Higgs Differential and STXS cross section measurements at CMS, combination and EFI interpretation

Małgorzata Kazana CMS Collaboration

National Centre for Nuclear Research Warsaw, Poland

EPS-HEP 2025 Marseille, France 7 – 11 July 2025

In this talk

- Latest precision measurements of Higgs boson cross section production performed with the CMS detector:
 - Fiducial, differential Cross Sections
 - Simplified Template Cross Sections (STXS)

in *bosonic and fermionic* decay channels with data collected during Run-2 of the LHC and the early data collected in Run-3

 Combination of Run-2 cross section measurements and their
 interpretations as constraints on Wilson coefficients of beyond Standard Model operators in the framework of SM Effective Field Theories (SMEFT)

• ATLAS+CMS input to the European Particle Physics Strategy Update 2026

Portrait of the Higgs Boson

- Discovery of the Higgs boson by ATLAS and CMS (2012) completed the Standard Model particle spectrum
- The Higgs boson's properties (mass, spin, parity, couplings) are consistent with SM predictions so far, but:

With large data set of LHC Run-2 (+ Run-3) precise measurements are enabled

Fiducial differential cross-sections

- A method to study the Higgs properties in a more model independent way
- Differential: the cross section is measured in bins of some observables (p_T^H, #jets, ...)
 - Provides more information than inclusive measurements
- Fiducial: the extrapolation of the result is limited to a restricted phase space defined close as possible to the experimental phase space (selection)
 - Easy comparison with different theories

- Fiducial, differential measurements are:
 - The most model-independent way to measure Higgs boson production cross section
 - Sensitive to **BSM** effects

Fiducial, differential cross section measurement:

- First differential measurement for ttH multilepton + jets channel using full Run-2
- Top Yukawa coupling sensitive to BSM effects
- Target Higgs decay modes $H \rightarrow WW \rightarrow I \nu I \nu I \nu q q$ and $H \rightarrow \tau \tau \rightarrow hadrons/leptons + \nu's$
- Machine-learning techniques (DNN) used for the separation sig./bkg.

- The fiducial differential cross section in VBF and ggF for H(WW) + 2 jets using full Run-2
- Target Higgs decay modes $H \rightarrow WW \rightarrow I \nu I \nu$
- Model independent measurement to be easily re-interpreted

- Fit variable that discriminates signal from backgrounds but agnostic with respect to the signal hypothesis
 - \rightarrow Adversarial deep neural network (ADNN)

STXS cross-sections

Combined measurements

■ The most comprehensive study of Higgs boson production and decay performed by the CMS experiment to-date → Run-2 Legacy combination STXS measurement

[CMS-PAS-HIG-21-018, April 2025]

- Ultimate precision via statistical combinations
 - Evolution of [Nature 607, 60–68 (2022)]
 - New/updated channels + many more interpretations
- Each decay channel targets multiple production modes:
 - $\mathsf{H} \rightarrow \gamma \gamma, \mathsf{H} \rightarrow \mathsf{ZZ}^{*} \rightarrow \mathsf{4I}, \mathsf{H} \rightarrow \mathsf{WW}^{*} \rightarrow \mathsf{I} \nu \mathsf{I} \nu, \mathsf{H} \rightarrow \tau \tau, \mathsf{H} \rightarrow \mathsf{bb}, \mathsf{H} \rightarrow \mu \mu, \mathsf{H} \rightarrow \mathsf{Z} \gamma$

[CMS-PAS-HIG-21-018, April 2025]

CMS

STXS stage o combination

[CMS-PAS-HIG-21-018, April 2025]

STXS stage 1.2 combination

- First combined STXS (1.2, see p.8)
 σ*B^{zz} measurement
- Good sensitivity to many kinematic regions
 [32 + 4 BF ratios]

- Fine agreement with SM
- About 2σ deviations
 in high p_T^v bins for WH lep, ZH lep and tH

K–framework interpretation

The effective coupling modifier configuration is fit with 3 different assumptions on the Higgs boson total decay width (Γ^{TOT})

- no additional BSM contributions to Γ^{TOT}
- \mathbf{B}_{inv} and \mathbf{B}_{undet} as additional parameters, if $|\boldsymbol{\kappa}_{W}| \le 1$ and $|\boldsymbol{\kappa}_{Z}| \le 1$

[CMS-PAS-HIG-21-018, April 2025]

Offshell H→ ZZ→4l input channel is introduced into the combination to constrain Γ^{TOT} directly from data

 \rightarrow for the first time width is included therefore no assumption on κ_z is made

12

K–framework interpretation

Also fit ratios of coupling modifiers: $\lambda_{ij} = \kappa_i / \kappa_j$

avoids need for assumptions on Γ^{TOT}

Requires reference coupling modifier:

 $\kappa_{\rm gZ} = \kappa_{\rm g} \kappa_{\rm Z} / \kappa_{\rm H}$

- Fit includes all channels except
 H→inv and offshell
- Largest value for: λ_{Zg}

Effective Field Theory (EFT)

BSM phenomenology at energy scale Λ in the limit E«Λ

 Precision measurement is key to look for deviations of SM couplings: achieved using low-energy approximation EFT to fundamental Ultraviolet (UV) complete theory

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(5)}}{\Lambda} \mathcal{O}_{5,i} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^2} \mathcal{O}_{6,i} + \sum_{i} \frac{c_{i}^{(7)}}{\Lambda^3} \mathcal{O}_{7,i} + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^4} \mathcal{O}_{8,i} + \dots$$
Lepton number violation
Lepton & Baryon number violation

- Under assumption that the theory cut-off is much larger than the energy, SMEFT series can be truncated at dimension 6 (dim-5 violates L number conservation, dim-7 L and B)
 - dim-8 often neglected and contributing as 1/Λ⁴

Wilson coefficients c_i & SMEFT parametrization

 Expansion of SM lagrangian in 1/A: observables EFT effects are parameterized with a linear and linear+quadratic in c_is

- **SMEFT** is a popular model for EFT interpretation using **dim-6 operators**
 - Easier technical implementation (many available tools at LO and NLO)
 - Covers a wide range of UV complete theories
- Different SM sectors are affected by different EFT operators

Global fits allow us to enhance sensitivity and constrain more directions in the EFT parameter space
 M. Kazana
 Higgs @ CMS, EPS-HEP 2025, July 9th

SMEFT effects in VH

• VH(bb): $Z \rightarrow II/\nu\nu$, $W \rightarrow I\nu \& H \rightarrow bb$

- qqV, HVV, Hbb vertices as well and new contacts terms HVqq affected by Wilson coefficients
- SMEFT effects probed using
 - cross section(yields), kinematic variables and angular structure (CP)
- Boosted Information Tree (BIT) regressions to construct likelihood ratio R(x|c) from reco-level quantities x

- Optimal observable for a given **Wilson coefficients hypothesis c**
- Fix c = c* and use R(x|c*) as variable for signal extraction

from binned fit

M. Kazana

 c* optimized to provide best sensitivity to simultaneous measurements of all Wilson coefficients [CMS-PAS-HIG-2023-16, JHEP 03(2025)114]

Data

W+h

10

Z/W

CMS

1-lepton (e)

SR (resolved)

2017

5

2500

2000

1500

1000

500

1.2

Dbs / Exp

Z/W

41.5 fb⁻¹ (13 TeV)

VV+HF

W+udsg Z+c

Single t

1lep category

SM VH (x20)

15

BIT score

16

lev

W+bb

SMEFT constraints in VH

- For all Wilson coefficients but **c**_{Hq(3}), **c**_{ci} quadratic component dominates over linear Constraints on **c**_{Hq(1)} has two interval in quadratic SMEFT: two minima due to interplay between interference

SMEFT constraints in H(WW)

- The fiducial differential cross section in VBF and ggF for H(WW) + 2 jets
- Differential cross section measurements (see p. 7) used to constrain Wilson coefficients SMEFT
- The strongest constraints for:
- the VBF cross section measurement under the assumption of the CP-even C_{HW} coefficient
- the ggF cross section measurement sensitive to the CP-even C_{HG} coefficient
 - All results consistent with the SM expectations

M. Kazana

[CMS-PAS-HIG-21-018, April 2025] **SMEFT** interpretation using STXS

high p_{T} in

WH, ZH

leptonic

regions

ŝ 22

p.10

- Several interpretations including SMEFT of full Run-2 CMS Higgs combination performed
 - Using STXS phase-space for EFT extraction
 - Linear $(1/\Lambda^2)$ and linear+quadratic $(1/\Lambda^4)$ parametrization in EFT coupling expansion
 - SMEFT@NLO with propagator corrections included
- Constraints on one Wilson coefficient at a time while fixing others to SM
 - probed 43 SMEFT coefficients
- In the right panel, the results translated into a 95% lower limit on the new Λ scale
- Very granular combination ensures full coverage of SMEFT phase-space
 - Results overall consistent to SM expectations

SMEFT interpretation using **PCA**

- Removing flat directions will lead to Principal Component Analysis (PCA) constraints
- Constraints on the linear combinations Wilson **c**, extracted with the PCA procedure
 - PCA procedure on 97 POI covariance matrix to identify sensitive directions
 - simultaneous fit to 17 combination of c_i for linear parameterization with terms up to $O(EV/\Lambda^2)$

(11% p-value)

In the right panel, the results translated into a 95% lower limit on the **new physics energy** scale Λ , assuming $Ev_i = 1$

M. Kazana

[CMS PAS-HIG-21-018, April 2025]

[CMS-PAS-HIG-25-002, CMS-NOTE-25-007]

CMS **Future High-Luminosity LHC projections**

The HL-LHC physics programme will be **crucial for** deepening the understanding of fundamental physics, enabling in particular **precision studies of the Higgs sector** and enhancing sensitivity to rare processes and potential new physics **CMS** Projections 3000 fb⁻¹ (14 TeV) 102

C		δμ [%]	
L		$H ightarrow Z \gamma$	$H \rightarrow \mu \mu$
	ATLAS	21	13
$2 ab^{-1}$	CMS	23	8.4
	ATLAS+CMS	15	7.1
	ATLAS	17	11
$3 \mathrm{~ab}^{-1}$	CMS	19	7.0
	ATLAS+CMS	14	5.9

Projected uncertainties in % on signal strengths (μ)

Higgs STXS and EFT – Summary

- Run-2 data has enabled significantly more granular measurements
- CMS released fiducial differential and many STXS cross section measurements

Higgs @ CMS, EPS-HEP 2025, July 9th

- CMS provided the legacy combination of all channels with a full Run 2 data, including an extended SMEFT interpretation
- **Run-3** might give a hint to new physics
 - If DATA/SM predictions increase...
- very through the precision? Run-3 statistics will help to improve SMEFT constraints
- More results in the near future
- https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG/
- https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG/

M. Kazana

Thank you!

Granted by the Polish Ministry of Science, 2022/WK/14

M. Kazana

Higgs @ CMS, EPS-HEP 2025, July 9th

- CMS-PAS-HIG-21-018, Full Run-2 Combination of Higgs STXS measurements and couplings interpretations; April 2025
 https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-21-018/index.html
- CMS-PAS-HIG-23-014, Measurements of inclusive and differential Higgs boson production cross sections at √s= 13.6 TeV in the H→γγ decay channel, Submitted to JHEP, April 2025 <u>https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-23-014/index.html</u>
- CMS-PAS-HIG-24-013, Measurements of Higgs boson production cross section in the four-lepton final state in proton-proton collisions at vs= 13.6 TeV Accepted by JHEP, January 2025 <u>https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-24-013/index.html</u>
- CMS-PAS-HIG-23-015, Differential cross section measurement of t^{*}tH production in proton-proton collisions at vs= 13 TeV in CMS, December 2024 https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-23-015/index.html
- CMS-PAS-HIG-24-004, Model-independent measurement of the Higgs boson differential production cross section in association with two jets in the WW decay channel, April 2025 https://cms-results/public-results/public-results/preliminary-results/HIG-24-004/index.html
- CMS-PAS-HIG-23-016 Constraints on standard model effective field theory effects with Higgs bosons produced in association with W or Z bosons in the H → bb decay; JHEP 03 (2025) 114, November 2024 <u>https://cms-results.web.cern.ch/cms-results/public-results/public-associations/HIG-23-016/index.html</u>
- CMS-PAS-HIG-23-013, Combination and interpretation of differential Higgs boson production cross sections; Submitted to JHEP, July 2024 <u>https://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-23-013/index.html</u>
- CMS-PAS-HIG-25-002, ATLAS+CMS input to the European Particle Physics Strategy Update 2026; Submitted to EPPSU; March 2025 <u>https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-25-002/index.html</u>
- CMS-NOTE-25-007, HL-LHC projections for single Higgs boson measurements at the CMS experiment; March 2025

Higgs @ CMS, EPS-HEP 2025, July 9th

Production of Higgs Boson CMS

• Explore Higgs interactions to **uncover deviations** that could hint at BSM physics

Cross sections of Higgs Boson

Production mode	Cross section (pb)	Decay channel	Branching fraction (%)
ggH	48.31 ± 2.44	bb	57.63 ± 0.70
VBF	3.771 ± 0.807	WW	22.00 ± 0.33
WH	1.359 ± 0.028	gg	8.15 ± 0.42
ZH	0.877 ± 0.036	ττ	6.21 ± 0.09
ttH	0.503 ± 0.035	СС	2.86 ± 0.09
bbH	0.482 ± 0.097	ZZ	2.71 ± 0.04
tH	0.092 ± 0.008	$\gamma\gamma$	0.227 ± 0.005
		$Z\gamma$	0.157 ± 0.009
		SS	0.025 ± 0.001
		μμ	0.0216 ± 0.0004
ggH ggH ggH ggH ggH ggH ggH ggH ggH ggH		bb	μμ zz γγ zγ ⁵⁵ cc gg

STXS measurements with VH

0-jet 1-jet \geq 2-jet

• STXS measurements for VH(bb): $Z \rightarrow II/\nu\nu$, $W \rightarrow I\nu \& H \rightarrow bb$

[Phys.Rev.D 109(2024)092011,HIG-21-001]

0-iet

1-jet ≥ 2-jet

A subcategorization in p_T is applied to maximize the sensitivity of different STXS bins

1-jet ≥ 2-jet

0-iet

- Within the uncertainties, the differential cross sections agree with the SM predictions
- The overall signal strength, combining all analysis categories, is $\mu = 1.15^{+0.22}_{-0.20}$

Higgs @ CMS, EPS-HEP 2025, July 9th

- First differential measurement for ttH multilepton + jets channel using full Run-2
- Top Yukawa coupling **sensitive to BSM effects**
- Target Higgs decay modes $H \rightarrow WW \rightarrow I \nu I \nu / I \nu q q$ and $H \rightarrow \tau \tau \rightarrow hadrons/leptons + \nu's$
- Machine-learning techniques (DNN) used for the separation sig./bkg.

H boson $p_{\rm T}$ bin	Signal strength		
[0, 120) GeV	-0.78 ± 0.64 (stat) ± 0.48 (syst)		
[120, 200) GeV	$4.36\pm1.42~\mathrm{(stat)}\pm0.80~\mathrm{(syst)}$		
[200,∞) GeV	$-1.32\pm0.86~\mathrm{(stat)}\pm0.46~\mathrm{(syst)}$		
$m_{t\bar{t}H}$ bin	Signal strength		
[0,750) GeV	$0.71 \pm 0.58 \text{ (stat)} \pm 0.36 \text{ (syst)}$		
[750, 1000) GeV	$0.90\pm1.23~\mathrm{(stat)}\pm0.63~\mathrm{(syst)}$		
[1000,∞) GeV	$0.92\pm1.02~\mathrm{(stat)}\pm0.55~\mathrm{(syst)}$		

[CMS-PAS-HIG-2023-16, JHEP 03(2025)114]

SMEFT effects in VH

P-value compatibility to SM expectation is 73% (linear SMEFT)

Higgs @ CMS, EPS-HEP 2025, July 9th

M. Kazana

SMEFT effects in VH

SMEFT interpretation using differential Higgs combination

- Combined measurements of the total and differential Higgs boson production cross sections for different observables, eg.: p^H_T, N_{jets}, |y_H|
- The spectra are obtained with data from **4 decay channels**: $H \rightarrow \gamma \gamma, H \rightarrow ZZ(*) \rightarrow 4\ell, H \rightarrow WW(*) \rightarrow e \mu \nu_{\ell} \nu_{\ell}$, and $H \rightarrow \tau \tau$

The precision of the combined measurement of the p^{H}_{T} differential cross section is improved by about 20% w.r.t the H $\rightarrow\gamma\gamma$ alone

The improvement is particularly significant in the low- and high-p^H_T regions

) pb

Higgs @ CMS, EPS-HEP 2025, July 9th

53.4 $^{+2.9}_{-2.9}$ (stat) $^{+1.9}_{-1.8}$

consistent with the SM prediction

CMS

[CMS-PAS-HIG-23-013, July 2024]

10

¹⁵32

5

Combination 95% C

 $EV_0 \times 10$

EV1 ×102

EV₂ ×10

EV₃ ×10

EV₄

mbination 68% CI mbination best fit mbination expected 95% CL bination expected 68% CL

Combination expected best fit

CMS SMEFT interpretation using differential Higgs combination 138 fb⁻¹ (13 TeV)

- Principal Component Analysis (PCA) applied to identify flat directions of combined EFT likelihood
 - 10 linear combinations of EV's that are constrained simultaneously
 - Results compatible with SM expectations
- \rightarrow The differential fiducial cross section measurements are sensitive to a limited set of operators and related Wilson coefficients,

33

EFT interpretation using differential Higgs combination

Higgs @ CMS, EPS-HEP 2025, July 9th

 For X²H² operators, those most constrained Wilson c_i: c_{HG}, c_{HB}, c_{HW}, c_{HWB} provide 2D limits on CP

 Results are consistent with SM at 68% CL

CMS

[CMS-PAS-HIG-25-002, CMS-NOTE-25-003]

CMS **Future High-Luminosity LHC projections**

The HL-LHC physics programme will be crucial for deepening the understanding of fundamental physics, enabling in particular precision studies of the Higgs sector and enhancing sensitivity to rare processes and potential new physics

The first Run-2 combination of single-H and HH boson production channels to constrain the Higgs self-coupling Observed (expected) interval at 2o CL -1.2 <K₂<7.5 $(-2.0 < \kappa_{\lambda} < 7.7)$

 \rightarrow see Jin Wang talk

