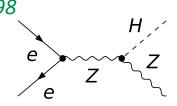
BSM Higgs physics at the gamma-gamma collider

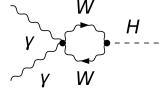
Marten Berger, Gudrid Moortgat-Pick

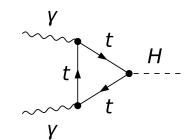
In cooperation with Johannes Braathen, Pierre Bossuyt, Ayoade Sotona, Georg Weiglein, Monika Wüst

Contents

- Introduction Gamma-gamma collider
- Laser Set-ups
- Di-Higgs
- Conclusion






Berger, Moortgat-Pick et al.

Introduction

- High energy photons collisions (yy and e-y) offer a complementary physics program to e+e-: TESLA TDR 2001, JLC TDR 1998
- The Higgs boson is produced in the s channel
 - The electron beam energy is lower than what is required in e+e- collisions (65-80 GeV vs 125 GeV)
 - O At higher center of mass energies, all phase space is available for producing the Higgs boson → higher mass reach for heavy Higgs bosons than e⁺e⁻ at the same center of mass energy
 - yy can directly couple to spin-0 resonances whereas e+e- require the production of another spin-1 particle
 Ginzburg et al. 1983
 - complementary probe of the scalar sector
- Polarization of both electrons and photons
 - Allows for a rich study of CP violation in the scalar sector

Complementarity ee vs vv

- γγ collisions can produce heavy Higgs bosons with masses >1.5 times higher than e+e-:
 e+e- → HA vs. γγ → H, γγ → A
 Mühlleitner, Zerwas 2006
- e⁻⁻ γ collisions can produce **charged particles** with masses higher than pair-production in e⁺e⁻: • e⁻ $\gamma \rightarrow \sim e \chi^0$ *Kanemura 2001, Nauenberg 2001, Mühlleitner 2006*
- Since yy→H is a loop-induced process, it can probe new physics contributions to the Higgs photon coupling: sensitive to BSM particles in loops
 Grzadkowski, Gunion 1992, Krämer et al. 1994

Godbole, Kraml et al. 2006

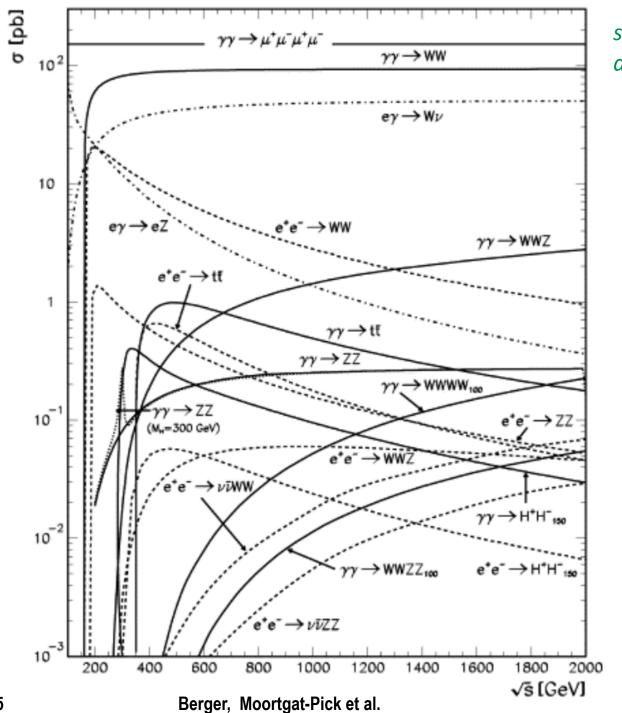
- Ability to control the photon polarizations provides a powerful tool for the exploration of CP properties of any single neutral Higgs boson
 - The J_z=0 yy initial state can form a CP-even or a CP-odd state using linear polarizations of the laser beams
 - CP-even Higgs bosons (h⁰, H⁰) couple to linearly polarized photons with maximum strength for parallel polarisation vectors
 - CP-odd Higgs boson (A⁰) couple to linearly polarized photons with perpendicular polarization vectors

EPS@Marseille, July 2025

Physics Opportunities

• Di-Higgs production and measurement of trilinear couplings

Jikia 1994, Bharucha et al. 2001 Berger, Braathen, Weiglein, GMP


 Enhanced production cross sections of any charged particles by factor of ~10 compared to e⁺e⁻ (e.g. SUSY, etc.)

Mühlleitner et al. 2006, Kanemura 2001

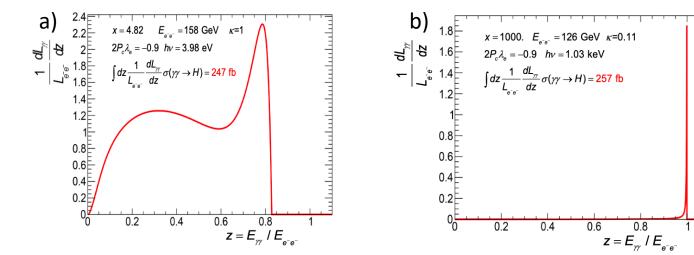
- e-γ-options extends kinematic reach for charged particles (BSM, SUSY, heavy Higgs, etc.)
- Access to hadronic and electromagnetic structure of photons via photon-photon and photon-electron scattering
- Access to precise measurement of the two-photon decay width of the Higgs boson due to the higher rates which is particularly sensitive to new heavy charged particles beyond the kinematic range
- Spectroscopy of C-even resonances (e.g. in multi-quark states, glueballs) Telnov et al. 2023
 ⁴
 Brerger, Moortgat-Pick et al.

- Di-Higgs
- Enhance compare
- e-γ-optio etc.)
- Access t photon-e
- Access t to the hiç beyond t
- Spectros EPS@Marseille, July 2025

see also Balazs et al., arXiv 2503.19983 t al. 2001 glein, GMP 2001 JS, d due 997

1. 2023

5


Gamma-gamma collider

- Addition to e^+e^- colliders
- Compton backscattering
- Getting access to $\gamma\gamma$ and γe processes

$$\omega_m \approx \frac{x}{x+1} E_0$$
 $x = \frac{4E_0\omega_0}{m^2c^4} \simeq 15.3 \left[\frac{E_0}{\text{TeV}}\right] \left[\frac{\omega_0}{\text{eV}}\right] = 19 \left[\frac{E_0}{\text{TeV}}\right] \left[\frac{\mu \text{m}}{\lambda}\right]$

Laser is decisive: a) optical

b) XFEL-like

electron bunch

Berger, Moortgat-Pick et al.

laser

V. I. Telnov 2020

 $\gamma(e)$

b

IP

 $\frac{\gamma(e)}{\mathcal{W}}$

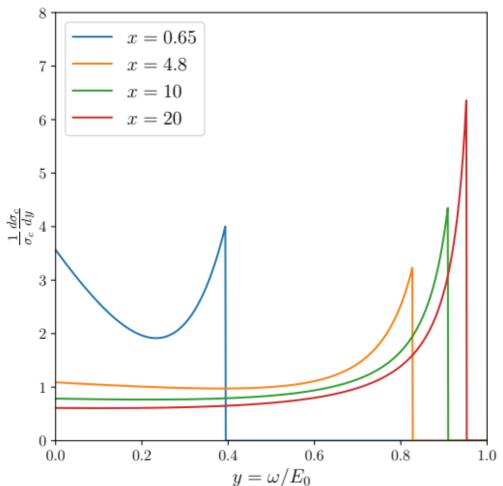
How to get the beams?

• Compton backscattering $\sigma_c = \sigma_c^{np} + \lambda_e P_c \sigma_c^1$

$$\sigma_c^{np} = \frac{2\pi\alpha^2}{xm_e^2} \left[\left(1 - \frac{4}{x} - \frac{8}{x^2} \right) \ln(x+1) + \frac{1}{2} + \frac{8}{x} - \frac{1}{2(x+1)^2} \right]$$
$$\sigma_c^1 = \frac{2\pi\alpha^2}{xm_e^2} \left[\left(1 + \frac{2}{x} \right) \ln x + 1 - \frac{5}{2} + \frac{1}{x+1} - \frac{1}{2(x+1)^2} \right]$$

• Energy Spectrum

$$\frac{1}{\sigma_c} \frac{d\sigma_c}{dy} \equiv f(x, y)$$


$$= \frac{2\pi\alpha^2}{\sigma_c x m_e^2} \left[\frac{1}{1-y} + 1 - y - 4r(1-r) - \lambda_e P_c r x (2r-1)(2-y) \right]$$

$$r = \frac{g}{x(1-y)} \le 1$$

Berger, Moortgat-Pick et al.

Ilya Ginzburg '83

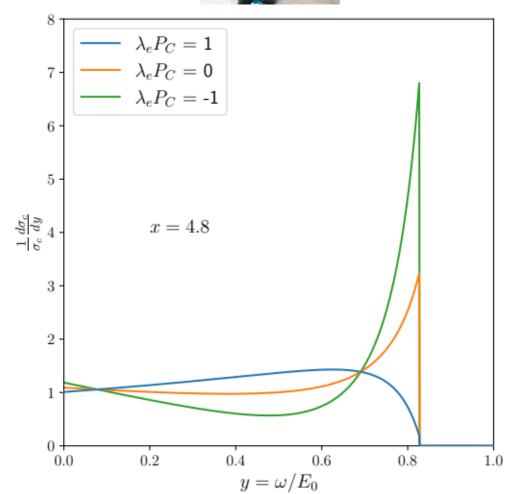
7

EPS@Marseille, July 2025

Berger, Moortgat-Pick et al.

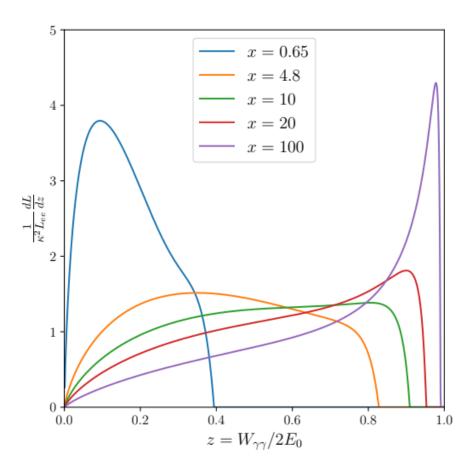
How to get the beams?

• Compton backscattering $\sigma_c = \sigma_c^{np} + \frac{\lambda_e P_c}{\sigma_c} \sigma_c^1$


$$\sigma_c^{np} = \frac{2\pi\alpha^2}{xm_e^2} \left[\left(1 - \frac{4}{x} - \frac{8}{x^2} \right) \ln(x+1) + \frac{1}{2} + \frac{8}{x} - \frac{1}{2(x+1)^2} \right]$$
$$\sigma_c^1 = \frac{2\pi\alpha^2}{xm_e^2} \left[\left(1 + \frac{2}{x} \right) \ln x + 1 - \frac{5}{2} + \frac{1}{x+1} - \frac{1}{2(x+1)^2} \right]$$

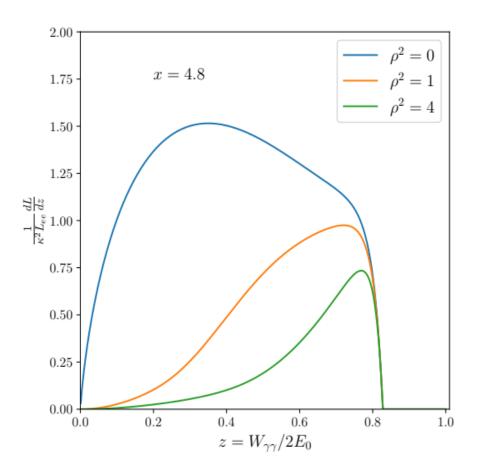
• Energy Spectrum

$$\begin{aligned} \frac{1}{\sigma_c} \frac{d\sigma_c}{dy} &\equiv f(x, y) \\ &= \frac{2\pi\alpha^2}{\sigma_c x m_e^2} \left[\frac{1}{1-y} + 1 - y - 4r(1-r) - \frac{\lambda_e P_c}{r} r x(2r-1)(2-y) \right] \\ &r = \frac{y}{x(1-y)} \leq 1 \end{aligned}$$


Ilya Ginzburg '83

Spectral Luminosity

$$\frac{1}{k^2 L_{ee}} \frac{\mathrm{d}L_{\gamma\gamma}}{\mathrm{d}z} = 2z \int_{z^2/y_{max}}^{y_{max}} \frac{\mathrm{d}y}{y} f(x,y) f\left(x,\frac{z^2}{y}\right)$$
$$I_0\left(\rho^2 \sqrt{\left(\frac{y_{max}}{y}-1\right)\left(\frac{y_{max}y}{z^2}-1\right)}\right)$$
$$\exp\left[-\frac{\rho^2}{2}\left(\frac{y_{max}}{y}+\frac{y_{max}y}{z^2}-2\right)\right],$$


$$\rho^2 = \left(\frac{b}{\gamma\sigma_x}\right)^2 + \left(\frac{b}{\gamma\sigma_y}\right)^2$$

Spectral Luminosity

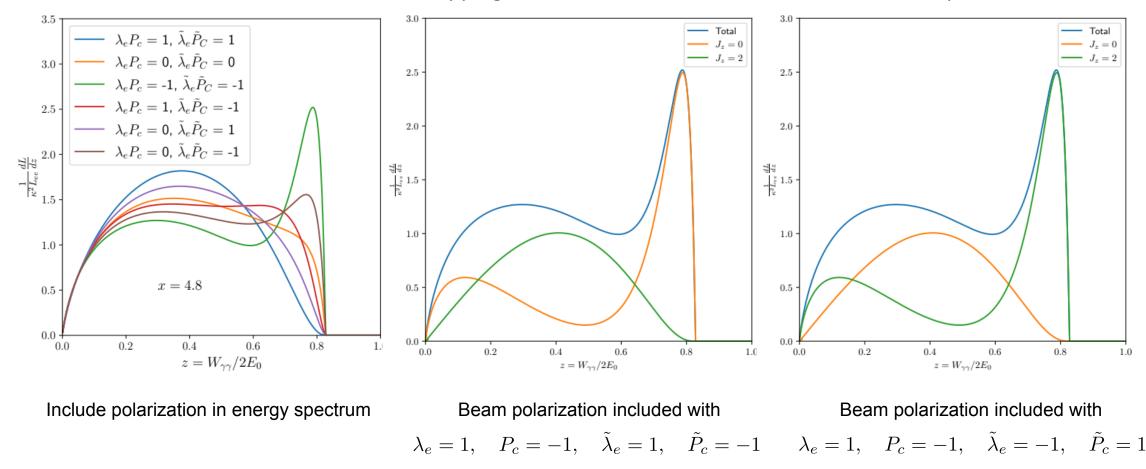
$$\frac{1}{k^2 L_{ee}} \frac{\mathrm{d}L_{\gamma\gamma}}{\mathrm{d}z} = 2z \int_{z^2/y_{max}}^{y_{max}} \frac{\mathrm{d}y}{y} f(x,y) f\left(x, \frac{z^2}{y}\right)$$
$$I_0\left(\rho^2 \sqrt{\left(\frac{y_{max}}{y} - 1\right)\left(\frac{y_{max}y}{z^2} - 1\right)}\right)$$
$$\exp\left[-\frac{\rho^2}{2}\left(\frac{y_{max}}{y} + \frac{y_{max}y}{z^2} - 2\right)\right],$$

$$\rho^2 = \left(\frac{b}{\gamma\sigma_x}\right)^2 + \left(\frac{b}{\gamma\sigma_y}\right)^2$$

Polarization at Gamma-gamma collider

- Polarization effects
 - Mean helicity of the beams

$$\langle \lambda_{\gamma} \rangle = \frac{\lambda_e xr [1 + (1 - y)(2r - 1)^2] - P_c (2r - 1)[(1 - y)^{-1} + 1 - y]}{(1 - y)^{-1} + 1 - y - 4r(1 - r) - \lambda_e P_c xr(2 - y)(2r - 1)}$$


- Effect on the luminosity

$$\frac{1}{k^2 L_{ee}} \frac{\mathrm{d}L_{\gamma\gamma}^{+\pm}}{\mathrm{d}z} = 2z \int_{z^2/y_{max}}^{y_{max}} \frac{\mathrm{d}y}{y} \left(\frac{1 \pm \lambda_{\gamma,1}\lambda_{\gamma,2}}{2}\right) f(x,y) f\left(x,\frac{z^2}{y}\right)$$
$$F(\rho),$$

$$L_{\gamma\gamma} = L_{\gamma\gamma}^{++} + L_{\gamma\gamma}^{+-}$$

Polarization at Gamma-gamma collider

Flipping of the $J_z = 0$, 2 contribution, with same total spectrum

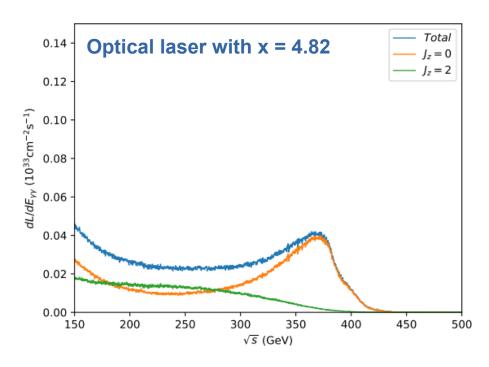
Realistic spectrum

• CAIN includes important effects

Yokoya et al.

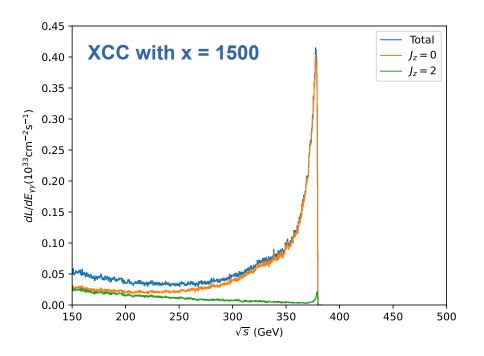
- Breit-Wheeler and Bethe-Heitler
- Needs fine-tuning of laser and electron beam parameters to optimize spectrum

• Possible to use 2D-Spectrum

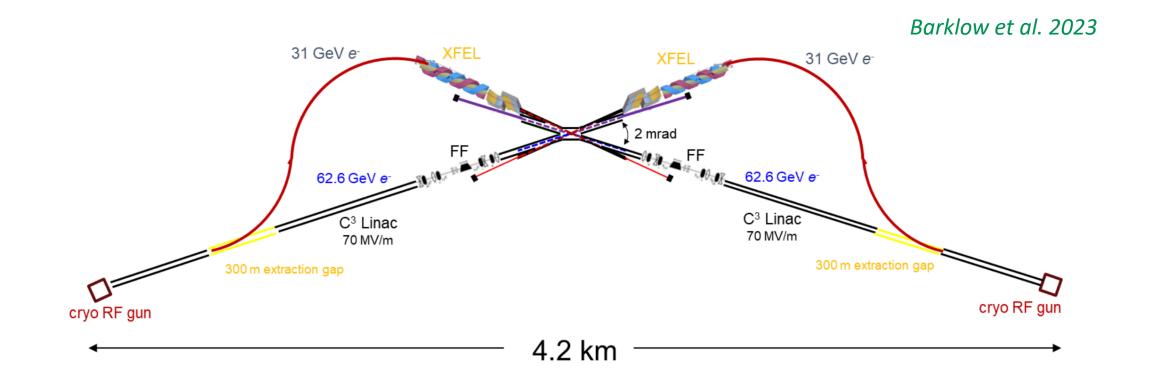

Kilian, Ohl, Reuter, et al.

- Used with other codes like WHIZARD
- Also gain information on boost

Laser Set-ups Design


Optical

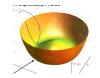
- Laser for x = 4.82
- Energy of colliding photon up to ~80% E_{e}
- Broad spectrum
- most electrons converted
- h-production at $E_e = 108 \text{ GeV}$
- di-Higgs at E_e = 250 GeV
- $\lambda_e P_c = -0.9$



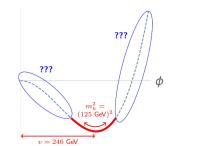
XCC

- XFEL for x >1000
- Energy of colliding photon close to 100% $E_{\rm e}$
- Peaked spectrum
- ~20% of electrons converted
- h-production at E_e = 62.8 GeV
- di-Higgs at E_e = 190 (140) GeV
- $\lambda_e P_c = 0.9$

Design for XCC $\sqrt{s} = 125$ GeV

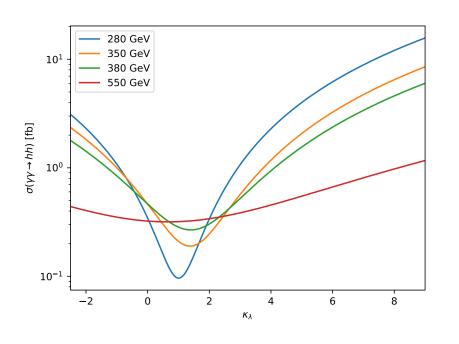

• Might fit into 2nd interaction area of LCF!

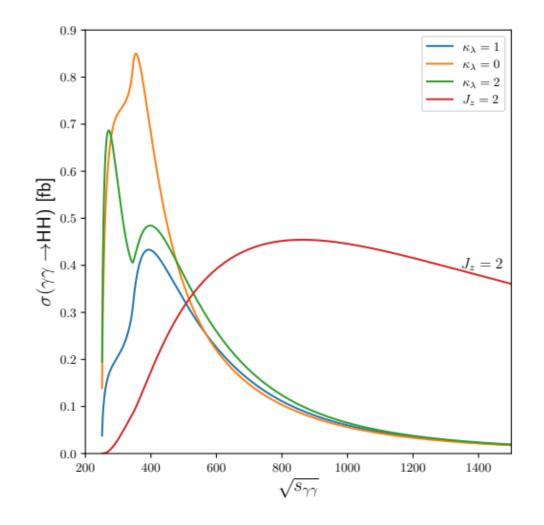
EPS@Marseille, July 2025

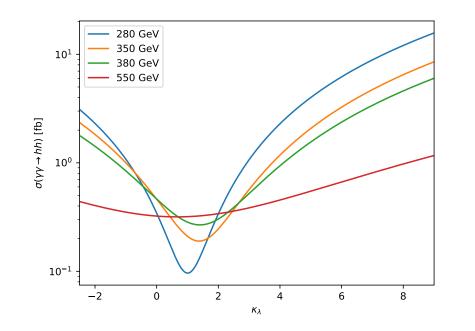

Parameters for cms = 380 GeV

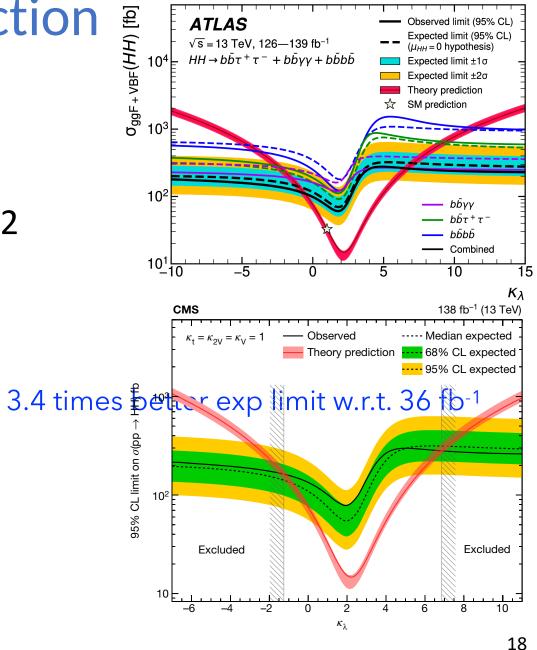

LCVision, Balazs et al., arXiv 2503.19983

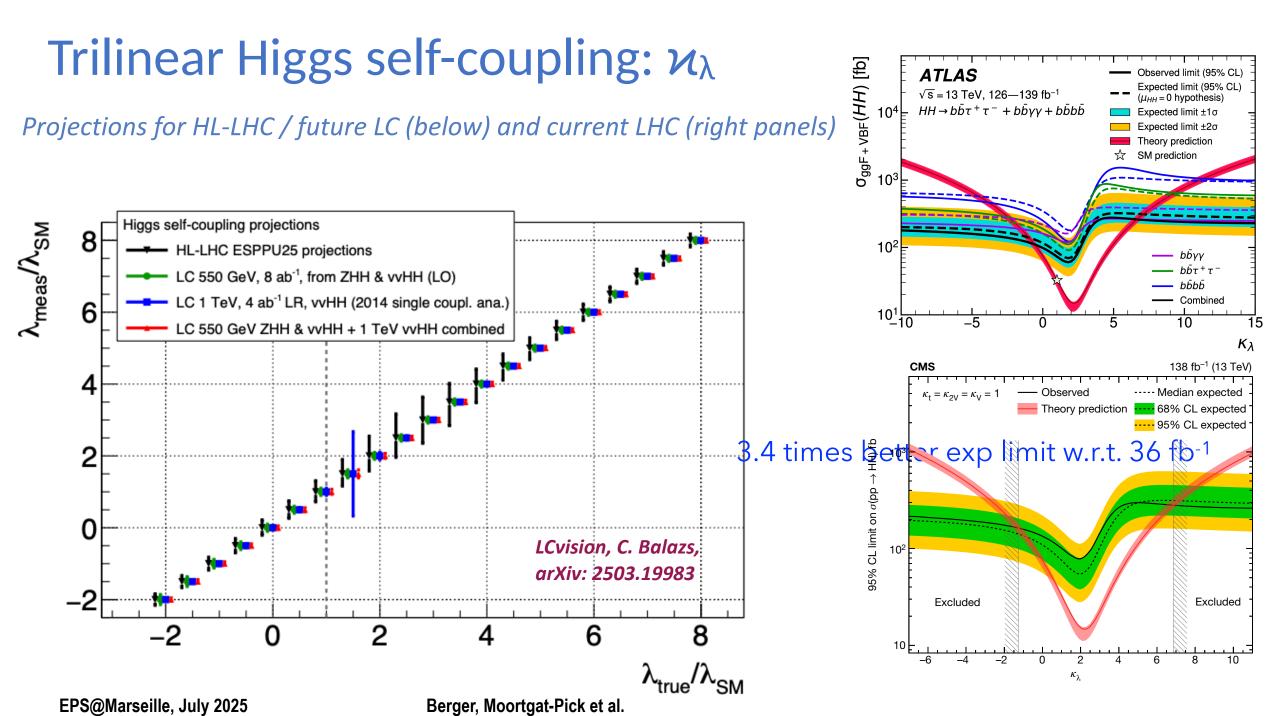
Final Focus parameters	SCRF + Optical Laser	C3 + XFEL
Electron energy [GeV]	250	190
Electron beam power [MW]	10.5	2.1
eta_x/eta_y [mm]	1.5/0.3	0.01/0.01
$\gamma \varepsilon_x / \gamma \varepsilon_y$ [nm]	2500/30	60/60
σ_x / σ_y at $e^- e^-$ IP [nm]	88/4.3	1.3/1.3
σ_{z} [µm]	300	10
Bunch charge [10 ¹⁰ e^{-}]	2	0.62
Bunches/train at IP	2625	93
Train Rep. Rate at IP [Hz]	5	120
Bunch spacing at IP [ns]	366	5.2
σ_x/σ_y at IPC [nm]	176/37.5	5,2/5.2
$\mathscr{L}_{\text{geometric}} [10^{34} \text{cm}^2 \text{ s}^{-1}]$	12	180
δ _E /Ε [%]		0.1
L^* (QD0 exit to e^-e^- IP) [m]	3.8	1.5 or 3.0
d_{cp} (IPC to IP) [μ m]	2600	40
crossing angle [mrad]	20	2 or 20



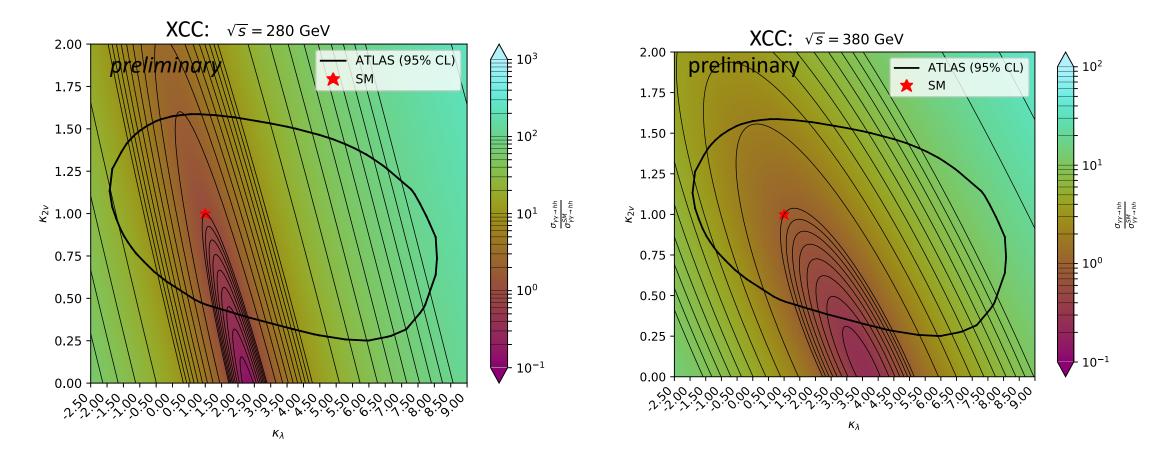

Di-Higgs production


- Triangle contribution only for $J_z=0$
- Highly depending on trilinear Higgs-coupling




Comparison Di-Higgs production $\gamma\gamma$ -collider and LHC

- Minimum around $\kappa_{\lambda} = 1$
- Compared to LHC minimum around κ_{λ} = 2



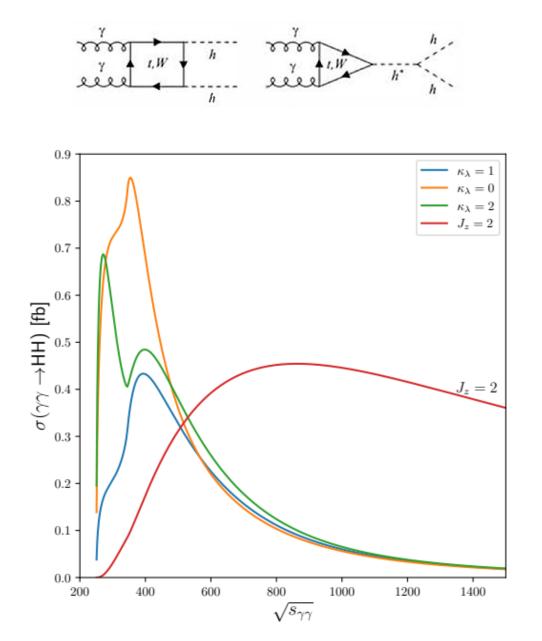
EPS@Marseille, July 2025

Comparison κ_{λ} and κ_{2V} contributions

• Impact of variation of κ_{λ} significantly larger than that of κ_{2V}

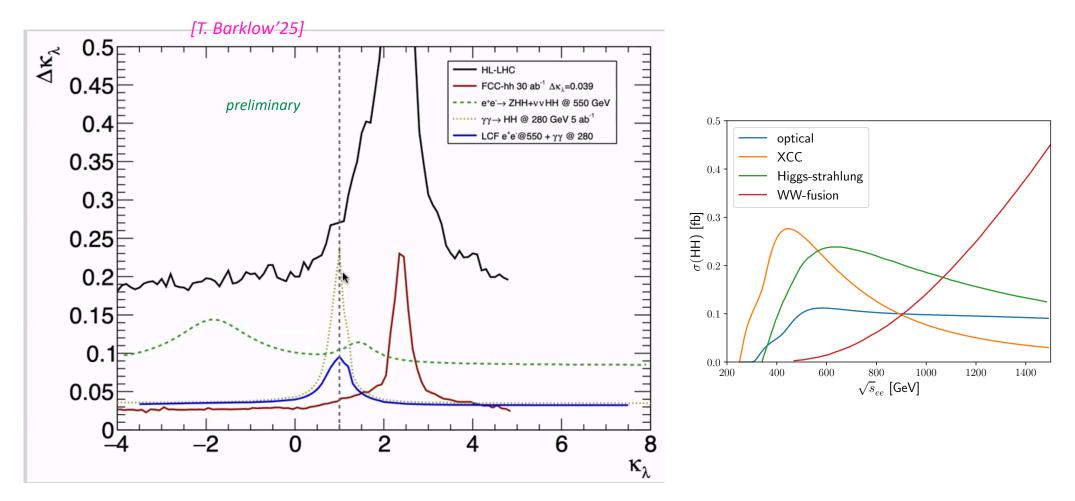
Di-Higgs production

- CAIN spectrum for colliding photons
- Assuming SM-like couplings
- Optical


 $\mathscr{L}_{\gamma\gamma} = 9.84592 * 10^{34} \text{cm}^{-2} \text{s}^{-1}$

– 65 events per year

• XCC


$$\mathscr{L}_{\gamma\gamma} = 1.83008 * 10^{35} \text{cm}^{-2} \text{s}^{-1}$$

202 events per year

EPS@Marseille, July 2025

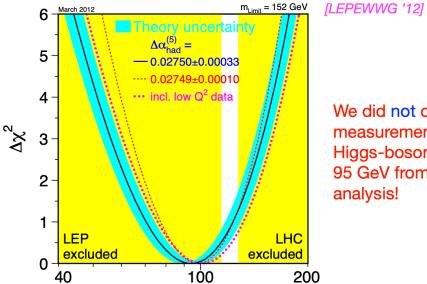
Expectations: λ_{hhh} precision at HL-LHC, FCC-hh, e+e-(@550) and $\gamma\gamma$

 \Rightarrow Minimum cross section at different κ_{λ} than at e⁺e⁻LC

- \Rightarrow Complementary between both runnings: e^+e^- and $\gamma\gamma$ collisions runnings !!!
- ⇒ compatible with FCC-hh precision expectations.....excellent news for HEP!

EPS@Marseille, July 2025

Indirect measurement of trilinear couplings?


Indirect access to λ_{hhh} via

→ cf talk M. Vellasco, Higgs Session

- single Higgs processes: λ_{hhh} enters at 1-loop order
- electroweak precision observables: λ_{hhh} enters at 2-loop order

Loop contribution of λ_{hhh} competes with much larger lowest-order contributions, other loop contributions (e.g. top loop) that are numerically dominant and potentially with BSM loop contributions Indirect sensitivity via loop effects is limited !!!

A lesson from the past: the "blue band plot", global fit for the Higgs-boson mass in the S

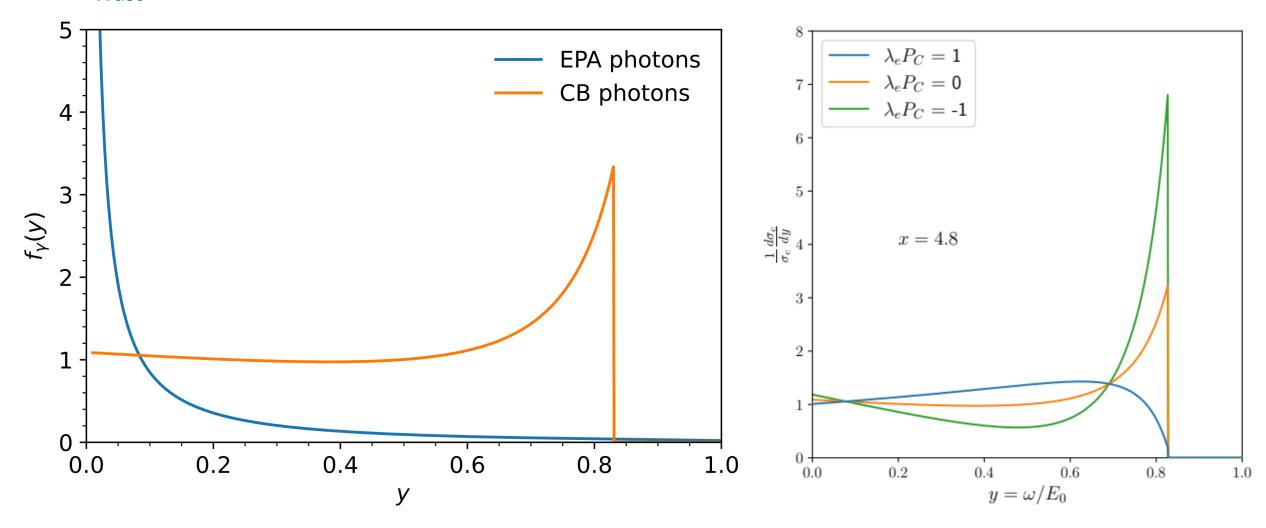
We did not claim a measurement of the Higgs-boson mass at 95 GeV from this analysis!

 \Rightarrow This is not a "measurement" of m_h, but an indirect constraint from loop contributions within a specific model (in this case the SM)

EPS@Marseille, July 2025

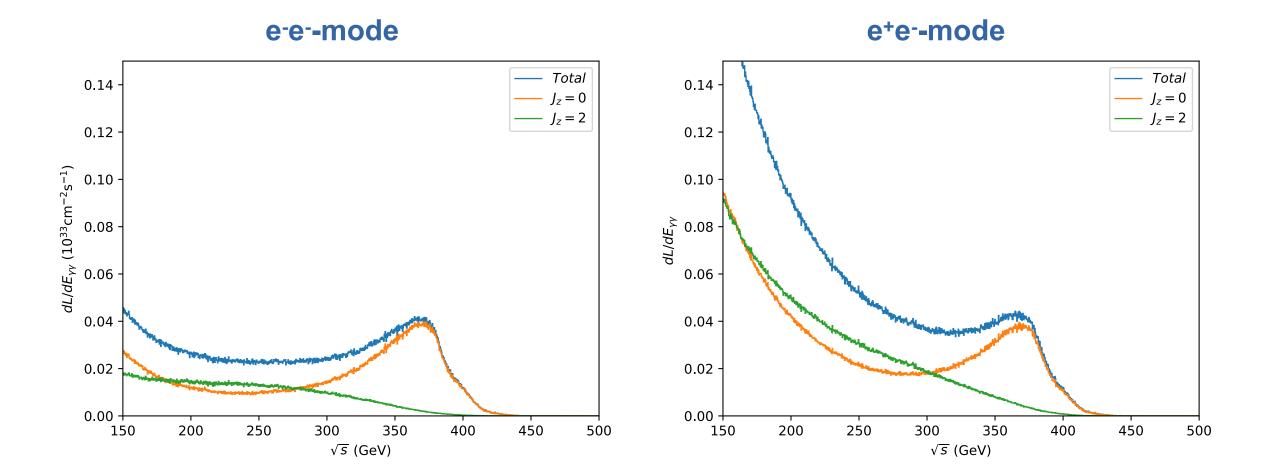
Conclusions

- Gamma-gamma colliders are great additions to e^+e^- colliders
- Great opportunity to measure tri-linear Higgs coupling at lower energies !
- Complimentary with pp and e+e- analyses

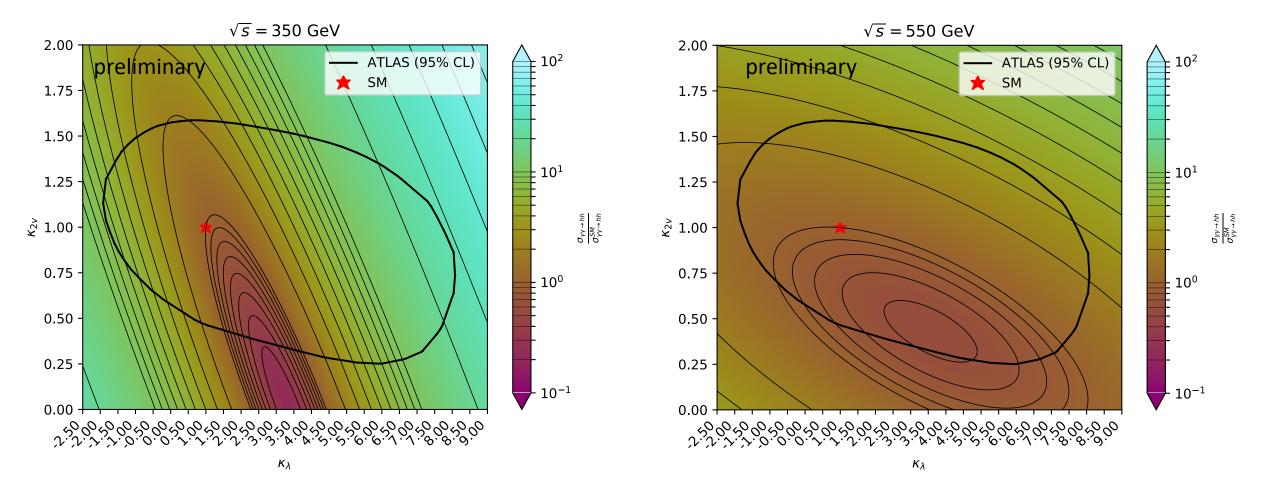

Ongoing Work

- Determination of tri-linear Higgs couplings for (B)SM Higgs with different set-ups
- Further optimizing current collider choices

EPS@Marseille, July 2025

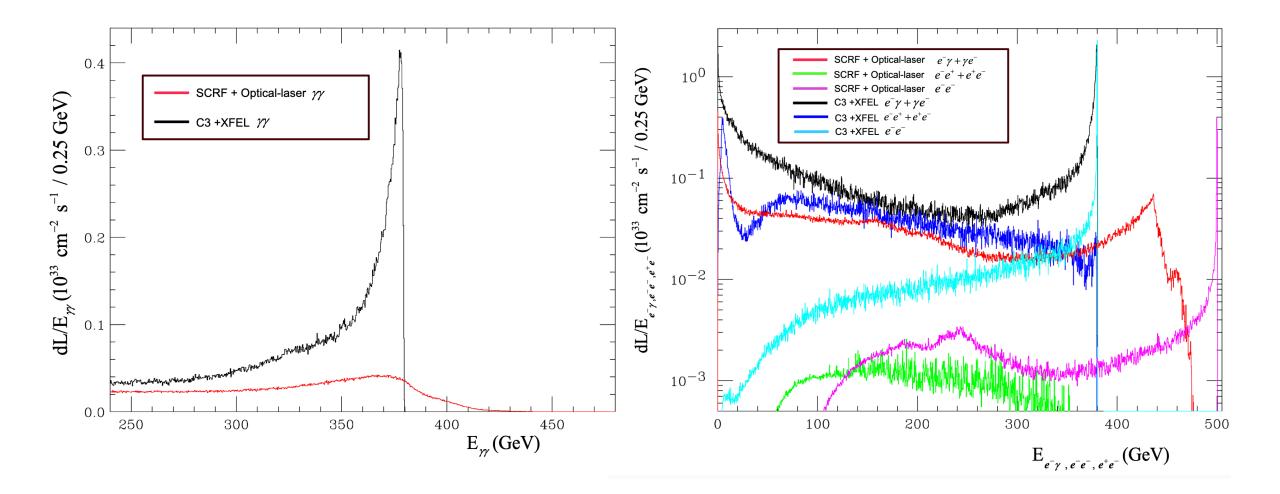

Compared to EPA photons

Wüst


EPS@Marseille, July 2025

Comparison between e⁻e⁻ and e⁺e⁻

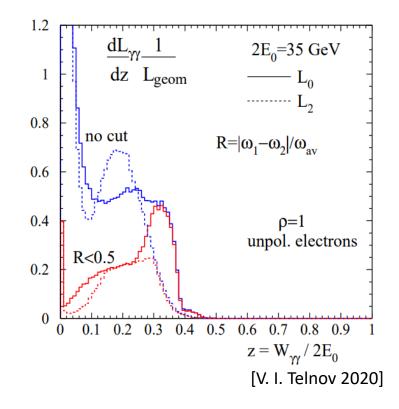
EPS@Marseille, July 2025


Comparison κ_{λ} and κ_{2V} contributions for \sqrt{s} =350 and 550 GeV

• Impact κ_{2V} variation neglible compared to κ_{λ}

EPS@Marseille, July 2025

Additional processes in $\gamma\gamma$ mode


Prototyping: Gamma-gamma collider at XFEL

[V. Telnov]

 $\Big|\,\omega_m\approx\frac{x}{x+1}E_0\,$

- Use European XFEL ($E_0 = 17.5 \text{ GeV}$)
- At the beam dump

- 12 GeV peak
- Excellent for $b\bar{b}$ and $c\bar{c}$ range

 $x = \frac{4E_0\omega_0}{m^2c^4} \simeq 15.3 \left[\frac{E_0}{\text{TeV}}\right] \left[\frac{\omega_0}{\text{eV}}\right] = 19 \left[\frac{E_0}{\text{TeV}}\right] \left[\frac{\mu\text{m}}{\lambda}\right]$

Parameters of a Gamma-gamma collider@XFEL

$2E_0$	GeV	35	
N per bunch	10^{10}	0.62	
Collision rate	kHz	13.5	
σ_z	μ m	70	
$\varepsilon_{x,n}/\varepsilon_{y,n}$	mm ∙ mrad	1.4/1.4	
β_x/β_y at IP	μ m	70/70	
σ_x/σ_y at IP	nm	53/53	
Laser wavelength λ	μ m	0.5	
Parameters x and ξ^2		0.65, 0.05	
Laser flash energy	J	3	
Laser pulse duration	ps	2	
$f\# \equiv F/D$ of laser system		27	
Crossing angle	mrad	~ 30	
<i>b</i> (CP–IP distance)	mm	1.8	
$\mathcal{L}_{ee,\text{geom}}$	$10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.45	
$\mathcal{L}_{\gamma\gamma}(z > 0.5 z_m)$	$10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.19	
$W_{\gamma\gamma}$ (peak)	GeV	12	[V. I.

V. I. Telnov 2020]

EPS@Marseille, July 2025

Indirect constraints on λ_{hhh} are much more difficult to obtain than the indirect constraints on M_h in the SM

- M_h is a free parameter of the SM, but λ_{hhh} is not!
- \Rightarrow Cannot vary λ_{hhh} ``within" the SM, need consistent theoretical framework for possible deviations in λ_{hhh} from SM value, e.g. EFT
 - EFT: need complete basis of operators, involves modeldependence: consistent sub-set of operators? dim-6 vs. dim-8 operators? possible effects of light new particles? range of validity of the EFT description? ...
- ⇒ Need much more than avoiding just some ``blind directions" among certain operators

Recent SMEFT analysis emphasising importance of complete operator basis and EW SMEFT corrections [K. Asteriadis, S. Dawson, P. P. Giardino, R. Szafron '24 – see Pier Paolo's talk]

Example of EW precision observables: possible deviations of M_W , g_μ –2, $sin^2\theta_{eff}$, ... have given rise to many possible model interpretations

Physics case for an e⁺e⁻ collider at 500 GeV and above, Georg Weiglein, 3rd ECFA Workshop on e+e- Higgs, Electroweak and Top Factories, Paris, 10 / 2024

16

Choose sidebar display uch can we learn about λ_{hhh} from its impact on loop corrections?

We want to determine λ_{hhh} , accounting for the fact that it may differ substantially from the SM value

If the observables used for a global fit based on data from the LHC and CEPC or FCC-ee, i.e. no input from the e⁺e⁻ machines on the Higgs pair production process, show a deviation from the SM prediction that is compatible with a non-SM value for λ_{hhh} (within the LHC uncertainties) it will be very difficult to show that this deviation is indeed associated with λ_{hhh} rather than with other higher-order contributions

This issue has not at all been demonstrated for the FCC-ee fits so far; the future experimental results have always been assumed to perfectly agree with the SM; up to now not even statistical fluctuations of the assumed central values around the SM predictions have been taken into account

Physics case for an e⁺e⁻ collider at 500 GeV and above, Georg Weiglein, 3rd ECFA Workshop on e⁺e⁻ Higgs, Electroweak and Top Factories, Paris, 10 / 2024

17