

Higgs Boson **Mass** and Width

Waltteri Leinonen

On behalf of the ATLAS Collaboration

July 10th, 2025

Outline

m_H

 Γ_H

- Free parameter in the SM
- Determines all other properties e.g. CP, branching ratios, Γ_H

<u>Total</u> Higgs decay width, calculated ~4.07 MeV in the SM at measured Higgs mass

- Sensitive to BSM

Precision Higgs mass measurement in $H \rightarrow ZZ$ and $H \rightarrow \gamma\gamma$

- $H \rightarrow \gamma \gamma$: Phys. Lett. B 847 (2023) 138315
- $H \to ZZ^* \to 4l$: Phys. Lett. B 843 (2023) 137880
- Combination : Phys. Rev. Lett. 131 (2023) 251802

Constraining Higgs width from offshell $H \rightarrow VV$ and $H \rightarrow t\bar{t}$

- *H*^{*} → *ZZ* → 4*l* : Rep. Prog. Phys. 88.057803
 (2025)
- $H* \rightarrow WW \rightarrow l\nu l\nu$: CERN-EP-2025-059
- pp $\rightarrow t\bar{t}t\bar{t}$: Phys. Lett. B 861 (2025) 139277

Events must have \geq 2 photon candidates (tight ID, loose isolation).

- 105 GeV < $m_{\gamma\gamma}$ < 160 GeV
- $(p_T^{\gamma_1} > 0.35 \times m_{\gamma\gamma}) \cap (p_T^{\gamma_2} > 0.25 \times m_{\gamma\gamma})$

Events split into 14 categories with higher/lower:

- Energy scale uncertainties
- $m_{\gamma\gamma}$ resolution
- Signal-to-background ratio

17% resolution improvement from splitting alone

m_{γγ} [GeV] з

Significant improvements from **new photon** reconstruction algorithm and photon energy calibration using $Z \rightarrow e^+e^-$

Photon energy calibration : 320 MeV \rightarrow 83 MeV

- Biggest impact $Z \rightarrow e^+e^-$ electron energy **linearity fit**
- Constrain E_T -dependent electron energy scale

Background interference (1-2% shift): ± 26 MeV

Overall x4 reduction of systematics

 $\textbf{330 MeV} \rightarrow \textbf{90 MeV}$

Source	Impact $[MeV]$
Photon energy scale	83
$Z \to e^+ e^-$ calibration	59
$E_{\rm T}$ -dependent electron energy scale	44
$e^{\pm} \rightarrow \gamma \text{ extrapolation}$	30
Conversion modelling	24
Signal–background interference	26
Resolution	15
Background model	14
Selection of the diphoton production vertex	5
Signal model	1
Total	90

Signal modeled in MC with double-sided crystal ball func.

Non-resonant $\gamma\gamma$ -background modelled by template fit to $m_{\gamma\gamma}$ sidebands. Systematics derived from templates of background MC in 3 "loose-not-tight" regions.

5

Mass: $H \rightarrow ZZ \rightarrow 4l$

High purity lepton quadruplet sub-channels $(4\mu, 2e2\mu, 2\mu 2e, 4e)$ low stat. compared to $H \rightarrow \gamma\gamma$

Systematics reduced multiple ways:

• Lepton momentum calibrated from $J/\Psi \rightarrow \mu^+\mu^-$, and $Z \rightarrow l^+l^-$ events

x4 reduction in associated uncertainties

• Kinematic refit of leading dilepton in m_Z

17% better m_{4l} mass resolution

• m_{4l} mass resolution enhanced by quantile regression neural net (QRNN)

Reduces total m_H uncertainty by 1% when included in the likelihood

Event-level resolution (QRNN)

Mass: $H \rightarrow ZZ \rightarrow 4l$

A classification DNN trained in each sub-channel purifies signal from non-resonant *ZZ* backgrounds.

Unbinned profile LH fit is performed across subchannels - **improves sensitivity and resolution**

Systematic Uncertainty	Contribution $[MeV]$
Muon momentum scale Electron energy scale Signal-process theory	$\pm 28 \\ \pm 19 \\ \pm 14$

Final state	Higgs	$ZZ, \\ tXX, VVV$	Reducible backgrounds	Expected total yield	Observed yield	S/B
4μ	78 ± 5	38.7 ± 2.2	2.84 ± 0.17	120 ± 5	115	1.89
$2e2\mu$	53.4 ± 3.2	26.7 ± 1.4	3.02 ± 0.19	83.1 ± 3.5	94	1.80
$2\mu 2e$	41.2 ± 3.0	17.9 ± 1.3	3.4 ± 0.5	62.5 ± 3.3	59	1.93
4e	36.2 ± 2.7	15.7 ± 1.6	2.83 ± 0.35	54.8 ± 3.2	45	1.95
Total	209 ± 13	99 ± 6	12.2 ± 0.9	321 ± 14	313	1.88

Higgs Boson Mass Measurements

High mass-resolution decay-channels, all Higgs production modes considered (ggF, VBF, VH, ttH, tHq, tHW, bbH)

- $H \rightarrow \gamma \gamma$
 - High-statistics and sensitivity
 - Sensitive to non-resonant background modeling
- $H \rightarrow ZZ \rightarrow 4l$ ("golden channel")
 - Lower systematic uncertainty on m_H
 - Lower statistics final state but very high purity

Phys. Rev. Lett. 131 (2023) 251802

Combining profile-likelihoods leads to high-precision measurement: $m_{\rm H} = 125.11 \pm 0.11 \, \text{GeV}$

Higgs Width

9

The Higgs (as measured from **all production modes**) produces a peak in data with an **experimental resolution** $\sim O(10^3)$ MeV.

Theoretically $\Gamma_H \sim 4.1$ MeV, far too small to measure directly from line shape.

Higgs Width (in V-boson channel)

Breit-Wigner parametrization of the Higgs mass spectrum:

Previous full Run-2 analysis: Phys. Lett. B 846 (2023) 138223

Width: $H \rightarrow ZZ^* \rightarrow 4l$

Large *destructive* interference in the off-shell regime – nonlinear signal model $p(\vec{x}|\mu) \sim \mu P_S(\vec{x}) + P_B(\vec{x}) + \sqrt{\mu} P_I(\vec{x})$

Binned likelihood fit sub-optimal to measure all possible values of $\mu_{off-shell}$

Neural simulation-based inference (NSBI) provides a

better estimate of the likelihood ratio (high-dim. probability density ratio) w.r.t a reference distribution $p_{ref}(\vec{x})$

$$-2 \ln \mathcal{L}(\mu, \theta, \alpha) = -2 \sum_{r}^{regions} \ln[Pois(N_r|\nu_r)] - 2 \sum_{i}^{events} \ln\left[\frac{p(\vec{x}|\mu, \theta, \alpha)}{p_{ref}(\vec{x})}\right] + \sum_{m}^{systematics} (\delta \alpha_m)^2$$

See <u>J.Sandesara's talk</u> from yesterday for more on NSBI

Previous full Run-2 analysis: Phys. Lett. B 846 (2023) 138223

Width: $H \rightarrow ZZ^* \rightarrow 4l$

LLR (t_{μ}) is not χ^2 distributed – confidence intervals defined by pseudo-experiments in the Neyman construction

Combination with $H \rightarrow ZZ^* \rightarrow 2l2\nu$ an observed (expected) sensitivity of 3.7 σ (2.4 σ) is reached.

$$\mu_{off-shell} = 1.06 \frac{+0.62}{-0.45} \left(1.00 \frac{+0.83}{-0.83} \right)$$

$$\Rightarrow \Gamma_{H} = 4.3^{+2.7}_{-1.9} \left(4.1^{+3.5}_{-3.4} \right) \text{ MeV}$$

Moving to a NSBI re-analysis yields a 20% better precision w.r.t histogram-based analysis.

 $H \rightarrow WW^* \rightarrow 2l2\nu$ is analysed in SF/DF channels and 0, 1, and 2 jet categories (ggF and VBF).

Events /

101

10-

Expected($\hat{\mu}, \hat{\theta}$)

Data /

Less ggWW background interference but higher non-interfering (top, qqWW, fakes) background contamination. GeV

A DNN is trained to separate signal and noninterfering background to define signal- and controlregions

Events in SR are binned in terms of an m_{WW} proxy variable V_{31} .

Previous Run-1 analysis: Eur. Phys. J. C 75 (2015) 335

Width: $H \rightarrow WW^*$

Off-shell $H \rightarrow WW^*$ is constrained to

 $\mu_{off-shell} < 3.4$ (4.4) at 95% confidence.

$$\mu_{off-shell} = 0.3 + 0.9 - 0.3 + 0.9 - 1.0 + 2.3 - 0.3 = 0.3 + 0.9 - 1.0 = 0.3 + 0.9 - 1.0 = 0.3 + 0.9 - 1.0 = 0.3 + 0.9 - 1.0 = 0.3 + 0.9 - 1.0 = 0.3 + 0.9 - 1.0 = 0.3 + 0.9 - 1.0 = 0.3 + 0.9 - 1.0 = 0.3 + 0.9 - 1.0 = 0.3 + 0.9 - 1.0 = 0.3 + 0.9 + 0.9 = 0.3 + 0.9 + 0.9 = 0.3 + 0.9 + 0.9 = 0.3 + 0.9 + 0.9 = 0.3 + 0.9 + 0.9 = 0.3 + 0.9 = 0.9 = 0.9 + 0.9 = 0.9 = 0.9 + 0.9 = 0.9 = 0.9 + 0.9 = 0.9 = 0.9 + 0.9 = 0.9 = 0.9 + 0.9 = 0.9 = 0.9 + 0.9 = 0.9 = 0.9 + 0.9 = 0.9 = 0.9 = 0.9 + 0.9 =$$

 $\Rightarrow \Gamma_H < 13.1 (17.3) MeV \text{ at } 95\% \text{ confidence} +3.4 (17.3) MeV \text{ at } 95\% \text{ confidence}$

 $\Gamma_H = 0.9^{+3.4}_{-0.9} \left(4.1^{+8.3}_{-3.8}\right) \text{ MeV}$

First width interpretation in $H \rightarrow WW^*$ using full Run-2 dataset.

Roughly ~500% improvement over Run-1 measurement!

Width: $tt\bar{t}\bar{t} + t\bar{t}H$

The **recent 4-top analysis** has **significant contributions** of off-shell ttH diagrams

When combined with the recent on-shell ttH measurements, an interpretation of Γ_H is possible without the same model assumptions as in $H \rightarrow VV$

Best-fit value: $\Gamma_H = 86 \frac{+110}{-49}$ MeV (2σ away from SM) Upper limit: $\Gamma_H < 160 (55)$ MeV at 95% confidence

This result is the first interpretation of Γ_{H} in Higgs-Top processes distinct from $H \rightarrow VV$ final states

0.5

Conclusions

How heavy is the Higgs?

Higgs mass measured to per-mille level of precision

- $H \rightarrow \gamma \gamma$ provides the highest precision measurement in a single channel
- $H \rightarrow ZZ$ channel is statistically limited, **improved with Run3/HL-LHC data!**

How wide is the Higgs?

Homing in on Higgs width with indirect measurements

- Re-analysis of $H \rightarrow ZZ^*$ with NSBI provides 20% improved precision
- First interpretation of Γ_H in $H \to WW^*$, approaching the precision of $H \to ZZ^*$
- Γ_H probed in $t\bar{t}t\bar{t}$ for the first time, with more to come in Run-3 and HL-LHC!

Thank you for your attention!

Soon, we can start asking "How is the Higgs?" Image generated by ChatGPT 40

Backup

Events split into 14 categories with higher/lower:

- Energy scale uncertainties
- $m_{\gamma\gamma}$ resolution
- Signal-to-background ratio

Category splitting based on the di-photon system

Low pT: $p_{Tt}^{\gamma\gamma} < 70 \text{ GeV}$ Medium pT: $70 < p_{Tt}^{\gamma\gamma} < 130 \text{ GeV}$ High pT: $p_{Tt}^{\gamma\gamma} > 130 \text{ GeV}$ $p_{Tt}^{\gamma\gamma} = |\vec{p}_T^{\gamma\gamma} \times \hat{t}|$ where $\hat{t} = \frac{\vec{p}_T^{\gamma_1} - \vec{p}_T^{\gamma_2}}{|\vec{x}|^{\gamma_1} - \vec{x}|^{\gamma_2}}$

Central: $|\eta| < 0.8$

Outer-barrel: $|\eta| < 1.37$, at least one with $|\eta| > 0.8$

 $\langle m \rangle \pm \frac{\sigma_{error}}{2}$

N_{signal}

End-cap: at least one with $1.52 \le |\eta| < 2.37$

Width w/ 90% of signal

Category	$\sigma_{90}^{\gamma\gamma}[GeV]$	S_{90}	B_{90}	$f_{90} \ [\%]$	Z_{90}
U, Central-barrel, high $p_{\rm Tt}^{\gamma\gamma}$	1.88	42	65	39.1	4.7
U, Central-barrel, medium $p_{Tt}^{\gamma\gamma}$	2.34	102	559	15.4	4.2
U, Central-barrel, low $p_{Tt}^{\gamma\gamma}$	2.63	837	13226	6.0	7.2
U, Outer-barrel, high $p_{\text{Tt}}^{\gamma\gamma}$	2.16	31	83	27.4	3.3
U, Outer-barrel, medium $p_{Tt}^{\gamma\gamma}$	2.63	108	981	9.9	3.4
U, Outer-barrel, low $p_{Tt}^{\gamma\gamma}$	3.00	869	22919	3.7	5.7
U, Endcap	3.33	759	29383	2.5	4.4
C, Central-barrel, high $p_{\text{Tt}}^{\gamma\gamma}$	2.10	26	44	37.3	3.6
C, Central-barrel, medium $p_{\rm Tt}^{\gamma\gamma}$	2.62	62	389	13.8	3.1
C, Central-barrel, low $p_{Tt}^{\gamma\gamma}$	3.00	508	9726	5.0	5.1
C, Outer-barrel, high $p_{\text{Tt}}^{\gamma \gamma}$	2.56	34	103	25.0	3.2
C, Outer-barrel, medium $p_{\rm Tt}^{\gamma\gamma}$	3.20	114	1353	7.8	3.1
C, Outer-barrel, low $p_{Tt}^{\gamma\gamma}$	3.71	914	30121	2.9	5.2
C, Endcap	4.04	1249	52160	2.3	5.5
Inclusive	3.32	5653	128774	4.2	15.6

Mass: $H \rightarrow \gamma \gamma$

Significant improvements from **new photon** reconstruction algorithm and photon energy calibration using large $Z \rightarrow e^+e^-$ data set

Photon energy calibration : 320 MeV \rightarrow 83 MeV

- $Z \rightarrow e^+e^-$ electron energy **linearity fit**
- Constrain electron E_T -dependent energy scale

Reduction in photon energy scale uncertainty from with E_T -dependent linearity fit across all analysis regions

Mass: $H \rightarrow ZZ \rightarrow 4l$

Non-resonant ZZ backgrounds separated from signal by a **classification DNN**, trained with p_T^{4l} , η^{4l} , and a

matrix-element discriminant: $D_{ZZ} = \ln \left(\frac{|\mathcal{M}_{sig}|^2}{|\mathcal{M}_{bkg}|^2} \right)$

 \mathbf{q}_{22}^{*}

Width: $H \rightarrow ZZ^*$

Neural simulation-based inference (NSBI) model is trained in SR

Variable	Definition	•
$m_{4\ell}$	quadruplet mass	-
m_{Z_1}	Z_1 mass	
m_{Z_2}	Z_2 mass	
$\cos heta^*$	cosine of the Higgs boson decay angle $[\mathbf{q}_1 \cdot \mathbf{n}_z / \mathbf{q}_1]$	
$\cos \theta_1$	cosine of the Z ₁ decay angle $\left[-(\mathbf{q}_2) \cdot \mathbf{q}_{11}/(\mathbf{q}_2 \cdot \mathbf{q}_{11})\right]$	
$\cos \theta_2$	cosine of the Z ₂ decay angle $\left[-(\mathbf{q}_1) \cdot \mathbf{q}_{21}/(\mathbf{q}_1 \cdot \mathbf{q}_{21})\right]$	
Φ_1	Z_1 decay plane angle $[\cos^{-1}(\mathbf{n}_1 \cdot \mathbf{n}_{sc}) (\mathbf{q}_1 \cdot (\mathbf{n}_1 \times \mathbf{n}_{sc})/(\mathbf{q}_1 \cdot \mathbf{n}_1 \times \mathbf{n}_{sc})]$	
Φ	angle between Z_1, Z_2 decay planes $[\cos^{-1}(\mathbf{n}_1 \cdot \mathbf{n}_2) (\mathbf{q}_1 \cdot (\mathbf{n}_1 \times \mathbf{n}_2)/(\mathbf{q}_1 \cdot \mathbf{n}_1 \times \mathbf{n}_2)]$	
$p_T^{4\ell}$	quadruplet transverse momentum	
$y^{\hat{4}\ell}$	quadruplet rapidity	
n _{jets}	number of jets in the event	
m_{jj}	leading dijet system mass	
$\Delta \eta_{jj}$	leading dijet system pseudorapidity	
$\Delta \phi_{jj}$	leading dijet system azimuthal angle difference	

Ensembles of fully connected NNs are trained w/ 10-fold cross-validation (80:20 training split per fold) ~10-70 ensembles are trained to **estimate probability density ratios** w.r.t. a reference PDF. $p_{ref}(x) \sim p_S(x)$ (signal model) is chosen to ensure numerical stability of the model in the SR.

The NSBI method directly estimates the probability density ratio on a per-event basis.

Comparing the NSBI prediction directly with a binned likelihood estimate of the same, a **calibration curve** can show it is an unbiased estimator.

Interference dominated off-shell signal model

Signal dominated off-shell signal model

The interference in the signal region generates **double-minima** in the likelihood function.

This degeneracy can be lifted within the NSBI prescription, as a multi-dimensional phasespace is used in estimating the probability density ratio.

In $H \rightarrow ZZ^*$, toy models are used to generate the precise confidence intervals using the Neyman construction.

The V_{31} mass-proxy variable relates the lepton pair transverse-momenta, invariant mass, and transverse mass

where
$$m_T = \sqrt{\left(E_T^{ll} - E_T^{miss}\right)^2 - \left|p_T^{ll} - E_T^{miss}\right|^2}$$

and $E_T^{ll} = \sqrt{\left|p_T^{ll}\right|^2 - m_{ll}^2}$

V₃₁ bin ranges [GeV]

The V_{31} variable has x=0.3, y=1.0, tuned to give the best proxy of the true m_{WW} (smallest bias with highest correlation to m_{WW})