

EPS-HEP CONFERENCE 07-11 JULY, 2025 PALAIS DU PHARO **MARSEILLE, FRANCE**

Measurements of the CP structure of Higgs-boson couplings with the ATLAS detector

Marina Kholodenko (LIP, Portugal) On behalf of ATLAS collaboration

2024.00227.CERN 2023.00042.RESTART

Co-funded by the **European Union**

Introduction

• Fundamental open question: Baryon asymmetry of the universe

- Not explained by SM
- Three Sakharov conditions (1967): to explain it
 - Baryon number violation

Charge-Parity symmetry violation

• Thermal equilibrium

Standard Model

- CP violation: from a complex phase in the quark mixing matrix
 - Too small to explain observed value of baryon asymmetry

Motivation for searching new sources of CP violation

- SM Higgs boson scalar particle
 - CP violation still allowed in Higgs interaction with SM particles

Search for CP violation in:

- Higgs interaction with EW bosons
- Higgs interaction with Fermions

 The results are in backup
 slides

Overview

Search for CP-violation in Higgs interaction with vector bosons

- H→ZZ^{*}→4ℓ (JHEP 05 (2024) 105)
- VBF H→γγ (Phys. Rev. Lett. 131 (2023) 061802)
- H→WW^{*}→ℓvℓv (arXiv:2504.07686) <u>NEW results</u>
- WH (H→bb) (<u>ATL-PHYS-PUB-2025-022</u>) <u>NEW results</u>
- VBF H→ττ (<u>arXiv:2506.19395</u>) <u>NEW results</u>

All presented analyses are based on the full Run 2 dataset (139 fb⁻¹)

Effective Field Theory

All the anal	ysis assumed	Λ =	1 TeV
--------------	--------------	-----	-------

M	Kho	lode	nko
		louc	111/0

Operator	Structure	Coupling
	Warsaw Basis	
$O_{\Phi ilde W}$	$\Phi^{\dagger}\Phi \tilde{W}^{I}_{\mu u}W^{\mu u I}$	$c_{H\widetilde{W}}$
$O_{\Phi ilde W B}$	$\Phi^{\dagger} au^{I} \Phi ilde{W}^{I}_{\mu u} B^{\mu u}$	$c_{H\widetilde{W}B}$
$O_{\Phi ilde{B}}$	$\Phi^\dagger \Phi ilde{B}_{\mu u} B^{\mu u}$	$c_{H\widetilde{B}}$
	Higgs Basis	
$O_{hZ\tilde{Z}}$	$h Z_{\mu u} \tilde{Z}^{\mu u}$	\widetilde{c}_{zz}
$O_{hZ\tilde{A}}$	$h Z_{\mu u} \tilde{A}^{\mu u}$	$\widetilde{c}_{z\gamma}$
$O_{hA ilde{A}}$	$hA_{\mu u} ilde{A}^{\mu u}$	$\widetilde{c}_{\gamma\gamma}$

	HISZ basis	
$c_{H\widetilde{W}} = c$	$c_{H\widetilde{B}} = \frac{\Lambda^2}{v^2} \widetilde{d}, c_{H\widetilde{B}}$	$_{H\widetilde{W}B}=0$

CP-odd contribution parameterized through one parameter: $\tilde{\textbf{d}}$

 $H \rightarrow ZZ^* \rightarrow 4\ell$

EFT interpretation:

HISZ basis and Warsaw basis

<u>CP-odd optimal observables (OO)</u>

$$\mathcal{OO} = rac{2 \Re \left(\mathcal{M}_{\mathrm{SM}}^{*} \mathcal{M}_{\mathrm{BSM}}
ight)}{\left| \mathcal{M}_{\mathrm{SM}}
ight|^{2}}$$

- CP-odd by construction
- Symmetric for SM
- Any asymmetry direct sign of CP-violation
- Two types:

••• ggF, c ____ = 1.5

••••• ggF, c = -1.5

00 HE

aaF SM

- Production-level OO 0
- Decay-level OO Ο
- Analysis used VBF, ggF and VH productions

2D contours of pairing Wilson coefficients

<u>CP-odd Wilson coefficients limits 68% and 95% CLs</u>

- Shape only fit
 - Signal normalization floated in the fit
 - CP-odd sensitivity only
- Linear + quadratic terms
- The results are consistent with SM expectations
- No sign of CP-violation

VBF $H \rightarrow \gamma \gamma$

Phys. Rev. Lett. 131 (2023) 061802

Optimal Observable

$$OO = 2\text{Re}(\mathscr{M}_{\text{SM}}^*\mathscr{M}_{\text{CP-odd}})/|\mathscr{M}_{\text{SM}}|^2$$

EFT bases

- Warsaw: C_{HŴ}
- HISZ: **d**

Interpretation

- Interference only term
- Interference + quadratic

Optimal Observable distribution

Negative log-likelihood scans

• Shape only fit

- Signal normalization
 float in the fit
- NLL scans for various c_{HW} and d hypotheses.
- Inter only and Inter+quad fit

95% CL. Interference only term

- d̃: [-0.032,0.059]
- c_{Hw}: [-0.53,1.02]

- The results compatible with SM
- Precision is limited by statistical uncertainty
- No sign of CP violation
- Small difference between Inter only and Inter+quad

H->WW*->lvlv

arXiv:2504.07686

 $ggF \ production$

VBF production

<u>CP-sensitive angular observable</u>: $\Delta \phi^{\pm}_{\mu}$

- Signed azimuthal difference between two leading jets
- Four bins:
 - $\circ \quad [-\pi, -\pi/2), [-\pi/2, 0), [0, +\pi/2), [+\pi/2, \pi)$
- **EFT** interpretation:
 - Warsaw basis
 - o c_{HG}, c_{HW} CP-even
 - c_{HG}, c_{HW} CP-odd

Simplified Template Cross-Section (STXS) scheme

Categorization:

- Njets, Higgs transverse momentum p_{T}^{H}
- Di-jet invariant mass m_{ii}

•
$$\Delta \phi^{\pm}$$

H→WW^{*}→ℓvℓv

• <u>Deep Neural Network (DNN)</u>

- To identify signal topology
- <u>Shape only fit</u>
 - Signal normalization floated in the fit
- No signs of CP violation
- The correlation between different Wilson coefficients is less than 5%

Wilson coefficients limits

Signal strength in STXS bins normalised to SM predictions

EPS-HEP 2025 July 7-11, 2025

WH (H→bb)

ATL-PHYS-PUB-2025-022 NEW

Measured WH production cross sections times branching ratios

• The results are in agreement with the SM expectations

- **Observables: Angular:** $\mathbf{Q}_{\ell}\mathbf{Cos}\delta^{\dagger}$ **Energy-related:** $\mathbf{p}_{\mathsf{T}}^{\mathsf{W}}$ $Q_{\ell}\mathbf{cos}\delta^{\dagger} = Q_{\ell}\frac{\overrightarrow{p_{\ell}}^{(W)} \cdot (\overrightarrow{p_{H}} \times \overrightarrow{p_{W}})}{|\overrightarrow{p_{\ell}}^{(W)}| |\overrightarrow{p_{H}} \times \overrightarrow{p_{W}}|}$
- STXS measurements
 - $p_{T} = p_{T}^{W} \times Q_{\ell} Cos \delta^{\dagger}$ categorization
- EFT interpretation:
 - Warsaw basis: c_{Hw}
 - SM-SMEFT interference term only

Analysis strategy from:

• ATLAS VH (H \rightarrow bb/cc) arxiv:2410.19611

WH (H→bb)

95% CL c_{HW}: [-0.62,0.85]

- Shape only fit
 - Signal normalization float in the fit
- In agreement with SM expectation
- <u>No CP violation observed</u>
- Among the most stringent results
 - Fewer assumptions on other coefficients
 - \circ Sensitivity only to $c_{H\vec{W}}$

VBF H->tt

EFT interpretation:

- HISZ basis: ã (c_{Hyy}, c_{HZZ}, c_{HWW}, c_{HyZ})
- Warsaw basis: c_{HW,}c_{HB,}c_{HWB}

CP-odd optimal observables

 $OO = \frac{2\Re(\mathcal{M}_{SM}^*\mathcal{M}_{CP\text{-}odd})}{|\mathcal{M}_{SM}|^2}$

Optimal observable distribution

Three combination of τ -lepton decay:

- $\tau_{had} \tau_{had}$ fully hadronic
- $\tau_{lep} \tau_{had}$ semileptonic ($\tau_{lep} \rightarrow \ell v v$)
- $\tau_{lep} \tau_{lep}$ leptonic (evv, μvv)
 - Same-flavours leptonic decays rejected

$VBF \hspace{0.1cm} H {\rightarrow} \textbf{tt}$

Neural Network is used to construct SR

- Separate for each channel
- Trained on VBF Higgs SM
- Tested for different CP-odd hypothesis
 - Consistent with SM, no biases

Main backgrounds:

- $Z(\rightarrow \tau \tau)$ +jets
 - Estimated using <u>object-level embedding</u>
- misidentified τ candidates,
- top-quark processes, multi-boson production

M.Kholodenko

EPS-HEP 2025 July 7-11, 2025

VBF H→ττ

Wilson coefficients limits

• Negative log likelihood scan (NLL) to get sensitivity to CP-odd coupling

- SRs are binned in OO
- Shape only fit
 - Signal normalization float in the fit
- Expected results from OO fit also compared with fits using other observables:
 - **5% stronger** than using $2p_{T_+}p_{T_-}Sin(\Delta \phi^{sign}_{jj})$
 - **30% stronger** than using $\Delta \phi^{\text{sign}}$
- Adding quadratic term gives small difference
- The results are consistent with SM expectation
- No sign of CP-violation

Summary plot: c_{Hw} limits

- 95% CL c_{HW} comparison, Λ = 1 TeV
- Linear only interpretation
 - Except H→ZZ^{*}→4l: negligible impact from quadratic term
- H→WW^{*} simultaneous fit to
 c_{HG}, c_{HG}, c_{HW}, c_{HW}
 - Correlations < 5%

Different measurements affected by different assumptions

- Five ATLAS searches for CP-violation in Higgs interactions with vector bosons using the Run 2 dataset presented
 - New results are reported for the channels:
 - VBF H \rightarrow tt, WH (H \rightarrow bb), H \rightarrow WW^{*} \rightarrow {v{v}
 - No evidence for CP-violation was observed in any channel
 - Limits on the relevant Wilson coefficients were set within the EFT framework
 - The combined measurements of the CP properties of Higgs boson to vector bosons are ongoing
- Extensive CP-measurements program from the ATLAS experiment in Run 2 in many different production channels and final states
- CP-measurements using Run 3 dataset are ongoing

Thank you

Back up

Summary 95% CL limits on Λ

- The limits are derived using the results from 5 analysis presented above.
- Asymmetric uncertainties are symmetrised using the root mean square.

Optimal observable

$$\mathcal{OO} = rac{2 \Re \left(\mathcal{M}_{\mathrm{SM}}^{*} \mathcal{M}_{\mathrm{BSM}}
ight)}{\left| \mathcal{M}_{\mathrm{SM}}
ight|^{2}}$$

- Combines the information from different kinematic variables
- Higher sensitivity
- Defined by the ratio of the interference term in the matrix element (ME) to the SM contribution
- The mean value of the Optimal Observable can be experimentally measured
- In SM the distribution is symmetric with mean value equal zero

$H \rightarrow ZZ^* \rightarrow 4\ell$

Three different fits:

• Decay-only, production-only, combined

Dominant background: non-resonant ZZ*

Event categorization:

- Side band ZZ* CR
- Inclusive SR for decay-only fit
- VBF SRs for production-only fit
 - NN discrimination between VBF, VH, ggF
 - 2 VBF high purity SRs
 - 2 SRs with large ggF admixture

EPS-HEP 2025 July 7-11, 2025

Morphing method

4

$$\sigma = \sum_{k=0}^{4} c^k A_k = \vec{c} \cdot \vec{A}, \quad \text{with} \quad \vec{c} = \left(1, c, c^2, c^3, c^4\right) \quad \text{and} \quad \vec{A} = (A_0, A_1, A_2, A_3, A_4)$$

• The cross-section in each phase space bin is a polynomial function of the EFT coupling

$$\sigma = ec{c} \cdot ec{A} = ec{c} \cdot \left(ec{C}^{-1} \cdot ec{\sigma}_{ ext{simulated}}
ight) = \sum_{j} \underbrace{\left(ec{C}_{j}^{-1} \cdot ec{c}
ight)}_{w_{j}(ec{c})} \sigma_{j}$$

- The cross-section is expressed as a linear combination of the existing, simulated cross-sections
- The weights to be applied to each of the simulated samples to obtain the signal prediction.
- The number of samples is determined by the number of unique coupling combinations for three BSM couplings and two (production and decay) HVV vertices

$H \rightarrow ZZ^* \rightarrow 4\ell$: OO distributions

JHEP 05 (2024) 105

$H \rightarrow ZZ^* \rightarrow 4\ell$: NLL scans

JHEP 05 (2024) 105

M.Kholodenko

EPS-HEP 2025 July 7-11, 2025

July 10,2025 25/18

Differential cross-section measurements

- Model-independent result
- Sensitive to possible BSM effects on both the yields and the shape
- Fiducial phase space unfolding

- All measurements are consistent with the SM
- No significant CP-odd component is observed

$\mathsf{VBF}\ \mathsf{H}{\rightarrow}\gamma\gamma$

Interpretation

• Reweighting method

HISZ basis:

- 2 weights
- HAWK program

$$w_1 = 2\text{Re}(\mathcal{M}_{\text{SM}}^* \mathcal{M}_{\text{CP-odd}}) / |\mathcal{M}_{\text{SM}}|^2$$
$$w_2 = |\mathcal{M}_{\text{CP-odd}}|^2 / |\mathcal{M}_{\text{SM}}|^2$$

Warsaw basis:

$$\frac{d\sigma}{dOO} = \left(\frac{d\sigma}{dOO}\right)^{\rm NLO} \times \left(\frac{d\sigma}{dOO}\right)^{\rm MG5}_{c_{H\bar{W}}} / \left(\frac{d\sigma}{dOO}\right)^{\rm MG5}_{c_{H\bar{W}}=0}$$

- prediction from MadGraph using SMEFTSim
- NLO SM VBF signal sample

VBF H→γγ

	68% (exp.)	95% (exp.)	68% (obs.)	95% (obs.)
\tilde{d} (inter. only)	[-0.027, 0.027]	[-0.055, 0.055]	[-0.011, 0.036]	[-0.032, 0.059]
\tilde{d} (inter.+quad.)	[-0.028, 0.028]	[-0.061, 0.060]	[-0.010, 0.040]	[-0.034, 0.071]
\tilde{d} from $H \to \tau \tau$	[-0.038, 0.036]	—	[-0.090, 0.035]	-
Combined \tilde{d}	[-0.022, 0.021]	[-0.046, 0.045]	[-0.012, 0.030]	[-0.034, 0.057]
$c_{H\tilde{W}}$ (inter. only)	[-0.48, 0.48]	[-0.94, 0.94]	[-0.16, 0.64]	[-0.53, 1.02]
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.48, 0.48]	[-0.95, 0.95]	[-0.15, 0.67]	[-0.55, 1.07]

$\mathsf{VBF}\ \mathsf{H}{\rightarrow}\gamma\gamma$

Phys. Rev. Lett. 131 (2023) 061802

Event categorization

BDT trees

- To separate VBF signal from ggF
- To distinguish signal from continuum background
 - Prompt di-photon events
 - Misidentified jets as photons
- T (tight)/L(loose) BDT regions
- VBF signal / ggF about 10 for tight region

H->WW*->lvlv

arXiv:2504.07686

EPS-HEP 2025 July 7-11, 2025

CHW

H→WW^{*}→ℓvℓv

• The measured $ggH \ge 2$ -jets STXSCP POIs exhibit opposite trends below and above pHT = 200 GeV

H→WW^{*}→ℓvℓv

arXiv:2504.07686

WH (H→bb)

$$\cos \delta^{+} = \frac{\mathbf{p}_{\ell}^{(W)} \cdot (\mathbf{p}_{H} \times \mathbf{p}_{W})}{|\mathbf{p}_{\ell}^{(W)}| \cdot |\mathbf{p}_{H} \times \mathbf{p}_{W}|}$$

Q_ℓCosδ⁺

- Symmetric for SM
- asymmetric for c_{Hw}≠0

WH (H→bb)

Higgs candidate reconstruction : Resolved and boosted

Event categorization in SR and CRs

Signal WH process:

- Isolated lepton
- Missing transverse energy from the neutrino
- 2 b-jets in the final state

Dominant backgrounds:

- Top quark (ttbar, Wt)
- W+jets (mainly heavy flavoured)

Minor backgrounds:

- Single top s/t-channels
- Diboson
- Z+jets
- Multijets

VBF H→ττ

HISZ basis: CP-odd for the vertex HVV

$$\tilde{c}_{H\gamma\gamma} = \frac{g}{2m_W} (\tilde{d}\sin^2\theta_W + \tilde{d}_B\cos^2\theta_W) \qquad \tilde{c}_{H\gamma Z} = \frac{g}{2m_W}\sin 2\theta_W (\tilde{d} - \tilde{d}_B)$$
$$\tilde{c}_{HZZ} = \frac{g}{2m_W} (\tilde{d}\cos^2\theta_W + \tilde{d}_B\sin^2\theta_W) \qquad \tilde{c}_{HWW} = \frac{g}{m_W} \tilde{d},$$

Warsaw basis: CP-odd for the vertex HVV

$$\frac{c_{H\tilde{W}}}{\Lambda^2}H^{\dagger}H\tilde{W}^{I}_{\mu\nu}W^{\mu\nu I}, \frac{c_{H\tilde{B}}}{\Lambda^2}H^{\dagger}H\tilde{B}_{\mu\nu}B^{\mu\nu}, \frac{c_{H\tilde{W}B}}{\Lambda^2}H^{\dagger}H\sigma^{I}\tilde{W}^{I}_{\mu\nu}B^{\mu\nu},$$

• The two representations are not independent, and it is possible to transform one into the other

Signal sample production with non-vanishing values of CP violation in the HVV vertex

- Reweighting procedure based on EFT interpretation
- HISZ basis:
 - HAWK: the ratio of the squared ME value of the VBF process associated with a specific amount of CP mixing to that obtained from the SM
- Warsaw basis:
 - based on the OO distribution at different values of the Warsaw basis operator considered
 - MADGRAPH samples (MG5) for ci≠0 obtained at A=1 TeV fixing all other Wilson coefficients to zero

$$\frac{d\sigma}{dOO} = \left(\frac{d\sigma}{dOO}\right)^{\rm NLO} \times \left(\frac{d\sigma}{dOO}\right)_{c_i}^{\rm MG5} \left| \left(\frac{d\sigma}{dOO}\right)_{c_i=0}^{\rm MG5} \right|^{\rm MG5}$$

$VBF \hspace{0.1cm} H {\rightarrow} \hspace{-0.1cm} \tau \tau$

Background estimation:

- Embedding procedure (<u>arXiv: 1506.05623</u>)
- Relies on assumption that $Z \rightarrow \ell \ell$ ($\ell = e_{\mu}u$) and $Z \rightarrow \tau \tau$ kinematically identical
- $Z(\rightarrow \ell \ell)$ +jets enriched templates
 - Momentum of reconstructed leptons scaled
- Misidentified r candidates:
 - Estimated using data-driven method: Matrix method and fak-factor method (arXiv: 2211.16178)

M.Kholodenko

EPS-HEP 2025 July 7-11, 2025

VBF $H \rightarrow \tau \tau$: post-fit OO, NLL scan

M.Kholodenko

EPS-HEP 2025 July 7-11, 2025

July 10,2025 38/18

$VBF \hspace{0.1cm} H {\rightarrow} \tau\tau$

- Expected results from OO fit also compared with fit from other observables:
 - **5% stronger** than using $2p_{T+}p_{T-}Sin(\Delta \phi^{sign})$
 - 30% stronger than using $\Delta \phi^{\text{sign}}_{jj}$

Other CP-odd observables

 $-SM VBF H (\tilde{d} = 0)$

3 ∆¢^{sign}

 $---\tilde{d} = 0.1$

 $--\tilde{d} = -0.02$

NLL scans for fits with different observables

0

Higgs fermion couplings

Introduction

- Higgs interactions with fermions \rightarrow Yukawa couplings
- CP-odd contribution to Yukawa couplings
 - Can be present at tree level

Higgs interaction with τ -leptons

 \circ CP-odd component of HVV coupling suppressed by Λ

Eur. Phys. J. C 83 (2023) 563

Phys. Lett. B 849 (2024) 138469

M Kholodenko	

Phys. Lett. B 849 (2024) 138469

Phys. Lett. B 849 (2024) 138469

Post-fit distributions in SRs

- $\int_{-\infty}^{/}$ free parameters in the fit
- Red solid histogram best fit signal with 1/2 11 9 1
- Dashed/dotted lines predictions for pure CP-even and CP-odd hypothesis

M.Kholodenko

Phys. Lett. B 849 (2024) 138469

- Post-Fit plot
- Expected yields for pure *CP*-even and *CP*-odd signals (dashed lines)

M.Kholodenko

Event categorization

Channel (TR)	Final SRs and CRs	Classification BDT selection	Fitted observable
Dilepton (TR ^{$\geq 4j$,$\geq 4b$})	$CR_{no-reco}^{\geq 4j, \geq 4b}$ $CR^{\geq 4j, \geq 4b}$ $SR_{1}^{\geq 4j, \geq 4b}$ $SR_{2}^{\geq 4j, \geq 4b}$	$ \begin{array}{c} - \\ \text{BDT}^{\geq 4j, \geq 4b} \in [-1, -0.086) \\ \text{BDT}^{\geq 4j, \geq 4b} \in [-0.086, 0.186) \\ \text{BDT}^{\geq 4j, \geq 4b} \in [0.186, 1] \end{array} $	$egin{array}{c} \Delta\eta_{\ell\ell}\ b_4\ b_4\ b_4\ b_4 \end{array}$
ℓ +jets (TR ^{$\geq 6j, \geq 4b$})	$CR_{1}^{\geq 6j, \geq 4b}$ $CR_{2}^{\geq 6j, \geq 4b}$ $SR^{\geq 6j, \geq 4b}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} b_2 \\ b_2 \\ b_2 \\ b_2 \end{vmatrix}$
ℓ +jets (TR _{boosted})	SR _{boosted}	BDT ^{boosted} $\in [-0.05, 1]$	BDT ^{boosted}

$$\kappa_t' = 0.84^{+0.30}_{-0.46}$$
 $\alpha = 11^{\circ+52^{\circ}}_{-73^{\circ}}$

- The results are consistent with SM
- First probe of the CP properties of the Higgs-top Yukawa coupling in this channel
- The pure CP-odd hypothesis disfavoured at 1.2σ

Decay mode combinations of the τ -lepton pair and the corresponding methods to construct the $\phi^*_{\ CP}$ observable

Decay channel	Decay mode combination	Method	Fraction in all τ -lepton-pair decays
	ℓ–1p0n	IP	8.1%
$ au_{ m lep} au_{ m had}$	ℓ–1p1n	$IP-\rho$	18.3%
	ℓ–1pXn	$IP-\rho$	7.6%
	ℓ–3p0n	IP– a_1	6.9%
$ au_{ ext{had}} au_{ ext{had}}$	1p0n-1p0n	IP	1.3%
	1p0n-1p1n	$IP-\rho$	6.0%
	1p1n-1p1n	ho	6.7%
	1p0n–1pXn	$IP-\rho$	2.5%
	1p1n–1pXn	ho	5.6%
	1p1n-3p0n	ρ - a_1	5.1%

 W^+

$\mathcal{L}_{H\tau\tau} = -\frac{m_{\tau}}{\upsilon} \kappa_{\tau} (\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_{5} \tau) H$ Yukawa coupling strength

<u>CP-sensitive angular observable φ^{+}_{CP} </u>

- Signed acoplanarity angle between the τ -lepton decay planes
- Different reconstruction methods for different τ -decays

The analysis targets:

- τ_{lep} , τ_{had} one leptonic and one hadronic τ -decays τ_{had} , τ_{had} two hadronically decaying τ -leptons

 $\pmb{\tau}\text{-lepton}$ decay planes for constructing ϕ^{*}_{CP} observable

M.Kholodenko

EPS-HEP 2025 July 7-11, 2025

Combined post-fit distribution

Two VBF and two gluon-gluon Higgs production SRs

- High, Medium, Low SRs
 - Based on τ -decay mode
 - Different levels of sensitivity

Dominant backgrounds:

- Z(→ττ)+jets
 - \circ Normalisation determined in dedicated CR
- Jets misidentified as hadronically decaying τ-leptons
 - Determined by data-driven approach using fake factors

Simultaneous likelihood fit as function of mixing angle ϕ_{τ}

- Free floating normalization on $Z \rightarrow \tau \tau$
- Higgs boson signal strength $\mu_{\tau\tau}$ left unconstrained
 - \circ Only shape of $\phi^{*}_{\ \ CP}$ exploited

H→**ττ**

Event categorization	VI	BF	Boost	
 VBF production BDT based VBF tagger Gluon-gluon fusion 	$p_{T}^{j_{2}} > 30 \text{ GeV}$ $m_{jj} > 400 \text{ GeV}$ $ \Delta \eta_{jj} > 3.0$ $\eta_{j_{1}} \cdot \eta_{j_{2}} < 0$ Central τ -leptons Signal region (110 <		Not VBF $p_{\rm T}^{\tau\tau} > 100 {\rm GeV}$	
			$< m^{\text{MMC}} < 150 \text{ GeV}$	
	$= \frac{13000}{10}$			
	VBF_1 VBF_0		Boost_1	Boost_0
	BDT(VBF) > 0	BDT(VBF) < 0	$\Delta R_{\tau\tau} < 1.5$ and $p_{\rm T}^{\tau\tau} > 140$ GeV	$\Delta R_{\tau\tau} > 1.5 \text{ or}$ $p_{\mathrm{T}}^{\tau\tau} < 140 \text{ GeV}$
	$Z \rightarrow \tau \tau$ control region (60 < $m_{\tau \tau}^{\text{MMC}}$ < 110 GeV)			
	VBF_1 Z CR	Boost_1 Z CR	Boost_0 Z CR	

H→**ττ**

The observed and expected $-\Delta \ln(L)$ scans in ϕ_{τ} 68% CL:

- Pure CP-odd hypothesis disfavored at 3.4σ level
- The results are compatible with SM expectations
- The total uncertainty is dominated by the statistical uncertainties of the data sample

- No strong correlation between $\mu_{\tau\tau}$ and ϕ_{τ} observed
- The measurements are compatible with SM predictions