

Precision Physics, Fundamental Interactions and Structure of Matter

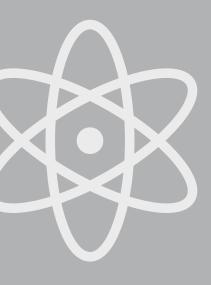
NLO analysis of the $\mathscr{O}_1 - \mathscr{O}_7$ interference in $\overline{B} \to X_s \gamma$ at subleading power

Based on 2411.16634 and work in progress (in collaboration with Philipp Böer and Tobias Hurth)

EPS 2025, Marseille, 11th July 2025

Riccardo Bartocci - JGU Mainz

Mainz Institute for Theoretical Physics



In the inclusive $\overline{B} \to X_s \gamma$ decay, the CP-averaged photon-energy spectrum is given by

$$\frac{d\Gamma}{dE_{\gamma}} = \frac{G_F \alpha |V_{tb} V_{ts}^*|^2}{2\pi^4} \overline{m_b}^2(\mu) E_{\gamma}^3 \bigg[|H_{\gamma}(\mu)|^2 \int d\omega m_b J(m_b(\omega + p_+);\mu) S(\omega;\mu) \\ + \frac{1}{m_b} \sum_{i < j} Re[C_i^*(\mu) C_j(\mu)] F_{ij}(E_{\gamma};\mu) + \dots \bigg]$$

 C_i = Wilson coefficients of the Weak Effective Theory (WE)

[1003.5012: Benzke, Lee, Neubert, Paz]

$$\begin{split} \mathsf{\Gamma} & \mathcal{O}_{1}^{q,\,d_{i}d_{j}} = (\bar{d}_{i}^{\alpha}\gamma_{\mu}P_{L}q^{\beta})(\bar{q}^{\beta}\gamma^{\mu}P_{L}d_{j}^{\alpha}) \\ \mathcal{O}_{2}^{q,\,d_{i}d_{j}} = (\bar{d}_{i}^{\alpha}\gamma_{\mu}P_{L}q^{\alpha})(\bar{q}^{\beta}\gamma^{\mu}P_{L}d_{j}^{\beta}) \\ \mathcal{O}_{7}^{d_{i}d_{j}} = e\,m_{d_{i}}\left(\bar{d}_{j}\sigma^{\mu\nu}P_{R}d_{i}\right)F_{\mu\nu} \\ \mathcal{O}_{8}^{d_{i}d_{j}} = g_{s}m_{d_{i}}\left(\bar{d}_{j}\sigma^{\mu\nu}T^{A}P_{R}d_{i}\right)G_{\mu\nu}^{A} \end{split}$$

In the inclusive $\overline{B} \to X_s \gamma$ decay, the CP-averaged photon-energy spectrum is given by

$$\frac{d\Gamma}{dE_{\gamma}} = \frac{G_F \alpha |V_{tb} V_{ts}^*|^2}{2\pi^4} \overline{m_b}^2(\mu) E_{\gamma}^3 \bigg[|H_{\gamma}(\mu)|^2 \int d\omega m_b J(m_b(\omega + p_+);\mu) S(\omega;\mu) \\ + \frac{1}{m_b} \sum_{i < j} Re[C_i^*(\mu) C_j(\mu)] F_{ij}(E_{\gamma};\mu) + \dots \bigg]$$

 C_i = Wilson coefficients of the Weak Effective Theory (WE)

[1003.5012: Benzke, Lee, Neubert, Paz]

$$\begin{array}{ll} \mathsf{T}) & \mathcal{O}_{1}^{q,\,d_{i}d_{j}} = (\bar{d}_{i}^{\alpha}\gamma_{\mu}P_{L}q^{\beta})(\bar{q}^{\beta}\gamma^{\mu}P_{L}d_{j}^{\alpha}) \\ & \mathcal{O}_{2}^{q,\,d_{i}d_{j}} = (\bar{d}_{i}^{\alpha}\gamma_{\mu}P_{L}q^{\alpha})(\bar{q}^{\beta}\gamma^{\mu}P_{L}d_{j}^{\beta}) \\ & \mathcal{O}_{7}^{d_{i}d_{j}} = e\,m_{d_{i}}\left(\bar{d}_{j}\sigma^{\mu\nu}P_{R}d_{i}\right)F_{\mu\nu} \\ & \mathcal{O}_{8}^{d_{i}d_{j}} = g_{s}m_{d_{i}}\left(\bar{d}_{j}\sigma^{\mu\nu}T^{A}P_{R}d_{i}\right)G_{\mu\nu}^{A} \end{array} \right)$$

In the inclusive $\overline{B} \to X_s \gamma$ decay, the CP-averaged photon-energy spectrum is given by

$$\frac{d\Gamma}{dE_{\gamma}} = \frac{G_F \alpha |V_{tb} V_{ts}^*|^2}{2\pi^4} \overline{m_b}^2(\mu) E_{\gamma}^3 \bigg[|H_{\gamma}(\mu)|^2 \int d\omega m_b J(m_b(\omega + p_+);\mu) S(\omega;\mu) \\ + \frac{1}{m_b} \sum_{i < j} Re[C_i^*(\mu) C_j(\mu)] F_{ij}(E_{\gamma};\mu) + \dots \bigg]$$

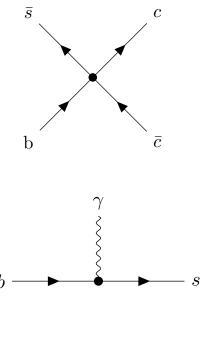
 C_i = Wilson coefficients of the Weak Effective Theory (WE⁻

Current uncertainties of the $\mathcal{O}_1 - \mathcal{O}_7$ interference:

- Estimated contribution $\approx (5.15 \pm 2.55) \%$ (largest uncertainty)
- Large scale ambiguity $\approx 40\%$ (not included in the above estimates)

[1003.5012: Benzke, Lee, Neubert, Paz]

$$\begin{split} \mathsf{\Gamma} & \mathcal{O}_{1}^{q,\,d_{i}d_{j}} = (\bar{d}_{i}^{\alpha}\gamma_{\mu}P_{L}q^{\beta})(\bar{q}^{\beta}\gamma^{\mu}P_{L}d_{j}^{\alpha}) \\ \mathcal{O}_{2}^{q,\,d_{i}d_{j}} = (\bar{d}_{i}^{\alpha}\gamma_{\mu}P_{L}q^{\alpha})(\bar{q}^{\beta}\gamma^{\mu}P_{L}d_{j}^{\beta}) \\ \mathcal{O}_{7}^{d_{i}d_{j}} = e\,m_{d_{i}}\left(\bar{d}_{j}\sigma^{\mu\nu}P_{R}d_{i}\right)F_{\mu\nu} \\ \mathcal{O}_{8}^{d_{i}d_{j}} = g_{s}m_{d_{i}}\left(\bar{d}_{j}\sigma^{\mu\nu}T^{A}P_{R}d_{i}\right)G_{\mu\nu}^{A} \end{split}$$



[2006.00624: Benzke, Hurth]

In the inclusive $\overline{B} \to X_s \gamma$ decay, the CP-averaged photon-energy spectrum is given by

$$\begin{aligned} \frac{d\Gamma}{dE_{\gamma}} &= \frac{G_F \alpha |V_{tb} V_{ts}^*|^2}{2\pi^4} \overline{m_b}^2(\mu) E_{\gamma}^3 \bigg[|H_{\gamma}(\mu)|^2 \int d\omega m_b J(m_b(\omega + p_+);\mu) S(\omega;\mu) \\ &\quad + \frac{1}{m_b} \sum_{i < j} Re[C_i^*(\mu) C_j(\mu)] F_{ij}(E_{\gamma};\mu) + \ldots \bigg] \\ \text{e Weak Effective Theory (WET)} \qquad \mathcal{O}_1^{q,d_id_j} &= (\bar{d}_i^{\alpha} \gamma_{\mu} P_L q^{\beta}) (\bar{q}^{\beta} \gamma^{\mu} P_L d_j^{\alpha}) \\ \mathcal{O}_2^{q,d_id_j} &= (\bar{d}_i^{\alpha} \gamma_{\mu} P_L q^{\alpha}) (\bar{q}^{\beta} \gamma^{\mu} P_L d_j^{\beta}) \\ \mathcal{O}_7^{d_id_j} &= e \, m_{d_i} \left(\bar{d}_j \sigma^{\mu\nu} T^A P_R d_i \right) F_{\mu\nu} \\ \mathcal{O}_8^{d_id_j} &= g_s m_{d_i} \left(\bar{d}_j \sigma^{\mu\nu} T^A P_R d_i \right) G_{\mu\nu}^A \end{aligned}$$

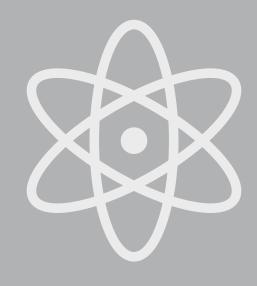
 C_i = Wilson coefficients of the

Current uncertainties of the $\mathcal{O}_1 - \mathcal{O}_7$ interference:

- Estimated contribution $\approx (5.15 \pm 2.55) \%$ (largest unce
- Large scale ambiguity $\approx 40\%$ (not included in the abo

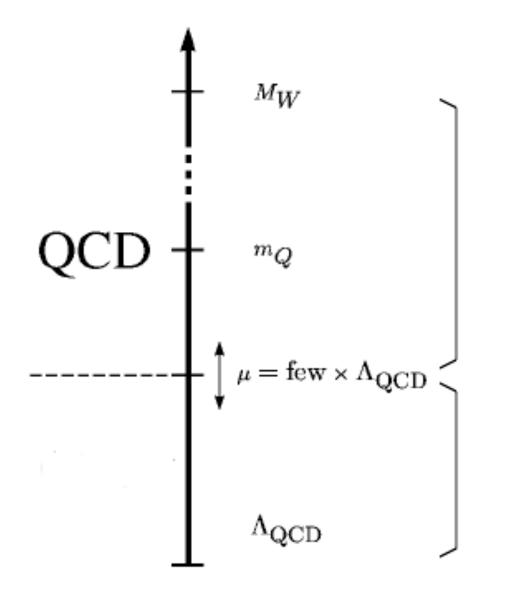
NLO analysis and Renormalisation Group Evolution (RGE) will reduce this ambiguity

[1003.5012: Benzke, Lee, Neubert, Paz]



Factorisation in Soft Collinear Effective Theory

Factorisation



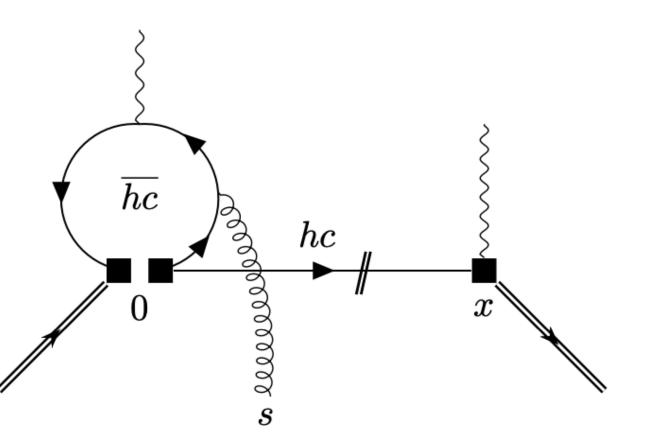
EPS, Marseille, 11/7/2025

Factorisation — Scale separation — Perturbative and non-perturbative separation

short-distance physics perturbative

long-distance physics nonperturbative

From the LO diagrams of the $\mathcal{O}_1 - \mathcal{O}_7$ interference:



we write:

 $d\Gamma(\bar{B} \to X_s \gamma) \propto \text{Disc}$

Factorisation theorem:

 $d\Gamma(\bar{B} \to X_s \gamma) \sim H \cdot J \otimes g_{17} \otimes \bar{J}$

EPS, Marseille, 11/7/2025

[1003.5012: Benzke, Lee, Neubert, Paz]

$$\underline{\operatorname{restr.}}\left[i\int d^4x\,\langle\bar{B}|\mathcal{H}_{\mathrm{eff}}^{\dagger}(x)\,\mathcal{H}_{\mathrm{eff}}(0)|\bar{B}\rangle\right]$$

Factorisation formula at LO:

 $d\Gamma \sim Re \int_{-\infty}^{\Lambda} d\omega \delta(\omega + p_{+}) \int_{-\infty}^{+\infty} d\omega_{1} g_{17}(\omega, \omega_{1}; \mu) \frac{1}{\omega_{1} + \omega_{1}} d\omega_{1} g_{17}(\omega, \omega, \mu) \frac{1}{\omega_{1} + \omega_{1}} d\omega_{1} g_{17}(\omega, \omega, \mu)} d\omega_{1} g_{17}(\omega, \omega, \mu) \frac{1}{\omega_{1} + \omega_{1}} d\omega_{1} g_{17}(\omega, \omega, \mu)} d\omega_{1} g_{17}(\omega, \omega, \mu) \frac{1}{\omega_{1} + \omega_{1}} d\omega_{1} g_{17}(\omega, \omega, \mu)} d\omega_{1} g_{17}(\omega, \omega, \mu) \frac{1}{\omega_{1} + \omega_{1}} d\omega_{1} g_{17}(\omega, \omega, \mu)} d\omega$

[1003.5012: Benzke, Lee, Neubert, Paz]

$d\Gamma(\bar{B} \to X_s \gamma) \sim H \cdot J \otimes g_{17} \otimes \bar{J}$

$$\frac{1}{i\epsilon} \left[1 - F\left(\frac{m_c^2 - i\epsilon}{2E_\gamma \omega_1}\right) \right], \qquad F(x) = 4x \arctan^2 \left(\frac{1}{\sqrt{4x - 1}}\right)$$

Factorisation formula at LO:

$$d\Gamma \sim Re \int_{-\infty}^{\overline{\Lambda}} d\omega \delta(\omega + p_{+}) \int_{-\infty}^{+\infty} d\omega_1 g_{17}(\omega, \omega_1; \mu) \frac{1}{\omega_1 + i\epsilon} \left[1 - F\left(\frac{m_c^2 - i\epsilon}{2E_\gamma \omega_1}\right) \right], \qquad F(x) = 4x \arctan^2\left(\frac{1}{\sqrt{4x - 1}}\right)$$

1. Hard function ($\mu^2 \sim m_b^2$) at LO ~ 1 (perturbative)

EPS, Marseille, 11/7/2025

[1003.5012: Benzke, Lee, Neubert, Paz]

$d\Gamma(\bar{B} \to X_s \gamma) \sim H \cdot J \otimes g_{17} \otimes \bar{J}$

Factorisation formula at LO:

$$d\Gamma(\bar{B} \to X_s \gamma)$$

$$d\Gamma \sim Re \int_{-\infty}^{\overline{\Lambda}} d\omega \delta(\omega + p_{+}) \int_{-\infty}^{+\infty} d\omega_1 g_{17}(\omega, \omega_1; \mu) \frac{1}{\omega_1 + i\epsilon} \left[1 - F\left(\frac{m_c^2 - i\epsilon}{2E_\gamma \omega_1}\right) \right], \qquad F(x) = 4x \arctan^2\left(\frac{1}{\sqrt{4x - 1}}\right)$$

1. Hard function ($\mu^2 \sim m_b^2$) at LO ~ 1 (perturbative) 2. Jet function ($\mu^2 \sim m_b \Lambda_{QCD}$) (perturbative)

[1003.5012: Benzke, Lee, Neubert, Paz]

) $\sim H \cdot J \otimes g_{17} \otimes J$

Factorisation formula at LO:

$$d\Gamma(\bar{B} \to X_s \gamma)$$

$$d\Gamma \sim Re \int_{-\infty}^{\overline{\Lambda}} d\omega \delta(\omega + p_{+}) \int_{-\infty}^{+\infty} d\omega_1 g_{17}(\omega, \omega_1; \mu) \frac{1}{\omega_1 + i\epsilon} \left[1 - F\left(\frac{m_c^2 - i\epsilon}{2E_\gamma \omega_1}\right) \right], \qquad F(x) = 4x \arctan^2\left(\frac{1}{\sqrt{4x - 1}}\right)$$

- 1. Hard function ($\mu^2 \sim m_h^2$) at LO ~ 1 (perturbative)
- 2. Jet function ($\mu^2 \sim m_b \Lambda_{QCD}$) (perturbative)
- 3. Subleading shape function ($\mu^2 \sim \Lambda_{QCD}^2$) (non-perturbative)

[1003.5012: Benzke, Lee, Neubert, Paz]

) $\sim H \cdot J \otimes g_{17} \otimes J$

Factorisation formula at LO:

$$d\Gamma(\bar{B} \to X_s \gamma)$$

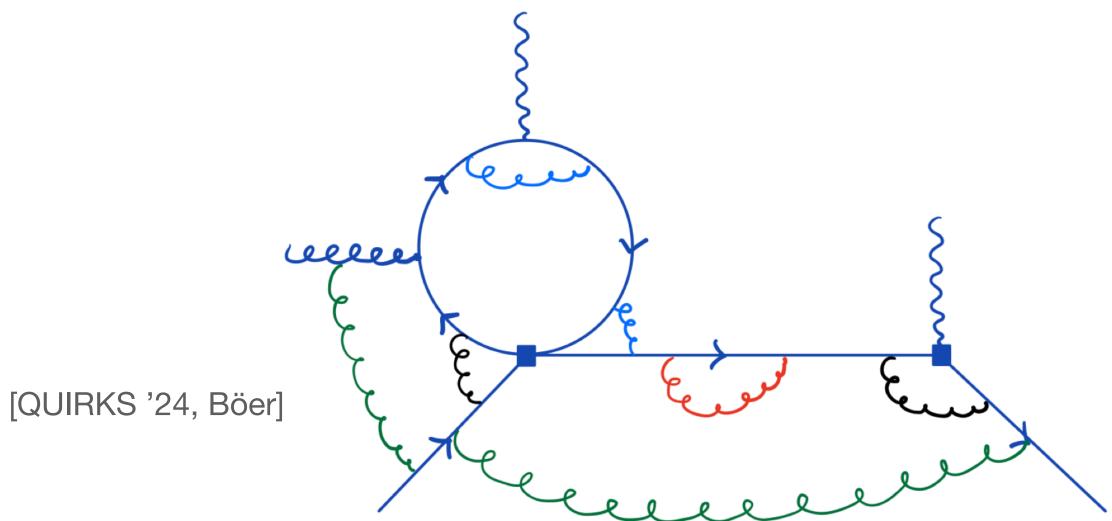
$$d\Gamma \sim Re \int_{-\infty}^{\overline{\Lambda}} d\omega \delta(\omega + p_{+}) \int_{-\infty}^{+\infty} d\omega_1 g_{17}(\omega, \omega_1; \mu) \frac{1}{\omega_1 + i\epsilon} \left[1 - F\left(\frac{m_c^2 - i\epsilon}{2E_{\gamma}\omega_1}\right) \right], \qquad F(x) = 4x \arctan^2\left(\frac{1}{\sqrt{4x - 1}}\right)$$

- 1. Hard function ($\mu^2 \sim m_h^2$) at LO ~ 1 (perturbative)
- 2. Jet function ($\mu^2 \sim m_b \Lambda_{QCD}$) (perturbative)
- 3. Subleading shape function ($\mu^2 \sim \Lambda_{QCD}^2$) (non-perturbative)
- 4. "Penguin"-jet function ($\mu^2 \sim m_b \Lambda_{QCD}$) (perturbative)

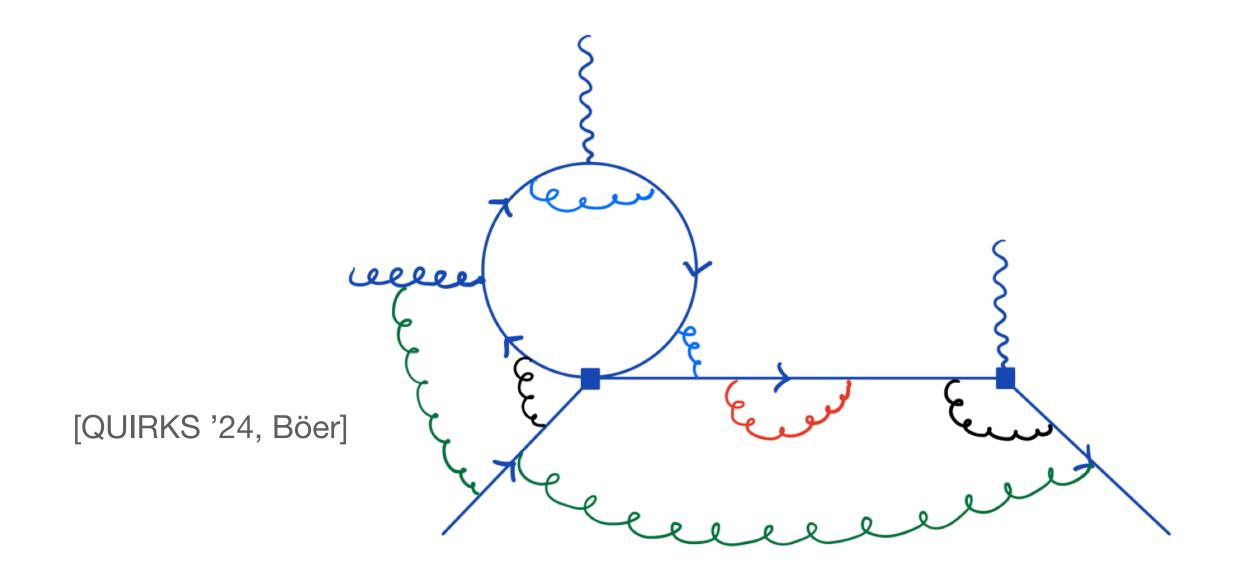
[1003.5012: Benzke, Lee, Neubert, Paz]

) ~ $H \cdot J \otimes g_{17} \otimes J$

7



EPS, Marseille, 11/7/2025

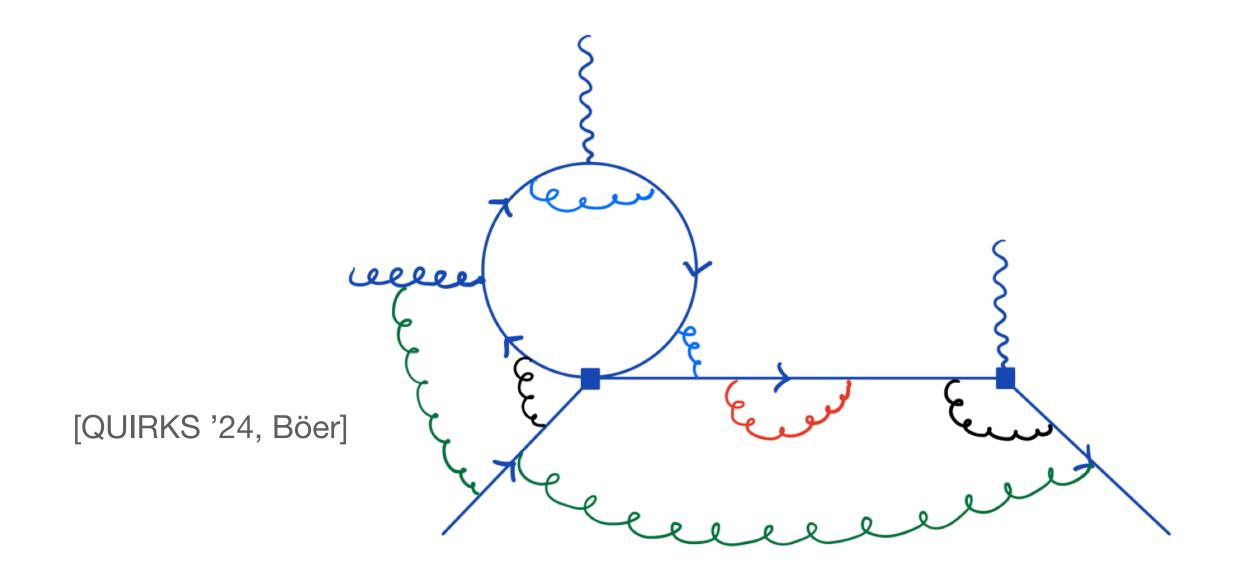


 $d\Gamma(\bar{B} \to X_s \gamma) \sim H \otimes J \otimes g_{17} \otimes \bar{J}$

In SCET we can compute the different contributions to the factorisation theorem individually:

• Hard function is known at $\mathcal{O}(\alpha_s)$

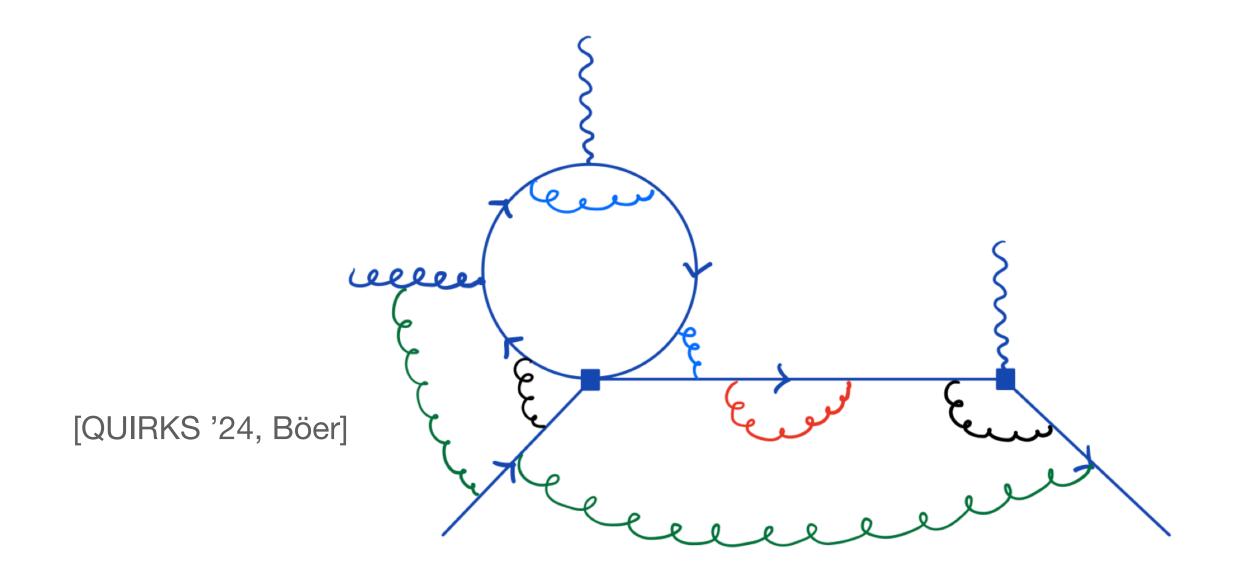
EPS, Marseille, 11/7/2025



$d\Gamma(\bar{B} \to X_s \gamma) \sim H \otimes J \otimes g_{17} \otimes \bar{J}$

In SCET we can compute the different contributions to the factorisation theorem individually:

- Hard function is known at $\mathcal{O}(\alpha_s)$
- Jet function is known at $\mathcal{O}(\alpha_s)$ [0603140: Becher, Neubert]

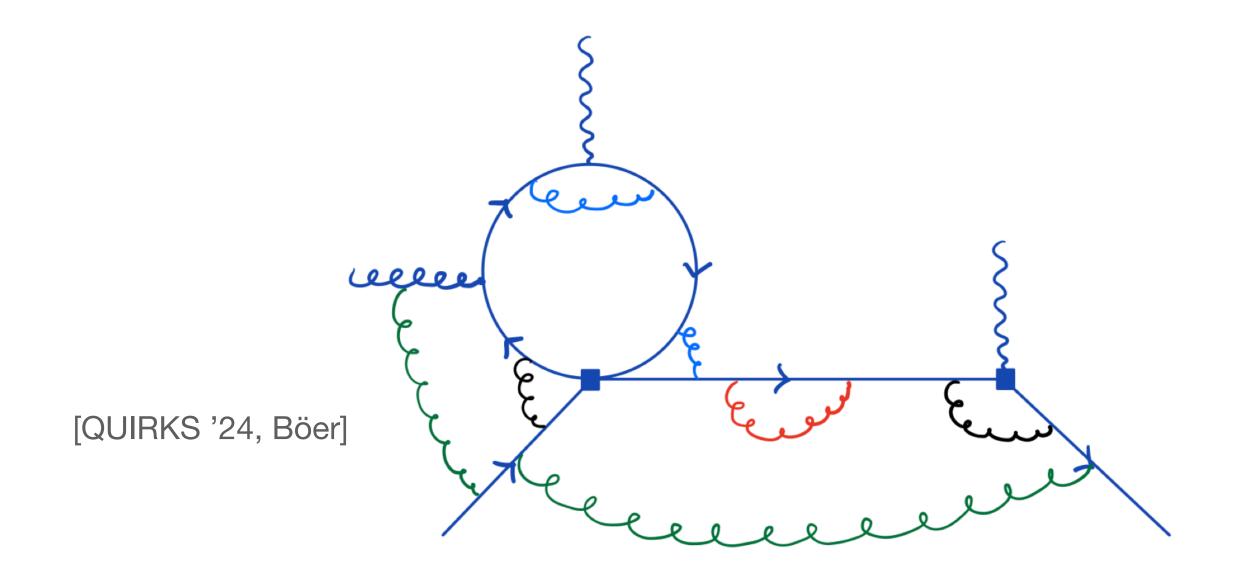


$d\Gamma(\bar{B} \to X_s \gamma) \sim H \otimes J \otimes g_{17} \otimes \bar{J}$

In SCET we can compute the different contributions to the factorisation theorem individually:

- Hard function is known at $\mathcal{O}(\alpha_s)$
- Jet function is known at $\mathcal{O}(\alpha_s)$ [0603140: Becher, Neubert]
- Renormalisation group evolution (RGE) of g_{17}

[2411.16634: RB, Böer, Hurth]



$d\Gamma(\bar{B} \to X_s \gamma) \sim H \otimes J \otimes g_{17} \otimes \bar{J}$

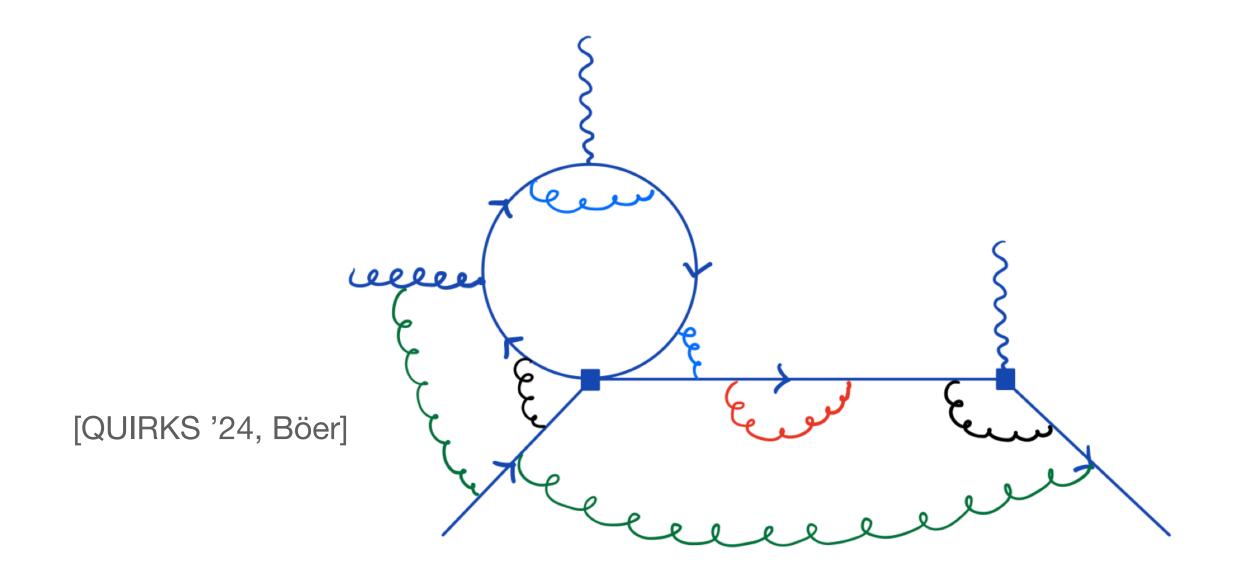
In SCET we can compute the different contributions to the factorisation theorem individually:

- Hard function is known at $\mathcal{O}(\alpha_s)$
- Jet function is known at $\mathcal{O}(\alpha_s)$ [0603140: Becher, Neubert]
- Renormalisation group evolution (RGE) of g_{17}
- $\mathcal{O}(\alpha_s)$ corrections (two loops) to "penguin"-jet function

EPS, Marseille, 11/7/2025

[2411.16634: RB, Böer, Hurth]

[to appear: RB, Böer, Hurth]



$d\Gamma(\bar{B} \to X_s \gamma) \sim H \otimes J \otimes g_{17} \otimes \bar{J}$

In SCET we can compute the different contributions to the factorisation theorem individually:

- Hard function is known at $\mathcal{O}(\alpha_s)$
- Jet function is known at $\mathcal{O}(\alpha_s)$ [0603140: Becher, Neubert]
- Renormalisation group evolution (RGE) of g_{17}
- $\mathcal{O}(\alpha_s)$ corrections (two loops) to "penguin"-jet function

EPS, Marseille, 11/7/2025

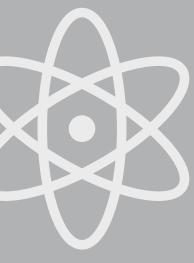
DISCLAIMER

 g_{17} must be interpreted as a distribution on the space of jet functions

[2411.16634: RB, Böer, Hurth]

[to appear: RB, Böer, Hurth]

Renormalisation of the shape function g_{17}



The subleading shape function is given by the forward matrix element between two B-meson states

$$g_{17}(\omega,\omega_1;\mu) = \frac{1}{2M_B} \int \frac{dr}{2\pi} e^{-i\omega_1 r} \int \frac{dt}{2\pi} e^{-i\omega t} \langle \bar{B}_v | \mathcal{O}_{17}(t,r) | \bar{B}_v \rangle$$

where the operator is defined as

$$\mathcal{O}_{17}(t,r) \to (\bar{h}_v S_n)_-(tn)\,\bar{m}(S_n^{\dagger}S_{\bar{n}})$$

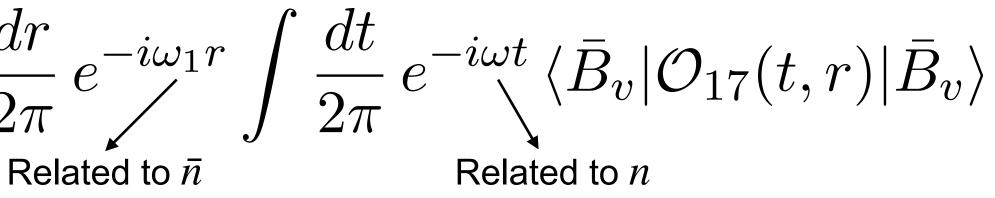
 $(1)_{+}(0) i\gamma_{\alpha}^{\perp} \bar{n}_{\beta} \left(S_{\bar{n}}^{\dagger} g_{s} G_{s}^{\alpha\beta} S_{\bar{n}}\right)_{+} (r\bar{n}) \left(S_{\bar{n}}^{\dagger} h_{v}\right)_{+} (0)$

The subleading shape function is given by the forward matrix element between two B-meson states

$$g_{17}(\omega,\omega_1;\mu) = \frac{1}{2M_B} \int \frac{dr}{2\pi}$$

where the operator is defined as

$$\mathcal{O}_{17}(t,r) \to (\bar{h}_v S_n)_-(tn)\,\bar{m}(S_n^{\dagger}S_{\bar{n}})$$



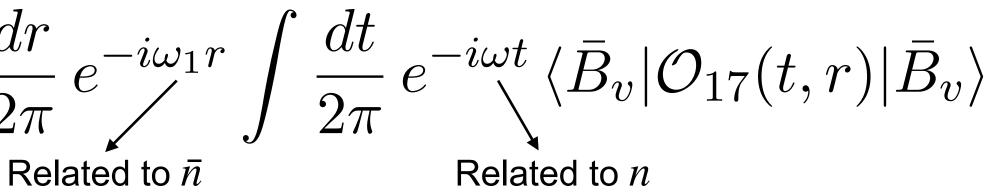
 $(1)_{+}(0) i\gamma_{\alpha}^{\perp} \bar{n}_{\beta} (S_{\bar{n}}^{\dagger} g_{s} G_{s}^{\alpha\beta} S_{\bar{n}})_{+} (r\bar{n}) (S_{\bar{n}}^{\dagger} h_{v})_{+} (0)$

The subleading shape function is given by the forward matrix element between two B-meson states

$$g_{17}(\omega,\omega_1;\mu) = \frac{1}{2M_B} \int \frac{dr}{2\pi}$$

where the operator is defined as

$$\mathcal{O}_{17}(t,r) \to (\bar{h}_v S_n)_-(tn) \, \bar{n}(S_n^{\dagger} S_{\bar{n}})$$



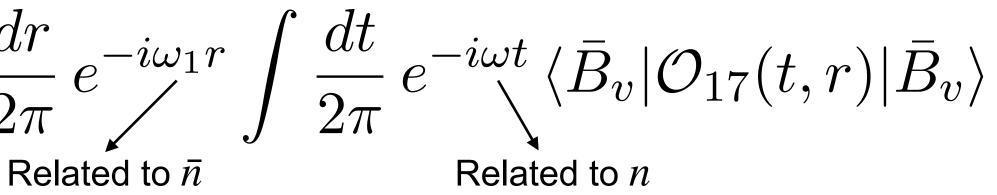
 $(0) i \gamma_{\alpha}^{\perp} \bar{n}_{\beta} \left(S_{\bar{n}}^{\dagger} g_{s} G_{s}^{\alpha\beta} S_{\bar{n}} \right)_{+} (r \bar{n}) \left(S_{\bar{n}}^{\dagger} h_{v} \right)_{+} (0)$

The subleading shape function is given by the forward matrix element between two B-meson states

$$g_{17}(\omega,\omega_1;\mu) = \frac{1}{2M_B} \int \frac{dr}{2\pi}$$

where the operator is defined as

$$\mathcal{O}_{17}(t,r) \to (\bar{h}_v S_n)_{-}(tn) \, \bar{n}(S_n^{\dagger} S_{\bar{n}})$$



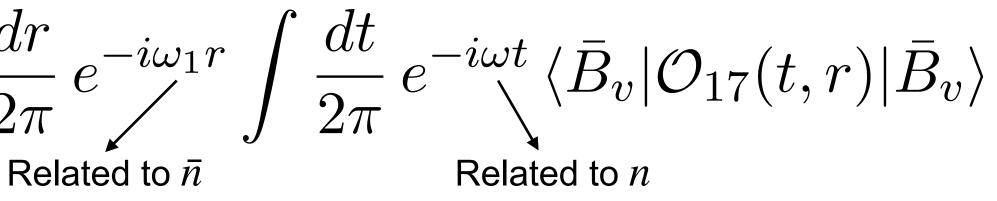
 $(0) i \gamma_{\alpha}^{\perp} \bar{n}_{\beta} \left(S_{\bar{n}}^{\dagger} g_{s} G_{s}^{\alpha\beta} S_{\bar{n}} \right)_{+} (r \bar{n}) \left(S_{\bar{n}}^{\dagger} h_{v} \right)_{+} (0)$

The subleading shape function is given by the forward matrix element between two B-meson states

$$g_{17}(\omega,\omega_1;\mu) = \frac{1}{2M_B} \int \frac{dr}{2\pi}$$

where the operator is defined as

$$\mathcal{O}_{17}(t,r) \to (\bar{h}_v S_n)_-(tn) \, \bar{n}(S_n^{\dagger} S_{\bar{n}})$$



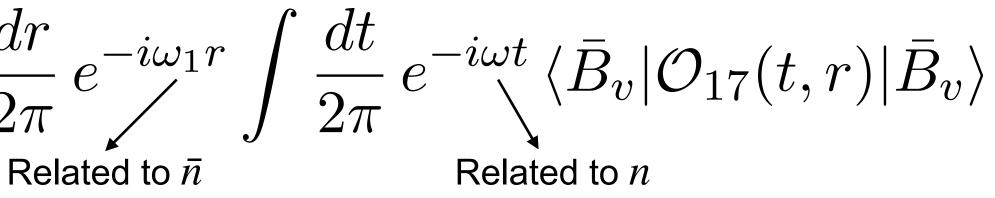
 $(1)_{+}(0) i\gamma^{\perp}_{\alpha} \bar{n}_{\beta} \left(S^{\dagger}_{\bar{n}} g_s G^{\alpha\beta}_s S_{\bar{n}}\right)_{+} (r\bar{n}) \left(S^{\dagger}_{\bar{n}} h_v\right)_{+} (0)$

The subleading shape function is given by the forward matrix element between two B-meson states

$$g_{17}(\omega,\omega_1;\mu) = \frac{1}{2M_B} \int \frac{dr}{2\pi}$$

where the operator is defined as

$$\mathcal{O}_{17}(t,r) \to (\bar{h}_v S_n)_-(tn)\,\bar{m}(S_n^{\dagger}S_{\bar{n}})$$



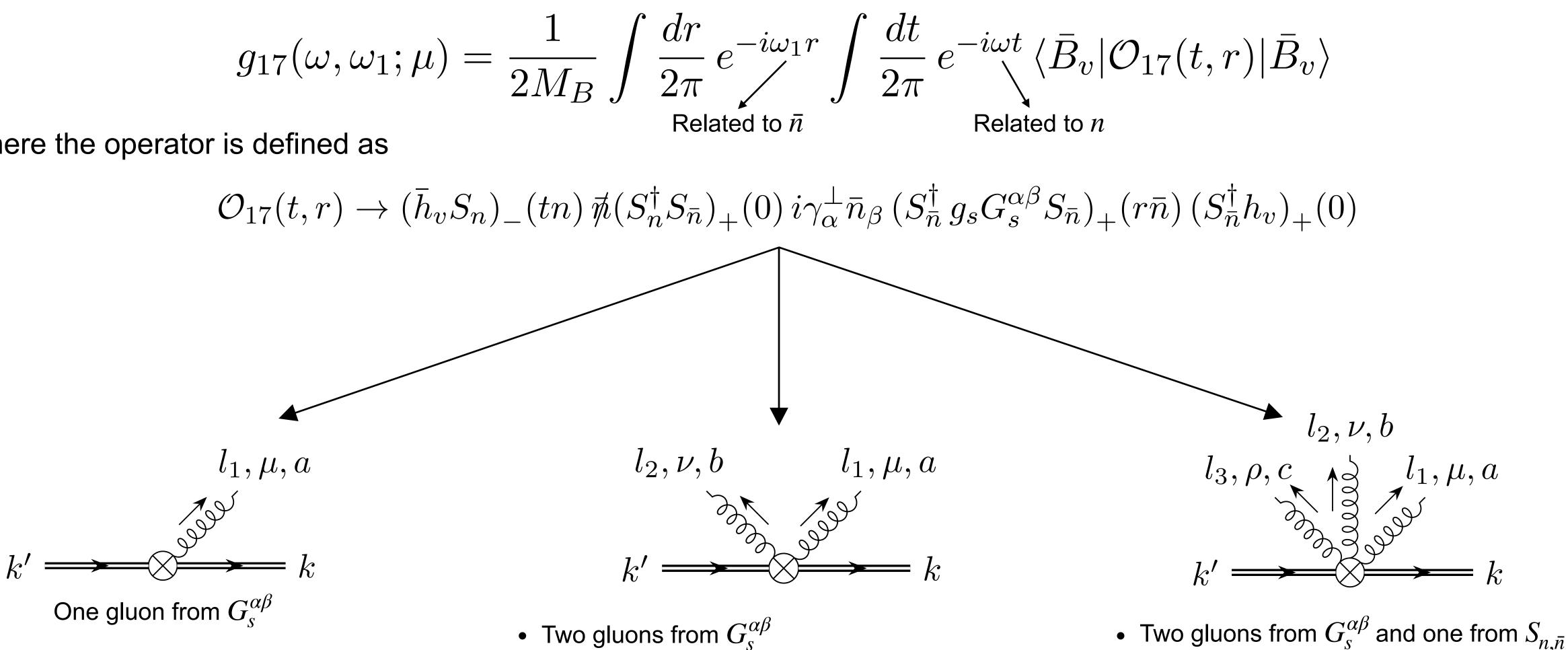
 $(1)_{+}(0) i\gamma_{\alpha}^{\perp} \bar{n}_{\beta} (S_{\bar{n}}^{\dagger} g_{s} G_{s}^{\alpha\beta} S_{\bar{n}})_{+} (r\bar{n}) (S_{\bar{n}}^{\dagger} h_{v})_{+} (0)$

The subleading shape function is given by the forward matrix element between two B-meson states

$$g_{17}(\omega,\omega_1;\mu) = \frac{1}{2M_B} \int \frac{dr}{2\pi}$$

where the operator is defined as

$$\mathcal{O}_{17}(t,r) \to (\bar{h}_v S_n)_-(tn)\, \bar{m}(S_n^\dagger S_{\bar{n}})$$



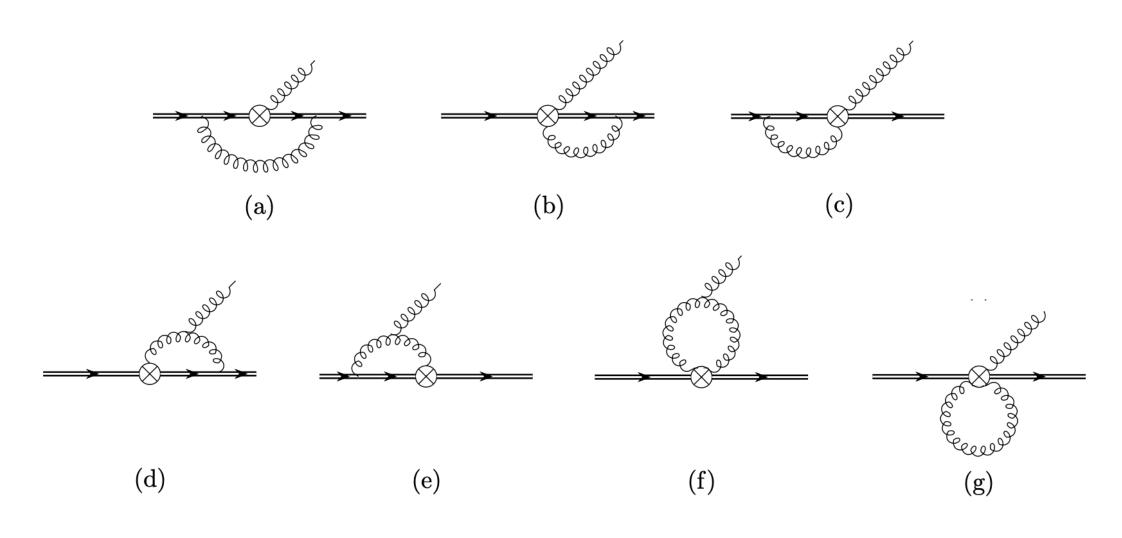
• One gluon from $G_s^{\alpha\beta}$ and one from $S_{n,\bar{n}}$

EPS, Marseille, 11/7/2025

• One gluon from $G_s^{\alpha\beta}$ and two from $S_{n,\bar{n}}$

Renormalisation of the subleading shape function

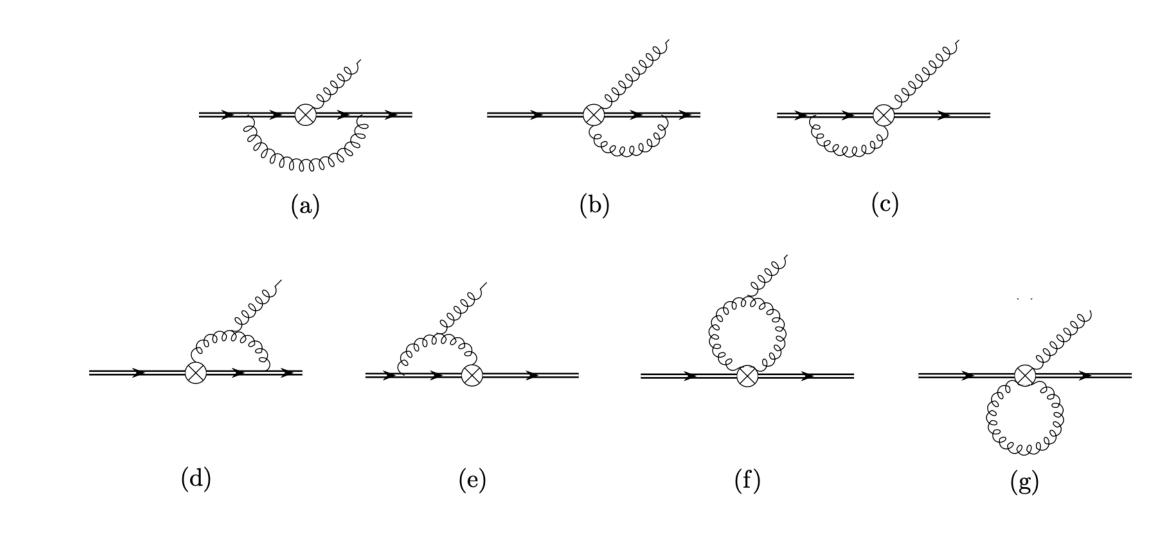
We compute QCD corrections, employing the previous Feynman rules, calculating the following diagrams:



[2411.16634: RB, Böer, Hurth]

Renormalisation of the subleading shape function

We compute QCD corrections, employing the previous Feynman rules, calculating the following diagrams:



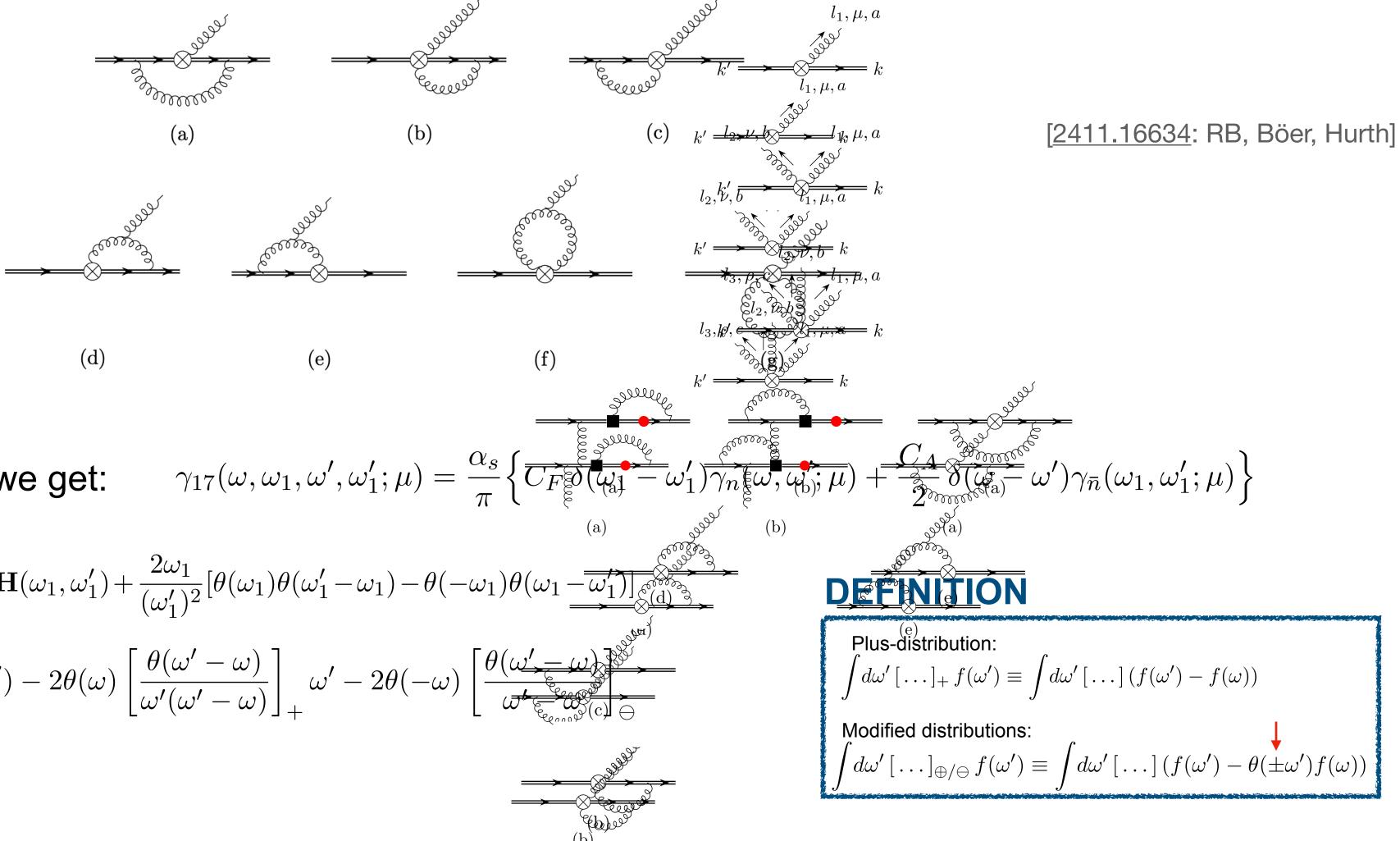
 $\gamma_{17}(\omega,\omega_1,\omega',\omega_1';\mu) = \frac{\alpha_s}{\pi} \left\{ C_F \,\delta(\omega_1 - \omega_1')\gamma_n(\omega,\omega';\mu) + \frac{C_A}{2} \,\delta(\omega - \omega')\gamma_{\bar{n}}(\omega_1,\omega_1';\mu) \right\}$ For the anomalous dimension we get:

EPS, Marseille, 11/7/2025

[2411.16634: RB, Böer, Hurth]

Renormalisation of the subleading shape function

We compute QCD corrections, employing the previous Feynman rules, calculating the following diagrams:



For the anomalous dimension we get:

$$\gamma_{\bar{n}}(\omega_1,\omega_1';\mu) = \ln\frac{\mu^2}{\omega_1^2}\,\delta(\omega_1-\omega_1') - \operatorname{Re}\mathbf{H}(\omega_1,\omega_1') + \frac{2\omega_1}{(\omega_1')^2}[\theta(\omega_1)\theta(\omega_1'-\omega_1) - \gamma_n(\omega,\omega';\mu)] = \left(\ln\frac{\mu^2}{\omega^2} - 1\right)\delta(\omega-\omega') - 2\theta(\omega)\left[\frac{\theta(\omega'-\omega)}{\omega'(\omega'-\omega)}\right]_+ \omega' - 2\theta(-\omega)$$

EPS, Marseille, 11/7/2025

RG evolution of the shape function

Given the previous anomalous dimension, the RG equation can be solved using the Mellin transform method.

$$g_{17}(\omega,\omega_{1};\mu) = \int_{\omega}^{\bar{\Lambda}} \frac{d\omega'}{\omega'-\omega} U_{n}^{(17)}(\omega,\omega';\mu,\mu_{0}) \int_{-\infty}^{\infty} \frac{d\omega_{1}'}{|\omega_{1}'|} U_{\bar{n}}^{(17)}(\omega_{1},\omega_{1}';\mu,\mu_{0}) g_{17}(\omega',\omega_{1}';\mu_{0})$$

"Factorisation" of two light-cones

EPS, Marseille, 11/7/2025

RG evolution of the shape function

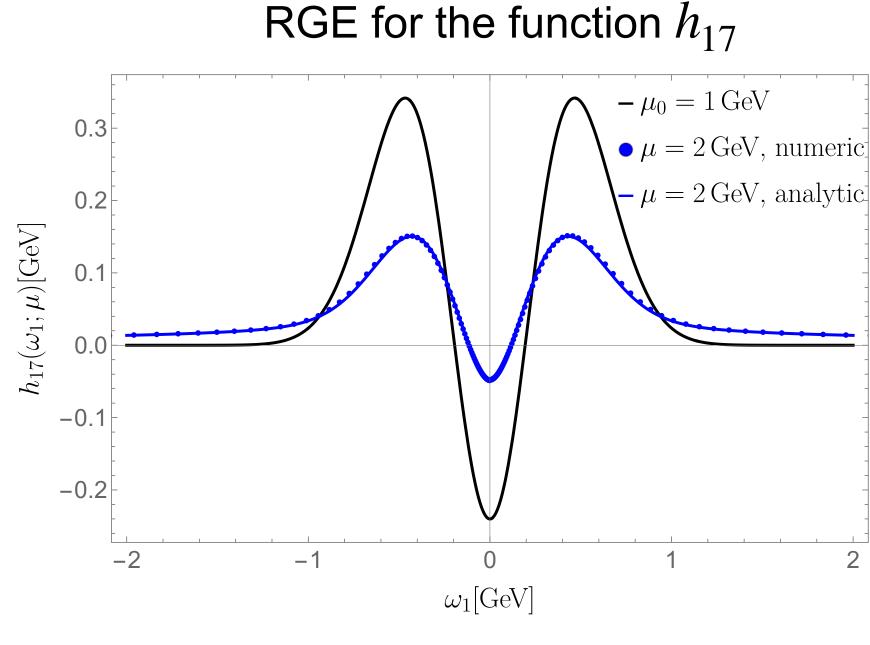
Given the previous anomalous dimension, the RG equation can be solved using the Mellin transform method.

$$g_{17}(\omega,\omega_{1};\mu) = \int_{\omega}^{\bar{\Lambda}} \frac{d\omega'}{\omega'-\omega} U_{n}^{(17)}(\omega,\omega';\mu,\mu_{0}) \int_{-\infty}^{\infty} \frac{d\omega_{1}'}{|\omega_{1}'|} U_{\bar{n}}^{(17)}(\omega_{1},\omega_{1}';\mu,\mu_{0}) g_{17}(\omega',\omega_{1}';\mu_{0})$$

"Factorisation" of two light-cones

All order properties of g_{17} are preserved in the RGE:

- g_{17} is real (from PT invariance)
- . The function $h_{17}=\int d\omega\,g_{17}$ is even (from HQET trace formalism)

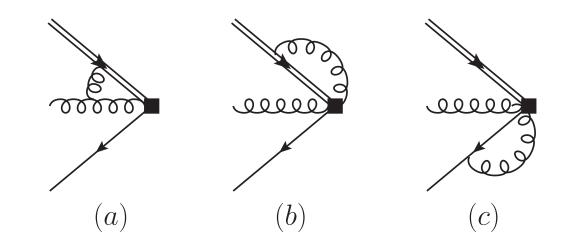


[2411.16634: RB, Böer, Hurth]

The exclusive counterpart

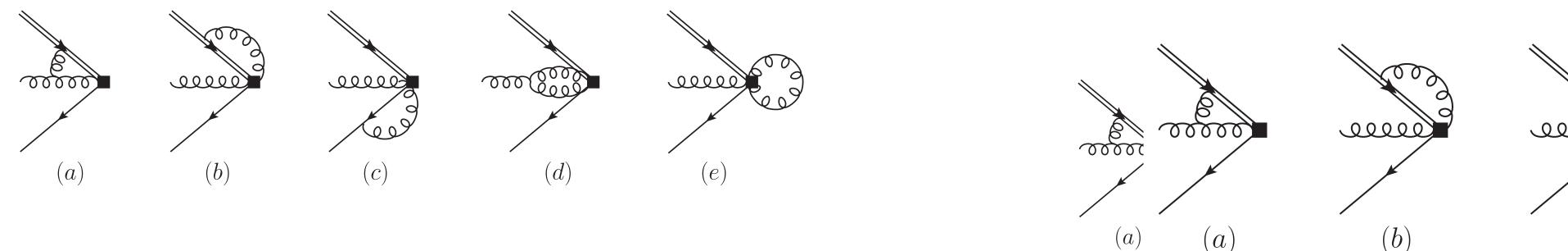
In exclusive decays, such as $\bar{B}_{d,s} \rightarrow \gamma \gamma$, analogous soft functions appear

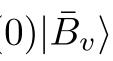
 $2 \mathcal{F}_{B}(\mu) m_{B} \int_{-\infty}^{+\infty} d\omega_{1} \int_{-\infty}^{+\infty} d\omega_{2} \exp\left[-i(\omega_{1}\tau_{1}+\omega_{2}\tau_{2})\right] \Phi_{G}(\omega_{1},\omega_{2},\mu) = \langle 0|(\bar{q}_{s}S_{n})(\tau_{1}n) \left(S_{\bar{n}}^{\dagger}S_{\bar{n}}\right)(0) \left(S_{\bar{n}}^{\dagger}g_{s}G_{\mu\nu}S_{\bar{n}}\right)(\tau_{2}\bar{n}) \bar{n}^{\nu} \not n \gamma_{\perp}^{\mu} \gamma_{5} \left(S_{\bar{n}}^{\dagger}h_{v}\right)(0)|\bar{B}_{v}\rangle$



EPS, Marseille, 11/7/2025

[2312.15439: Huang et al.]



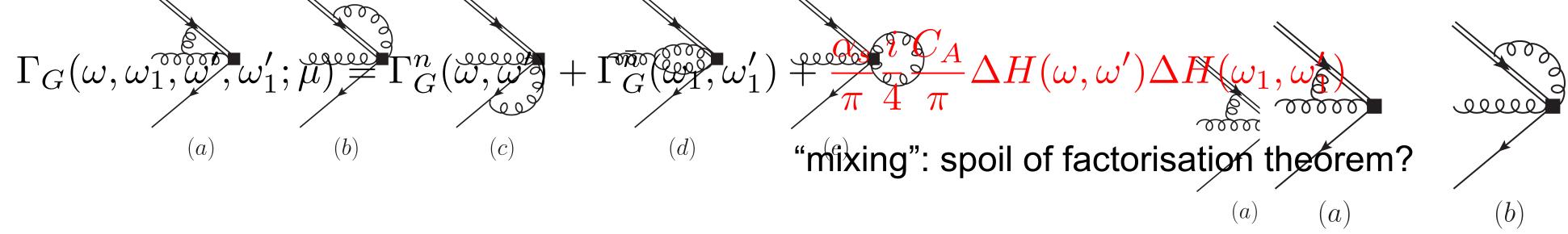


The exclusive counterpart

In exclusive decays, such as $\bar{B}_{d,s} \rightarrow \gamma \gamma$, analogous soft functions appear

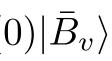
$$2\mathcal{F}_B(\mu)m_B \int_{-\infty}^{+\infty} d\omega_1 \int_{-\infty}^{+\infty} d\omega_2 \exp\left[-i(\omega_1\tau_1 + \omega_2\tau_2)\right] \Phi_G(\omega_1, \omega_2, \omega_2)$$

With few modifications to the previous computation, we get the anomalous dimension



 $_{2}, \mu) = \langle 0 | (\bar{q}_{s}S_{n})(\tau_{1}n) (S_{n}^{\dagger}S_{\bar{n}})(0) (S_{\bar{n}}^{\dagger}g_{s}G_{\mu\nu}S_{\bar{n}})(\tau_{2}\bar{n}) \bar{n}^{\nu} \not n \gamma_{\perp}^{\mu} \gamma_{5} (S_{\bar{n}}^{\dagger}h_{v})(0) | \bar{B}_{v} \rangle$

[2312.15439: Huang et al.]

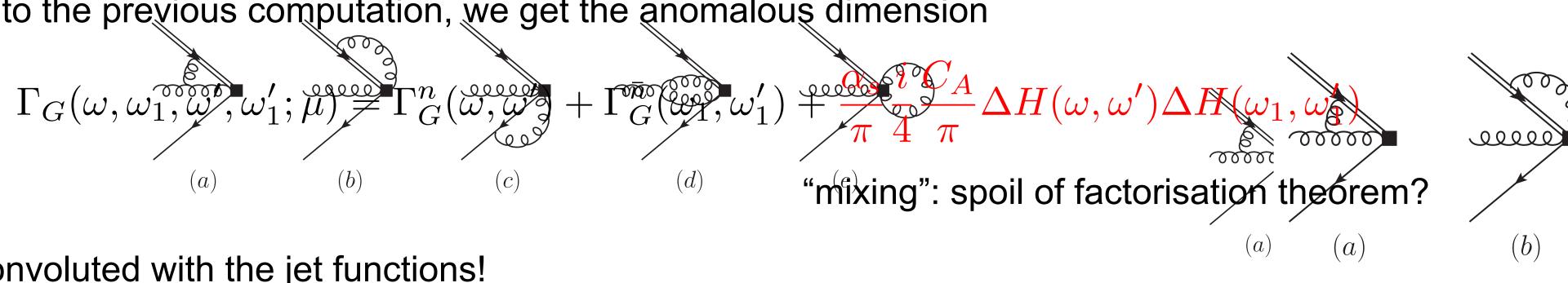


The exclusive counterpart

In exclusive decays, such as $B_{d,s} \rightarrow \gamma \gamma$, analogous soft functions appear

$$2 \mathcal{F}_{B}(\mu) m_{B} \int_{-\infty}^{+\infty} d\omega_{1} \int_{-\infty}^{+\infty} d\omega_{2} \exp\left[-i(\omega_{1}\tau_{1}+\omega_{2}\tau_{2})\right] \Phi_{G}(\omega_{1},\omega_{2},\mu) = \langle 0|(\bar{q}_{s}S_{n})(\tau_{1}n) \left(S_{\bar{n}}^{\dagger}S_{\bar{n}}\right)(0) \left(S_{\bar{n}}^{\dagger}g_{s}G_{\mu\nu}S_{\bar{n}}\right)(\tau_{2}\bar{n}) \bar{n}^{\nu} \not_{n}\gamma_{\perp}^{\mu}\gamma_{5} \left(S_{\bar{n}}^{\dagger}h_{v}\right)(\tau_{1}n) \left(S_{\bar{n}}^{\dagger}S_{\bar{n}}\right)(0) \left(S_{\bar{n}}^{\dagger}g_{s}G_{\mu\nu}S_{\bar{n}}\right)(\tau_{1}n) \left(S_{\bar{n}}^{\dagger}g_$$

With few modifications to the previous computation, we get the anomalous dimension

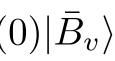


However, it must be convoluted with the jet functions!

$$\int_{-\infty}^{+\infty} \frac{d\omega}{\omega - i0} \int_{-\infty}^{+\infty} \frac{d\omega_1}{\omega_1 + i0} \Delta H(\omega, \omega') \Delta H(\omega_1, \omega'_1) = 0$$

Due to the location of the poles, this "mixing" term vanishes saving factorisation and making the evolution factorised again.

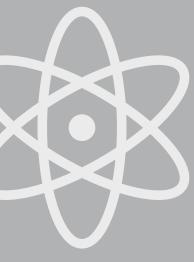
[2411.16634: RB, Böer, Hurth]



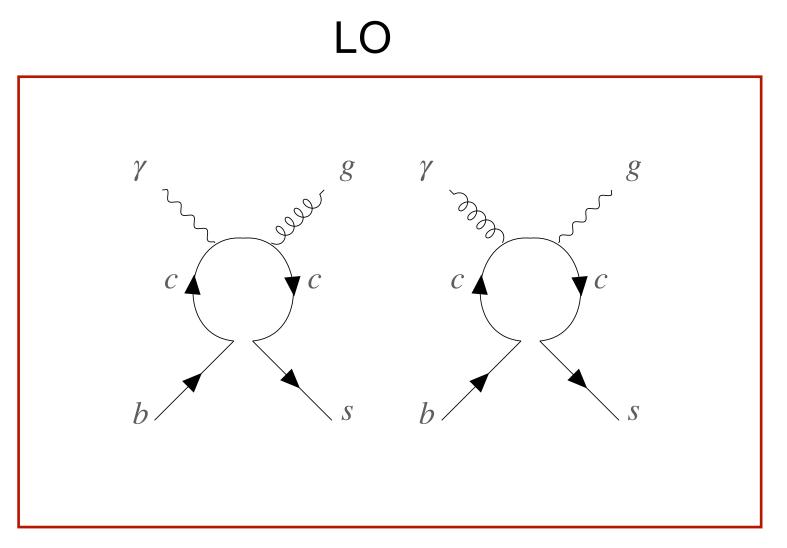
عف

^{[2312.15439:} Huang et al.]

Two-loop "penguin"-jet function and pole cancellation



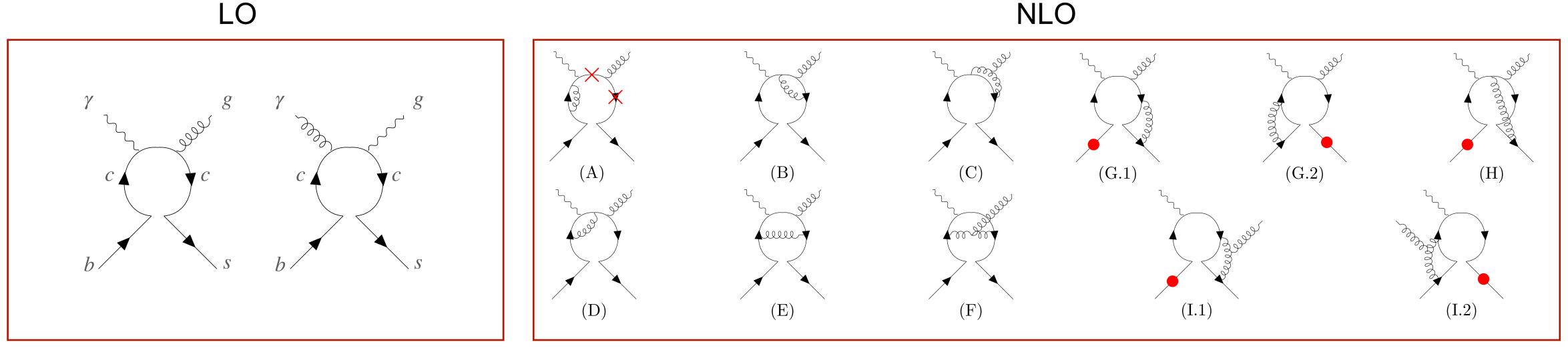
The "penguin"-jet function is the anti-hard collinear region of $b \rightarrow s\gamma g$.



LO contains charm-loop, therefore NLO is a two-loop amplitude

[to appear: RB, Böer, Hurth]

The "penguin"-jet function is the anti-hard collinear region of $b \rightarrow s\gamma g$.

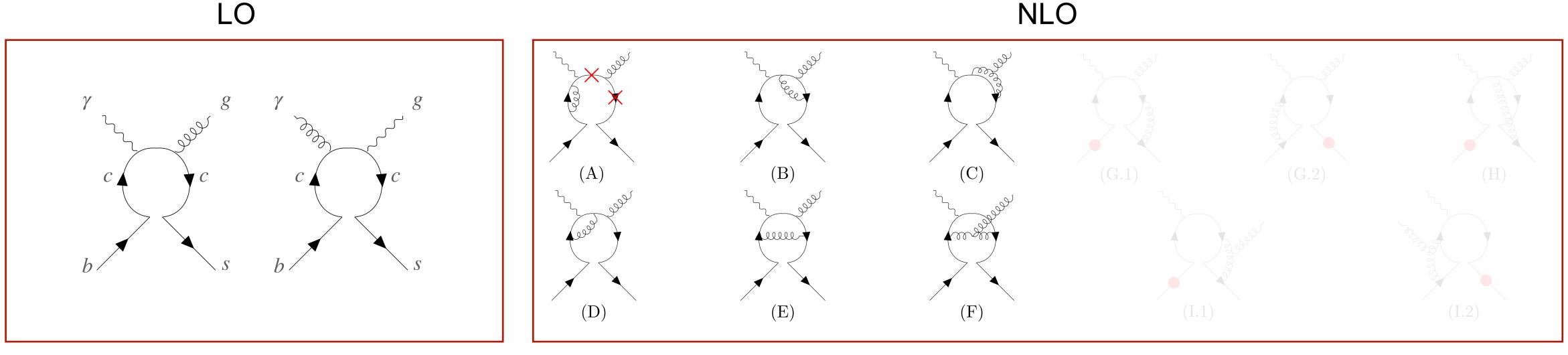


LO contains charm-loop, therefore NLO is a two-loop amplitude

EPS, Marseille, 11/7/2025

[to appear: RB, Böer, Hurth]

The "penguin"-jet function is the anti-hard collinear region of $b \rightarrow s\gamma g$.

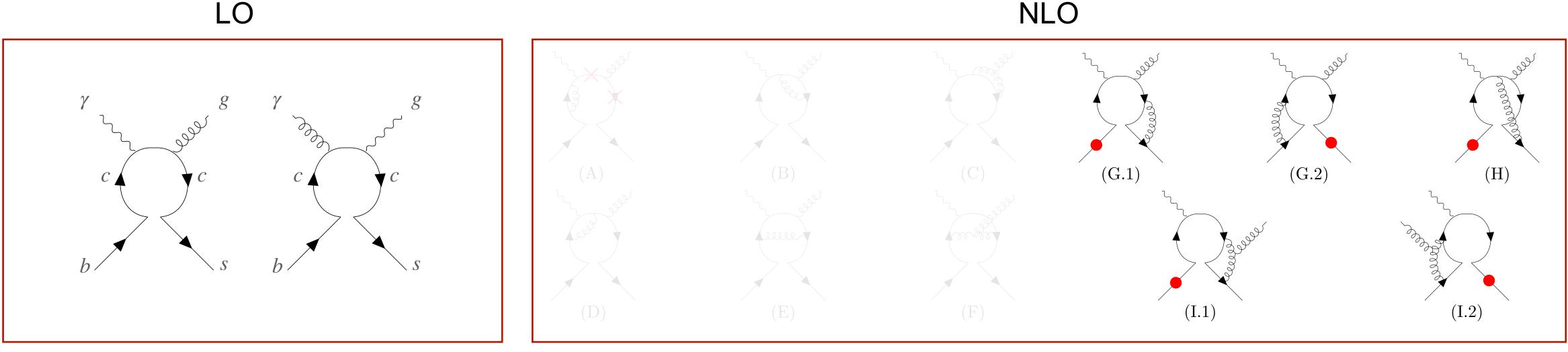


LO contains charm-loop, therefore NLO is a two-loop amplitude

[to appear: RB, Böer, Hurth]

• Diagrams A-F: only one region

The "penguin"-jet function is the anti-hard collinear region of $b \rightarrow s\gamma g$.



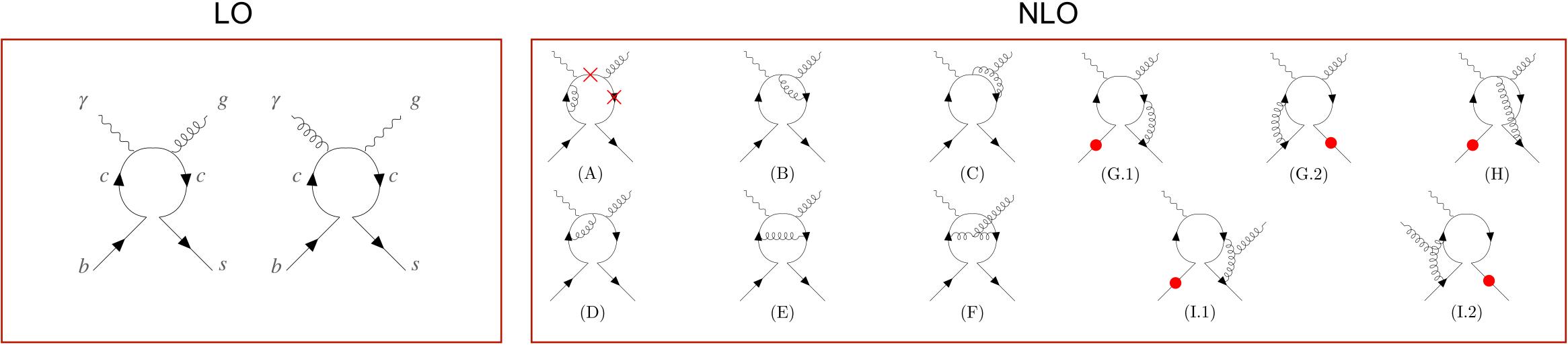
LO contains charm-loop, therefore NLO is a two-loop amplitude

[to appear: RB, Böer, Hurth]

NLO

• Diagrams A-F: only one region

The "penguin"-jet function is the anti-hard collinear region of $b \rightarrow s\gamma g$.



LO contains charm-loop, therefore NLO is a two-loop amplitude

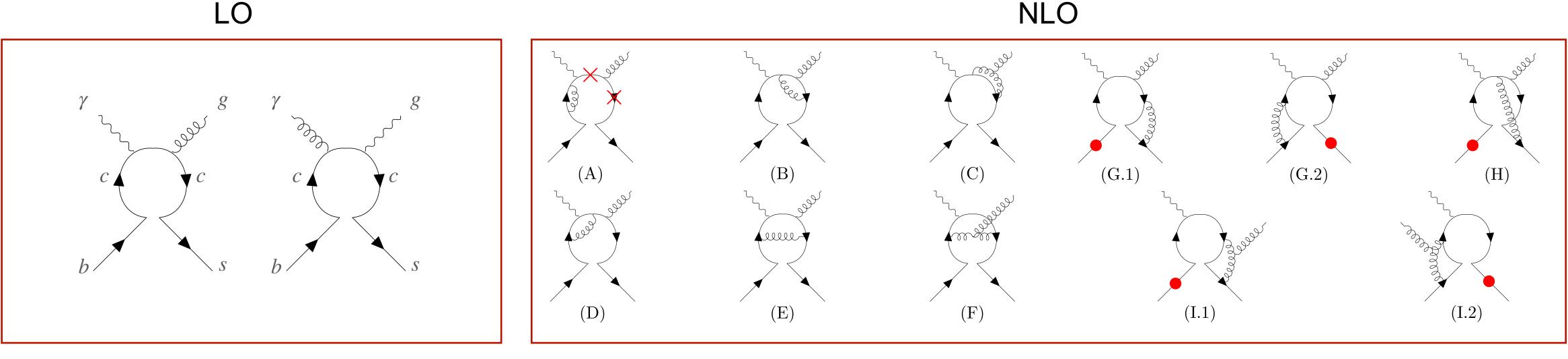
Status:

• All diagrams have been computed assuming a massless quark in the loop (up-quark)

[to appear: RB, Böer, Hurth]

• Diagrams A-F: only one region

The "penguin"-jet function is the anti-hard collinear region of $b \rightarrow s\gamma g$.



LO contains charm-loop, therefore NLO is a two-loop amplitude

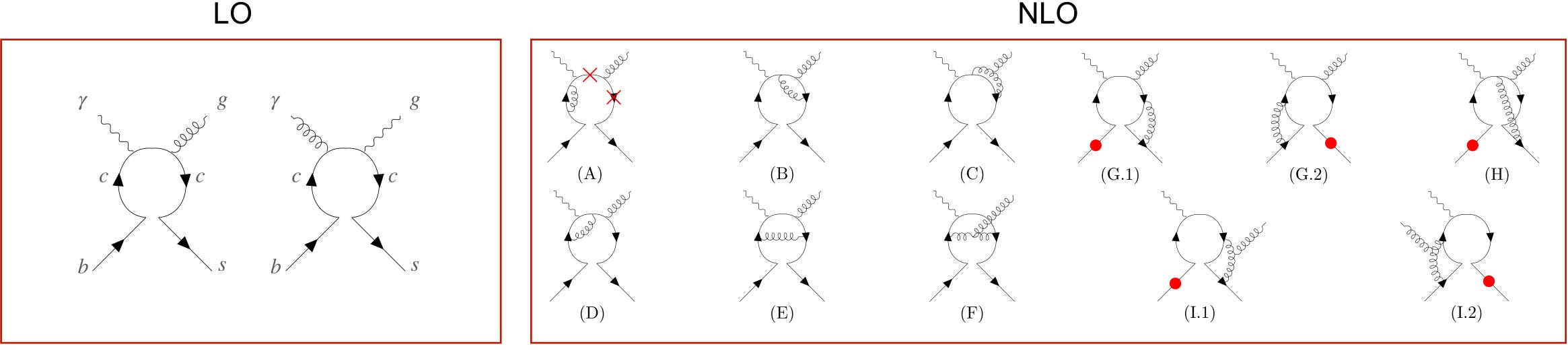
Status:

- All diagrams have been computed assuming a massless quark in the loop (up-quark)
- The $m_c \rightarrow 0$ limit is smooth, therefore we have all the poles of the four functions

[to appear: RB, Böer, Hurth]

• Diagrams A-F: only one region

The "penguin"-jet function is the anti-hard collinear region of $b \rightarrow s\gamma g$.



LO contains charm-loop, therefore NLO is a two-loop amplitude

Status:

- All diagrams have been computed assuming a massless quark in the loop (up-quark)
- The $m_c \rightarrow 0$ limit is smooth, therefore we have all the poles of the four functions
- All poles cancel providing a non-trivial check of our results

[to appear: RB, Böer, Hurth]

• Diagrams A-F: only one region

Why NLO?

The $\mathcal{O}_1 - \mathcal{O}_7$ interference is the largest uncertainty (with large scale dependence) in $\overline{B} \rightarrow X_{s} \gamma$ decays. Reduced by NLO.

Riccardo Bartocci

16

Why NLO?

The $\mathcal{O}_1 - \mathcal{O}_7$ interference is the largest uncertainty (with large scale dependence) in $B \rightarrow X_{s} \gamma$ decays. Reduced by NLO.

Factorisation theorem In SCET, the decay rate factorises into four functions. Among these, three are perturbative calculable and one is the shape function g_{17} .

Why NLO?

The $\mathcal{O}_1 - \mathcal{O}_7$ interference is the largest uncertainty (with large scale dependence) in $B \rightarrow X_{s} \gamma$ decays. Reduced by NLO.

RGE of g_{17} and beyond The RGE of the g_{17} has been fully computed offering key insights into generalised lightcone distribution amplitudes.

EPS, Marseille, 11/7/2025

Factorisation theorem In SCET, the decay rate factorises into four functions. Among these, three are perturbative calculable and one is the shape function g_{17} .

Why NLO?

The $\mathcal{O}_1 - \mathcal{O}_7$ interference is the largest uncertainty (with large scale dependence) in $\overline{B} \rightarrow X_{s} \gamma$ decays. Reduced by NLO.

RGE of g_{17} and beyond The RGE of the g_{17} has been fully computed offering key insights into generalised lightcone distribution amplitudes.

EPS, Marseille, 11/7/2025

Factorisation theorem In SCET, the decay rate factorises into four functions. Among these, three are perturbative calculable and one is the shape function g_{17} .

Two-loop "penguin"-jet function Computed for consistency checks (poles cancellation) in the massless case. After adding mass corrections, all the ingredients for phenomenological analysis are ready.

Why NLO?

The $\mathcal{O}_1 - \mathcal{O}_7$ interference is the largest uncertainty (with large scale dependence) in $\overline{B} \rightarrow X_{s} \gamma$ decays. Reduced by NLO.

RGE of g_{17} and beyond The RGE of the g_{17} has been fully computed offering key insights into generalised lightcone distribution amplitudes.

EPS, Marseille, 11/7/2025

Factorisation theorem In SCET, the decay rate factorises into four functions. Among these, three are perturbative calculable and one is the shape function g_{17} .

Two-loop "penguin"-jet function Computed for consistency checks (poles cancellation) in the massless case. After adding mass corrections, all the ingredients

for phenomenological analysis are ready.

Thank you for your attention!

Back up slides

Distribution definition

 \mathbf{e} Plus-distribution:

$$\int d\omega' [\ldots]_+ f(\omega') \equiv \int d\omega' [\ldots] (f(\omega') - f(\omega))$$

Modified distributions: $\int d\omega' [\ldots]_{\oplus/\ominus} f(\omega') \equiv \int d\omega' [\ldots] (f(\omega') - \theta(\pm \omega') f(\omega))$

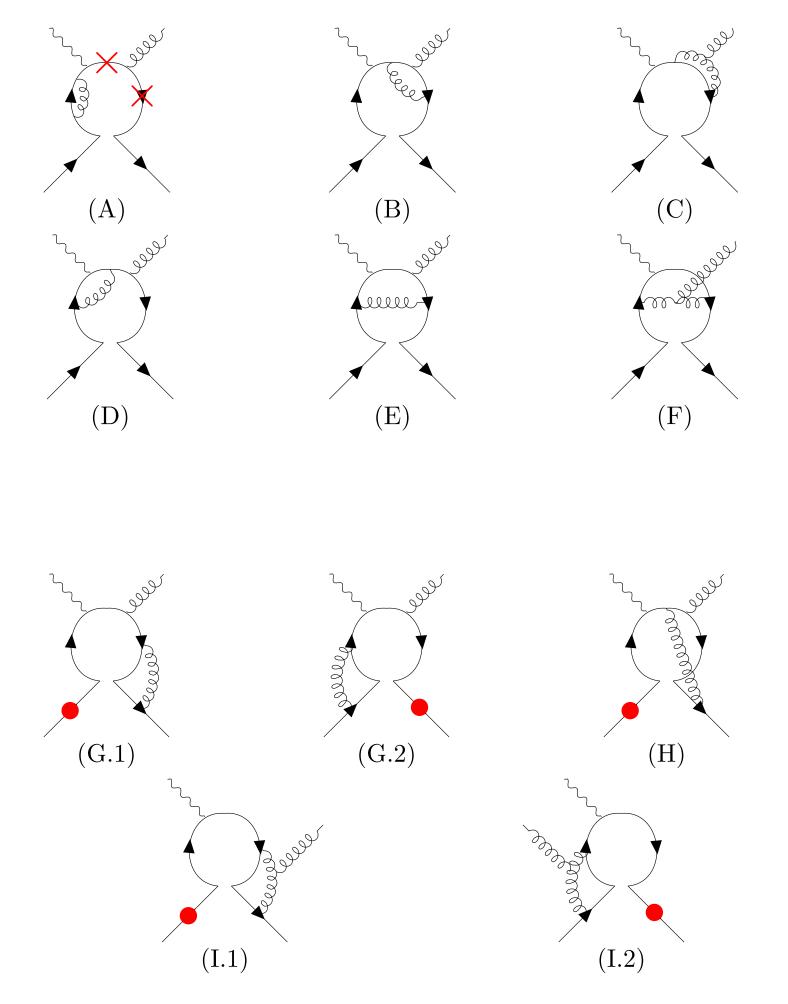
H-distributions:

$$\begin{aligned} \operatorname{ndm frhemother} \operatorname{Him}(\operatorname{Heyere} Hint) & \operatorname{Him} \operatorname{Him} \left[\frac{\omega_i \, \theta(\omega_i' - \omega_i)}{\omega_i' \, (\omega_i' - \omega_i)} \right]_+ + \left[\frac{\theta(\omega_i - \omega_i')}{\omega_i - \omega_i'} \right]_\oplus \\ \\ ^2 \quad 2 \quad F^<(\omega_i, \omega_i') \ = \ \left[\frac{\omega_i \, \theta(\omega_i - \omega_i')}{\omega_i' \, (\omega_i - \omega_i')} \right]_+ + \left[\frac{\theta(\omega_i' - \omega_i)}{\omega_i' - \omega_i} \right]_\oplus \\ \\ G^>(\omega_i, \omega_i') \ = \ (\omega_i + \omega_i') \ \left[\frac{\theta(\omega_i' - \omega_i)}{\omega_i' \, (\omega_i' - \omega_i)} \right]_+ - i\pi\delta(\omega_i - \omega_i') \\ \\ G^<(\omega_i, \omega_i') \ = \ (\omega_i + \omega_i') \ \left[\frac{\theta(\omega_i - \omega_i')}{\omega_i' \, (\omega_i - \omega_i')} \right]_+ + i\pi\delta(\omega_i - \omega_i') \\ \\ H_\pm(\omega_i, \omega_i') \ = \ \theta(\pm\omega_i) F^{>(<)}(\omega_i, \omega_i') + \theta(\mp\omega_i) G^{<(>)}(\omega_i, \omega_i') \end{aligned}$$

EPS, Marseille, 11/7/2025

Last missing piece: the "penguin"-jet function

The "penguin"-jet function corresponds to the anti-hard collinear region of $b \to s \gamma g$ with the charm quark running in the loop.



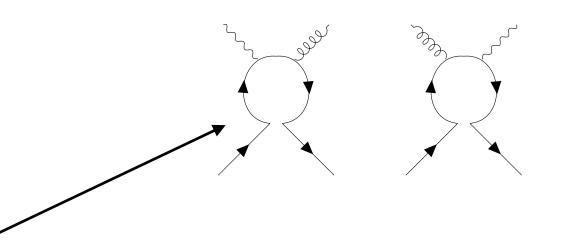
[in progress: RB, Böer, Hurth]

Remarks:

Status:

Outlook:

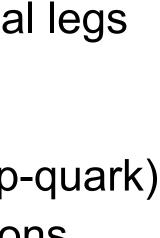
EPS, Marseille, 11/7/2025



• The LO contains charm-loop, therefore NLO is a two-loop amplitude • The upper diagrams (A-F) have only one region • The lower diagrams (G-I) need the expansion of the propagator of the external legs

 All diagrams have been computed assuming a massless quark in the loop (up-quark) • The $m_c \rightarrow 0$ limit is smooth, therefore we have all the poles of the four functions • All poles cancel providing a non-trivial check of our results

• Remaining task: complete m_c correction to have the final NLO result



Basics for RGE

$$\begin{split} \widetilde{\mathcal{O}}_{17}^{(\text{bare})}(\omega,\omega_1) &= \int d\omega' \int d\omega'_1 \, Z_{17}^{-1}(\omega,\omega_1,\omega',\omega'_1;\mu) \, \widetilde{\mathcal{O}}_{17}^{(\text{ren})}(\omega,\omega_1;\mu) \\ \frac{d}{d\ln\mu} \, g_{17}(\omega,\omega_1;\mu) &= -\int d\omega' \int d\omega'_1 \, \gamma_{17}(\omega,\omega_1,\omega',\omega'_1;\mu) \, g_{17}(\omega',\omega'_1;\mu) \\ \gamma_{17}(\omega,\omega_1,\omega',\omega'_1;\mu) &= -\int d\hat{\omega} \, \int d\hat{\omega}_1 \, \frac{dZ_{17}(\omega,\omega_1,\hat{\omega},\hat{\omega}_1;\mu)}{d\ln\mu} \, Z_{17}^{-1}(\hat{\omega},\hat{\omega}_1,\omega',\omega'_1;\mu) \end{split}$$

3

EPS, Marseille, 11/7/2025 l_1, μ, a

Bottom-meson soft function renormalisation

$$\Gamma_{\rm G} = \frac{\alpha_s}{\pi} \left\{ \left[C_F \left(\ln \frac{\mu}{\omega_1 - i0} - \frac{1}{2} \right) + C_A \left(\ln \frac{\mu}{\omega_2 - i0} + \frac{i}{2} \pi \right) \right] \delta(\omega_1 - \omega_1') \delta(\omega_2 - \omega_2') - C_F H_+(\omega_1, \omega_1') \delta(\omega_2 - \omega_2') - C_F H_+(\omega_1, \omega_1') \delta(\omega_2 - \omega_2') \right] \delta(\omega_1 - \omega_1') + C_A \left(\frac{\omega_2}{\omega_2'^2} \right) \left[\theta(\omega_2) \theta(\omega_2' - \omega_2) - \theta(-\omega_2) \theta(\omega_2 - \omega_2') \right] \delta(\omega_1 - \omega_1') + \Delta \Gamma_{\rm G} \right\}$$

$$\Delta \Gamma_{\rm G} = \frac{i}{4} \frac{C_A}{\pi} \left[H_+(\omega_1, \omega_1') - H_-(\omega_1, \omega_1') - 2i\pi \delta(\omega_1 - \omega_1') \right] \left[H_+(\omega_2, \omega_2') - H_-(\omega_2, \omega_2') - 2i\pi \delta(\omega_2 - \omega_2') \right] \delta(\omega_2 - \omega_2') \right]$$

EPS, Marseille, 11/7/2025

 $\omega_2')$

Full evolution functions

The final result for the RGE reads:

$$g_{17}(\omega,\omega_{1};\mu) = \int_{\omega}^{\bar{\Lambda}} \frac{d\omega'}{\omega'-\omega} U_{n}^{(17)}(\omega,\omega';\mu,\mu_{0}) \int_{-\infty}^{\infty} \frac{d\omega_{1}'}{|\omega_{1}'|} U_{\bar{n}}^{(17)}(\omega_{1},\omega_{1}';\mu,\mu_{0}) g_{17}(\omega',\omega_{1}';\mu_{0})$$

$$U_n^{(17)}(\omega,\omega';\mu,\mu_0) = \frac{e^{2V+2\gamma_E a}}{\Gamma(-2a)} \left(\frac{\mu_0}{\omega'-\omega}\right)^{2a}$$

$$U_{\bar{n}}^{(17)}(\omega_{1},\omega_{1}';\mu,\mu_{0}) = -e^{V_{1}+2\gamma_{E}a_{1}} \left(\frac{\mu_{0}}{|\omega_{1}'|}\right)^{a_{1}} \left\{\theta(\tau)G_{3,3}^{1,2}\begin{pmatrix}-1, & 1, & a_{1}/2 \\ a_{1}+1, a_{1}-1, a_{1}/2 \\ +\frac{1}{2\pi}\sin\left(\frac{a_{1}\pi}{2}\right)\theta(-\tau)\Gamma(1+a_{1})\Gamma(3+a_{1})(-\tau)^{1+a_{1}}{}_{2}F_{1}(1+a_{1},3+a_{1},3;\tau)\right\}$$

With the Meijer-G functions defined as:

$$G_{p,q}^{m,n}\begin{pmatrix}\mathbf{a}\\\mathbf{b}\end{pmatrix} = \int \frac{d\eta}{2\pi i} z^{\eta} \frac{\prod_{j=1}^{m} \Gamma(b_j - \eta) \prod_{j=1}^{n} \Gamma(1 - a_j + \eta)}{\prod_{j=m+1}^{q} \Gamma(1 - b_j + \eta) \prod_{j=n+1}^{p} \Gamma(a_j - \eta)}$$

EPS, Marseille, 11/7/2025

Mellin space transform and equations

The Mellin transform reads:

$$g_{17}(\omega,\omega_1;\mu) = \theta(\omega)g_{17}^{>}(\omega,\omega_1;\mu) + \theta(-\omega)g_{17}^{<}(\omega,\omega_1;\mu) + \theta(-\omega)g_{17}^{<}(\omega,\omega)g_{17}^{<}(\omega,\omega)g_{17}^{<}(\omega,\omega)g_{17}^{<}(\omega,\omega)g_{17}^{<}(\omega,\omega)g_{17}^{<}(\omega,\omega)g_{17}^{<}(\omega,\omega)g_{17}^{<}(\omega,\omega)g_{17}^{<}(\omega$$

$$\tilde{g}_{17}^{<}(\eta,\omega_{1};\mu) = \int_{0}^{\infty} \frac{d\omega}{\omega} \left(\frac{\mu}{\omega}\right)^{\eta} g_{17}^{<}(-\omega,\omega_{1};\mu)$$
$$\tilde{g}_{17}^{>}(\eta,\omega_{1};\mu) = \int_{0}^{\infty} \frac{d\omega}{\omega} \left(\frac{\mu}{\omega}\right)^{\eta} g_{17}^{>}(\omega,\omega_{1};\mu)$$

Applying this to the RG equations we get for the non-abelian part:

$$\left(\frac{d}{d\ln\mu} - \eta_1\right) \tilde{g}_{17}^{>}(\omega, \eta_1; \mu)$$

= $-\frac{\alpha_s C_A}{2\pi} \left\{ \left[H_{-1-\eta_1} + H_{\eta_1} + 2H_{1-\eta_1} + 2\partial_{\eta_1}\right] \tilde{g}_{17}^{>}(\omega, \eta_1; \mu) - \Gamma(-\eta_1) \right\}$

and

$$\left(\frac{d}{d\ln\mu} - \eta_1\right) \tilde{g}_{17}^{<}(\omega, \eta_1; \mu)$$

= $-\frac{\alpha_s C_A}{2\pi} \left\{ \left[H_{-1-\eta_1} + H_{\eta_1} + 2H_{1-\eta_1} + 2\partial_{\eta_1}\right] \tilde{g}_{17}^{<}(\omega, \eta_1; \mu) - \Gamma(-\eta_1) \right\}$

EPS, Marseille, 11/7/2025

 $(\omega, \omega_1; \mu)$

 $(\eta_1)\Gamma(1+\eta_1)\,\tilde{g}_{17}^<(\omega,\eta_1;\mu)$

 $\eta_1)\Gamma(1+\eta_1)\,\tilde{g}_{17}^>(\omega,\eta_1;\mu)\Big\}$

- - . . .

2. Theoretical framework: SCET and factorisation

2. Theoretical framework: SCET and factorisation

3. RGE of the shape function g_{17}

2. Theoretical framework: SCET and factorisation

3. RGE of the shape function g_{17}

4. Two-loop penguin-jet function and pole cancellation

