heavy-quark momentum to kµ = 1
2(nk)n̄µ ⌘ 1

2k+n̄µ, and similarly the gluon momentum

to kµ
g = 1

2(n̄kg)nµ ⌘ 1
2kg�nµ. At O(↵s), however, we keep the parton momenta slightly

o↵-shell whenever necessary to regularize potential infrared (IR) divergences in the loop

integrals. Further, we perform the calculation with a “physical gluon”, i.e. its polarization

vector ✏aµ(kg, �)⇤ is chosen to be perpendicular to nµ and n̄µ.

At tree-level, the partonic matrix element follows from the Feynman rule

k� k

l1, µ, a

k� k

l1, µ, al2, ⌫, b

k� k

l1, µ, al3, �, c
l2, ⌫, b

(a) (b) (a)

(d) (e)

(c)

(b)

Figure 3: Diagrams built from the one gluon Feynman rule

2

= �(! � k+)�(!1 � `1�)gst
a /̄n(n̄µ/̀1? � �µ

?`1�) , (2.7)

and evaluates to

h eO(bare)
17 (!, !1)i(0) = �!1�(!1 � kg�)�(! � k+) [h̄v /̄n /A?hv] , (2.8)

where now the objects in the square brackets represent on-shell spinors for the heavy quarks,

and a polarization vector for the gluon, Aµ = gs✏aµ(kg, �)⇤ta. As depicted in Fig. 2, the

⌦ symbol used in (2.7) and in the following represents the non-local operator O17, where

– 6 –
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3

nal gluon again from the field strength tensor; III) the
two gluons in the loop from the Wilson lines along the
n direction and Gµ⌫(⌧2n̄) while the external gluon from
the Wilson lines; IV) both two gluons in the loop from
Gµ⌫(⌧2n̄) while the external gluon from the soft Wilson
lines. The third type of the O(↵s) correction vanishes,
because the obtained integrand of the `? integral turns
out to be an odd function. Contracting the two gluon
fields from the non-Abelian term in the field strength
tensor (namely, the fourth type mechanism) evidently
generates a vanishing contribution. Moreover, the second
class of the QCD correction is cancelled by the relevant
contribution from the diagram (d). The remaining type-I
correction from the diagram (e) can be cast in the form

Z
(e)
G �

↵s

4⇡

CA

✏

⇢
1

✏
+ ln

µ
2

!1!2 � i0
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0
1) �(!2 � !

0
2) +

✓
i

2⇡

◆
(5)

[H+(!1,!
0
1)�H�(!1,!

0
1)� 2i⇡�(!1 � !

0
1) ✓(!

0
2 � !2)]

[H+(!2,!
0
2)�H�(!2,!

0
2)� 2i⇡�(!2 � !

0
2) ✓(!

0
1 � !1)]

�
,

where we have introduced the two primitive kernels
H±(!i,!

0
i
) = ✓(±!i)F>(<)(!i,!

0
i
)+✓(⌥!i)G<(>)(!i,!

0
i
)

as defined in [80] (see also [81] for an overview). The
superscripts “>” and “<” characterize the positive and
negative light-cone momentum !i, respectively. The
manifest expressions for F>(<) and G

>(<) read

F
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0
i
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
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
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0
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+ i⇡�(!i � !
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i
) .

The standard definition of the “+” distribution in the
variable !0

i
[36] has been employed. We further introduce

the modified “� ” and “ ” distributions to regulate the
integrals of the non-local terms ✓(!i�!

0
i
)/(!i�!

0
i
) (with

!
(0)
i

> 0) and ✓(!0
i
� !i)/(!0i � !i) (with !

(0)
i

< 0) [80]

Z +1

�1
d!
0
i
[f(!i,!

0
i
)]�/ '(!0

i
)

=

Z +1

�1
d!
0
i
f(!i,!

0
i
) ['(!0

i
)� ✓(±!

0
i
)'(!i)] . (7)

The modified “ � ” distribution in F
>(!i,!

0
i
) generates

an interesting pattern of evolving the negative !
0
i
into

the positive !i, while the modified “  ” distribution in
F

<(!i,!
0
i
) yields the novel mixing from !

0
i
> 0 to !i < 0

as already noticed in [80]. Consequently, the support
region of �G(!1,!2, µ) must be extended to the entire
real axes �1 < !1,2 < +1.
The next-to-leading-order (NLO) contributions from

the two diagrams (a) and (b) with !
0
1,2 > 0 can be ex-

tracted from the counterpart expressions for the twist-
three bottom-meson LCDA �3(!1,!2, µ) [82], by invok-
ing the exchange symmetry of n $ n̄ in the diagram-
matic computations (only valid at O(↵s) accuracy). The
intriguing UV divergences in the negative support region
from these two diagrams are captured by the modified
“�” functions and by the emerged ✓(�!i) terms with the
standard “ + ” distributions. The UV divergent contri-
butions of the diagram (c) arise from attaching the gluon
field of the Wilson line in the n direction to the external
light quark (while the external gluon state from the field
strength). The yielding UV divergences in the positive
support region can be inferred from the corresponding
result of the leading-twist B-meson LCDA [36, 79]. The
one-loop renormalization constant from this diagram in
the negative support region can be obtained by imple-
menting the replacement rules !1 ! �!1 and !

0
1 ! �!

0
1

in the determined expression at !1 > 0 and !
0
1 > 0.

Collecting all the individual pieces together, we can
readily derive the one-loop anomalous dimension
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2)] . (8)

It is straightforward to verify that the peculiar terms in
(8) with the colour factor CF for !1 > 0 and !

0
1 > 0

(apart from an overall factor of �(!2 � !
0
2)) recovers

the well-known Lange-Neubert kernel of the twist-two

B-meson LCDA [36]. We further note that the one-
loop anomalous dimension (8) becomes complex due
to the soft-parton rescattering, in analogy to the ear-
lier observation on the QED-generalized bottom-meson
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Full evolution functions

Solving (3.22) for the two branches g̃>,<

17 yields

g̃>,<

17 (!, ⌘1; µ) = � eV1+2�Ea1
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2
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�
.

After replacing the sine functions by gamma functions via the reflection formula, the inverse

Mellin transform can be expressed in terms of Meijer-G functions, which are defined by

the complex contour integral
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Q

q

j=m+1 �(1 � bj + ⌘)
Q

p

j=n+1 �(aj � ⌘)
(3.27)

for integer 0  m  q and 0  n  p, where a = (a1, . . . , ap) and b = (b1, . . . , bq). Further

details and properties of these functions are e.g. outlined in Appendix D of [47]. The

resulting momentum-space solution reads

g17(!, !1; µ) =

Z
d!0

1

|!0
1|

U (17)
n̄ (!1, !

0
1; µ, µ0)g17(!, !0
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with the evolution function
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�
,

where we defined the ratio ⌧ = !0
1/!1.

The appearing Meijer-G function can be reduced to a hypergeometric function on the

interval 1 > ⌧ > �1 via
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where the variable ⌧ is implicitly supplemented with an +i0 prescription. From this identity

it follows that the evolution function in (3.29) is continuous at ⌧ = 0.

3.3 Phenomenological implications

To summarize, the solution to the RG equation takes the factorized form
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with the evolution function for the soft momenta associated with the nµ light-cone,
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The appearing Meijer-G function can be reduced to a hypergeometric function on the

interval 1 > ⌧ > �1 via
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2

⌘
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where the variable ⌧ is implicitly supplemented with an +i0 prescription. From this identity

it follows that the evolution function in (3.29) is continuous at ⌧ = 0.

3.3 Phenomenological implications

To summarize, the solution to the RG equation takes the factorized form
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0, !0
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(3.31)

with the evolution function for the soft momenta associated with the nµ light-cone,

U (17)
n (!, !0; µ, µ0) =

e2V+2�Ea

�(�2a)

✓
µ0

!0 � !

◆2a
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Solving (3.22) for the two branches g̃>,<

17 yields
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�
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After replacing the sine functions by gamma functions via the reflection formula, the inverse

Mellin transform can be expressed in terms of Meijer-G functions, which are defined by

the complex contour integral
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(3.27)

for integer 0  m  q and 0  n  p, where a = (a1, . . . , ap) and b = (b1, . . . , bq). Further
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resulting momentum-space solution reads

g17(!, !1; µ) =

Z
d!0

1

|!0
1|

U (17)
n̄ (!1, !

0
1; µ, µ0)g17(!,!0

1; µ0) , (3.28)

with the evolution function

U (17)
n̄ (!1, !

0
1; µ, µ0) = � eV1+2�Ea1

✓
µ0

|!0
1|

◆
a1

⇢
✓(⌧)G1,2

3,3

✓
�1, 1, a1/2

a1 + 1, a1 � 1, a1/2

���� ⌧
◆

(3.29)

+
1

2⇡
sin

⇣a1⇡

2

⌘
✓(�⌧)�(1 + a1)�(3 + a1)(�⌧)1+a1

2F1(1 + a1, 3 + a1, 3; ⌧)

�
,

where we defined the ratio ⌧ = !0
1/!1.

The appearing Meijer-G function can be reduced to a hypergeometric function on the

interval 1 > ⌧ > �1 via

G1,2
3,3

✓
�1, 1, a1/2

a1 + 1, a1 � 1, a1/2

���� ⌧
◆

=
1

2⇡
sin

⇣a1⇡

2

⌘
�(1 + a1)�(3 + a1)⌧

1+a1
2F1(1 + a1, 3 + a1, 3; ⌧) , (3.30)

where the variable ⌧ is implicitly supplemented with an +i0 prescription. From this identity

it follows that the evolution function in (3.29) is continuous at ⌧ = 0.

3.3 Phenomenological implications

To summarize, the solution to the RG equation takes the factorized form

g17(!, !1; µ) =

Z ⇤̄

!

d!0

!0 � !
U (17)
n (!,!0; µ, µ0)

Z 1

�1

d!0
1

|!0
1|

U (17)
n̄ (!1, !

0
1; µ, µ0) g17(!

0, !0
1; µ0) ,

(3.31)

with the evolution function for the soft momenta associated with the nµ light-cone,

U (17)
n (!, !0; µ, µ0) =

e2V+2�Ea

�(�2a)

✓
µ0

!0 � !

◆2a

, (3.32)

– 20 –

Solving (3.22) for the two branches g̃>,<

17 yields

g̃>,<

17 (!, ⌘1; µ) = � eV1+2�Ea1

✓
µ

µ0

◆
⌘1 �(�⌘1)�(2 � ⌘1)�(1 + ⌘1 + a1)

�(2 � ⌘1 � a1)


(3.26)

1

⇡
sin

⇣
(⌘1 +

a1
2

)⇡
⌘

g̃>,<

17 (!, ⌘1 + a1; µ) +
1

⇡
sin

⇣a1⇡

2

⌘
g̃<,>

17 (!, ⌘1 + a1; µ)

�
.

After replacing the sine functions by gamma functions via the reflection formula, the inverse

Mellin transform can be expressed in terms of Meijer-G functions, which are defined by

the complex contour integral

Gm,n

p,q

✓
a

b

����z
◆

=

Z
d⌘

2⇡i
z⌘

Q
m

j=1 �(bj � ⌘)
Q

n

j=1 �(1 � aj + ⌘)
Q

q

j=m+1 �(1 � bj + ⌘)
Q

p

j=n+1 �(aj � ⌘)
(3.27)

for integer 0  m  q and 0  n  p, where a = (a1, . . . , ap) and b = (b1, . . . , bq). Further

details and properties of these functions are e.g. outlined in Appendix D of [47]. The

resulting momentum-space solution reads

g17(!, !1; µ) =

Z
d!0

1

|!0
1|

U (17)
n̄ (!1, !

0
1; µ, µ0)g17(!, !0

1; µ0) , (3.28)

with the evolution function

U (17)
n̄ (!1, !

0
1; µ, µ0) = � eV1+2�Ea1

✓
µ0

|!0
1|

◆
a1

⇢
✓(⌧)G1,2

3,3

✓
�1, 1, a1/2

a1 + 1, a1 � 1, a1/2

���� ⌧
◆

(3.29)

+
1

2⇡
sin

⇣a1⇡

2

⌘
✓(�⌧)�(1 + a1)�(3 + a1)(�⌧)1+a1

2F1(1 + a1, 3 + a1, 3; ⌧)

�
,

where we defined the ratio ⌧ = !0
1/!1.

The appearing Meijer-G function can be reduced to a hypergeometric function on the

interval 1 > ⌧ > �1 via

G1,2
3,3

✓
�1, 1, a1/2

a1 + 1, a1 � 1, a1/2

���� ⌧
◆

=
1

2⇡
sin

⇣a1⇡

2

⌘
�(1 + a1)�(3 + a1)⌧

1+a1
2F1(1 + a1, 3 + a1, 3; ⌧) , (3.30)

where the variable ⌧ is implicitly supplemented with an +i0 prescription. From this identity

it follows that the evolution function in (3.29) is continuous at ⌧ = 0.

3.3 Phenomenological implications

To summarize, the solution to the RG equation takes the factorized form

g17(!, !1; µ) =

Z ⇤̄

!

d!0

!0 � !
U (17)
n (!,!0; µ, µ0)

Z 1

�1

d!0
1

|!0
1|

U (17)
n̄ (!1, !

0
1; µ, µ0) g17(!

0, !0
1; µ0) ,

(3.31)

with the evolution function for the soft momenta associated with the nµ light-cone,

U (17)
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The final result for the RGE reads:

With the Meijer-G functions defined as:
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Mellin space transform and equations

only acts on the soft variables associated with the anti-collinear direction. Because the

dependence on the two momentum variables ! and !1 factorizes, the RG equation (3.1)

can be separated in two independent equations which we solve consecutively.

3.1 Abelian part

Our strategy to solve the integro-di↵erential evolution equation closely follows the discus-

sion from [47]. The RG equation in the Abelian limit is identical to the one of the leading

shape function. To introduce some notation and concepts for the later sections, we now

re-derive its well-known solution [36].

To do so, we first divide the support of the shape function in the variable ! into two

branches,

g17(!, !1; µ) = ✓(!)g>17(!, !1; µ) + ✓(�!)g<17(!,!1; µ) , (3.6)

after which we perform a Mellin transformation that translates the distributions into or-

dinary functions or derivatives in the conjugate variable [61–63]. The Mellin transform is

defined separately for positive values of ! via

g̃>17(⌘, !1; µ) =

Z 1

0

d!

!

⇣µ

!

⌘
⌘

g>17(!, !1; µ) ,

g>17(!, !1; µ) =

Z
c+i1

c�i1

d⌘

2⇡i

⇣µ

!

⌘�⌘

g̃>17(⌘, !1; µ) , (3.7)

and for negative ! by

g̃<17(⌘, !1; µ) =

Z 1

0

d!

!

⇣µ

!

⌘
⌘

g<17(�!, !1; µ) ,

g<17(�!, !1; µ) =

Z
c+i1

c�i1

d⌘

2⇡i

⇣µ

!

⌘�⌘

g̃<17(⌘, !1; µ) . (3.8)

The expressions for the di↵erent types of distributions convoluted with pure powers in !

are collected in Appendix B of [47], and we do not repeat them here. In Mellin space, the

Abelian part of the evolution equation turns into the following coupled system of di↵erential

equations
✓

d

d ln µ
� ⌘

◆
g̃>17(⌘, !1; µ) =

↵sCF

⇡

h
� 2H�1�⌘ � 2@⌘ + 1

i
g̃>17(⌘, !1; µ) , (3.9)

✓
d

d ln µ
� ⌘

◆
g̃<17(⌘, !1; µ) =

↵sCF

⇡

h
� 2H⌘ � 2@⌘ + 1

i
g̃<17(⌘, !1; µ)

+
↵sCF

⇡
2�(�⌘)�(1 + ⌘)g̃>17(⌘, !1; µ) , (3.10)

which hold for �1 < Re(⌘) < 0, and H⌘ is the Harmonic number function. This system

can be diagonalized by choosing g̃>17(⌘, !1; µ) and the linear combination

g̃17(⌘, !1; µ) ⌘
Z +1

�1

d!

�! � i0

✓
µ

�! � i0

◆
⌘

g17(!,!1; µ) = g̃<17(⌘, !1; µ) � g̃>17(⌘, !1; µ)ei⇡⌘ ,

(3.11)
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The Mellin transform reads:

Applying this to the RG equations we get for the non-abelian part: 

3.2 Non-Abelian part

We now move on to the non-Abelian part of the evolution equation, and adopt the same

procedure as discussed before. First, we perform a similar split into a positive-support and

negative-support branch,

g17(!, !1; µ) = ✓(!1)g
>

17(!, !1; µ) + ✓(�!1)g
<

17(!,!1; µ) . (3.19)

For compactness of the notation we use the same symbols as in (3.6). The variable to which

the superscripts > and < refer is always clear from the context: In this subsection 3.2 they

always refer to !1, whereas in the previous subsection 3.1 they refer to !.

Transforming the distributions from (3.5) to Mellin space yields the di↵erential equa-

tions
✓

d

d ln µ
� ⌘1

◆
g̃>17(!, ⌘1; µ) (3.20)

= � ↵sCA

2⇡

n
[H�1�⌘1 + H⌘1 + 2H1�⌘1 + 2@⌘1 ] g̃

>

17(!, ⌘1; µ) � �(�⌘1)�(1 + ⌘1) g̃<17(!, ⌘1; µ)
o

,

and
✓

d

d ln µ
� ⌘1

◆
g̃<17(!, ⌘1; µ) (3.21)

= � ↵sCA

2⇡

n
[H�1�⌘1 + H⌘1 + 2H1�⌘1 + 2@⌘1 ] g̃

<

17(!, ⌘1; µ) � �(�⌘1)�(1 + ⌘1) g̃>17(!, ⌘1; µ)
o

,

which again hold for �1 < Re(⌘1) < 0, where ⌘1 is the Mellin-space variable conjugate to

!1. Since this system is symmetric, it can be diagonalized by using the sum and di↵erence

g̃±17(!, ⌘1; µ) ⌘ g̃>17(!, ⌘1; µ)±g̃<17(!, ⌘1; µ) as independent functions. However, the equations

become somewhat simpler if one uses the following two linear combinations,

g̃(A)
17 (!, ⌘1; µ) = g̃>17(!, ⌘1; µ)e

i⇡⌘1
2 � g̃<17(!, ⌘1; µ)e�

i⇡⌘1
2 ,

g̃(B)
17 (!, ⌘1; µ) = g̃<17(!, ⌘1; µ)e

i⇡⌘1
2 � g̃>17(!, ⌘1; µ)e�

i⇡⌘1
2 . (3.22)

Interestingly, it then turns out that both functions fulfill the same diagonal RG equation,
✓

d

d ln µ
� ⌘1

◆
g̃(A,B)
17 (!, ⌘1; µ) = �↵sCA

⇡


H⌘1 + H1�⌘1 + @⌘1

�
g̃(A,B)
17 (!, ⌘1; µ) , (3.23)

which is solved by

g̃(A,B)
17 (!, ⌘1; µ) = eV1+2�Ea1

✓
µ

µ0

◆
⌘1 �(2 � ⌘1)�(1 + ⌘1 + a1)

�(2 � ⌘1 � a1)�(1 + ⌘1)
g̃(A,B)
17 (!, ⌘1 + a1; µ0) , (3.24)

where now the evolution factors read

V1(µ, µ0) = �
Z

µ

µ0

dµ0

µ0
↵s(µ0)CA

⇡
ln

µ0

µ0
,

a1(µ, µ0) = �
Z

µ

µ0

dµ0

µ0
↵s(µ0)CA

⇡
. (3.25)
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