Searches for rare Higgs boson processes with the CMS detector

EPS-HEP 2025 Marseille, France

> Alberto Zucchetta on behalf of the CMS Collaboration

alla

Istituto Nazionale di Fisica Nucleare

INFŃ

July 7, 2025

1

Introduction

- The increase in the integrated luminosity makes rare Higgs boson processes more and more accessible
- Rare Higgs boson processes are a test for the SM Higgs sector, e.g. light fermion Yukawa coupling:
 - the charm quark coupling $y_c = \sqrt{2}m_c/v$ is the next target (see Felix Heyen's poster)
 - even smaller are y_u, y_d, y_s , which far exceed the current LHC sensitivity
 - the Higgs trilinear coupling c_{λ} is on track for HL-LHC
- \blacksquare Deviations from SM expectations may indicate New Physics beyond the SM
- This talk will focus on two types of Higgs boson rare processes:

■ rare production of a H produced via Vector Boson

Scattering (VBS) [HIG-24-003]

- rare decays of a H to a ρ, φ, or K* meson and a photon [PLB862(2025)139296], and a Ψ(nS) meson and a photon [PLB865(2025)139462]
- rare decays of a H to Zγ [PRL132(2024)021803]
- rare decays of a H to $\mu\mu$ [JHEP01(2021)148]

VBS VVH production CMS-PAS-HIG-24-003 NEW FOR EPS

- Vector Boson Scattering with VVH production is sensitive to:
 - **c** $_{\lambda}$ Higgs self-coupling, foreseen for HL-LHC

a',/ ā,

c_{2V} quartic gauge coupling

- q_2 q_2' $q_2' q_2$ $q_2' q_2' q_2'$ **Distinctive experimental signature (H + 2×(V = W,Z) + 2 VBS jets)**, but small cross section expected from the SM: 1.77 fb at LO
- However, deviations from the SM may result in:
 - **•** rapid **increase in the cross section**, proportional to k_{2V}^2
 - generally larger Lorentz boost of the W and Z bosons
- As a result, the sensitivity to k_{2V} is competitive with double Higgs channels

boson (bottom) at generator level as a fuction of kay

VBS VVH production

CMS-PAS-HIG-24-003 NEW FOR EPS

- Events divided into 5 exclusive categories, covering final states with:
 - 0 leptons (all hadronic)
 - splitting full-boosted (with AK8 jets) and partially-boosted (AK8 and AK4 jets)
 - 1 lepton (from one W)
 - 2 opposite-sign leptons (from WW or Z)
 - separating events with $m_{\ell\ell}$ close to the Z boson ($\ell\ell$ from Z) or not ($\ell\ell$ from WW)
- \blacksquare Higgs boson always considered in H \rightarrow bb decay, reavealed by a boosted AK8 jet
- H \rightarrow bb and V \rightarrow qq jets identified with ParticleNet tagger [Phys. Rev. D 101, 056019 (2020)]
- **T**wo VBS jets taken as the narrow jets with largest $\Delta \eta_{jj}$

VBS VVH production CMS-PAS-HIG-24-003 NEW FOR EPS

- Background estimation is fully data driven, and based on the automated ABCD method
- The two variables used to the define the A (signal) and BCD regions are:
 - a variable that is related to the VBS jet system, $|\Delta \eta_{jj}|$ or a dedicated BDT
 - a Deep NN (DNN) based on the kinematic variables of the bosons, trained to be uncorrelated from the previous variable

Events in the signal region (A) of the 5 categories

DNN score of the all hadronic (left) and semileptonic categories (right) that is used to determine the A region

- The number of events in 4 ABCD regions \times 5 categories are simultaneously fitted in a combined S+B fit
- Uncertainties are derived from a "closure test" of the method on data
- Good agreement of the data with the estimated background

VBS VVH production

Statistical combination with the parallel channel explored by HIG-24-001 (with two same-sign leptons)

1D limit

- 1D scan assumes $k_{2V} = k_{2W} = k_{2Z}$
- **D**ata constrains $0.40 < k_{2V} < 1.60$

2D limit

• k_{2W} and k_{2Z} are varied independently in a 2D scan

$c \mathrm{H}, \mathrm{H} ightarrow \mathrm{WW} ightarrow e u \mu u$ [HIG-24-009]

Search for H in single charm associated production

- The observed upper limit on σ/σ_{SM} is 1065 (506 expected)
- Constraint on the Yukawa coupling of the Higgs boson to the charm quark:

 $|k_c| < 211$ (95 expected) × SM

expectation

Check also Daina's talk this morning!

γH production [HIG-23-011]

H production in association with a γ and constraints on the Yukawa couplings of light quarks

- boosted Higgs boson (H to $b\bar{b}$ or ZZ $\rightarrow 4\ell$) recoiling against a high-energy photon
- \blacksquare Potentially sensitive to effective HZ γ and H $\gamma\gamma$ anomalous couplings
- Constraints on k_q (assuming the other couplings are SM):

$$\begin{array}{rl} k_u & (0.0 \pm 1.5) \cdot 10^3 \\ k_d & (0.0 \pm 7.1) \cdot 10^2 \\ k_s & 0^{+33}_{-34} \end{array}$$

H decay to a ρ , ϕ , or ${\cal K}^{0*}$ meson $+\gamma$ $_{\rm Phys. \ Lett.\ B \ 862 \ (2025) \ 139296}$

H decay to a $\Psi(nS) + \gamma$

Phys. Lett. B 865 (2025) 139462

$\mathsf{H} \to (\rho, \phi, K^{0*})\gamma$

- the φγ (ργ) involve (in some diagrams) the coupling of the H with the s (u, d) quarks, which are still unexplored
- \blacksquare the $K^{*0}\gamma$ diagram features a FCNC and is therefore strongly suppressed in the SM

 $\begin{array}{c} \mathcal{B} \\ H \to \rho^0(770)\gamma & (1.68 \pm 0.08) \cdot 10^{-5} \\ H \to \phi(1020)\gamma & (2.31 \pm 0.11) \cdot 10^{-6} \\ H \to K^{*0}(770)\gamma & 1.19 \cdot 10^{-11} \end{array}$

- \blacksquare Common final state constituted by a $\gamma+2$ hadronic tracks \rightarrow experimental challenge
 - $\blacksquare \ {\cal B}(\rho^0 \to \pi^+\pi^-) \sim 100\%$

$${\cal B}(\phi
ightarrow K^+K^-) \sim 49\%$$

$$\blacksquare \ \mathcal{B}(K^{*0} \to K^{\pm} \pi^{\mp}) \sim 100\%$$

 $H \to \Psi(\mathsf{nS})\gamma$

- Loop of c quark in direct process \rightarrow probe for $H\bar{c}c$ coupling
- $\begin{array}{l} \blacksquare \ \mathcal{B}(\mathsf{H} \rightarrow \Psi(\mathsf{nS})\gamma) \sim 10^{-6}, \\ \mathcal{B}(\mathsf{Z} \rightarrow \Psi(\mathsf{nS})\gamma) \sim 10^{-8} \end{array}$
- Final state with γ and pair of μ from meson decay ($\mathcal{B}(\Psi(1S) \rightarrow \mu\mu) \approx 6\%$): clean experimental signature
- \blacksquare Z decay as benchmark for ${\cal B}$ prediction
- Both searches maximize sensitivity to the Higgs boson production modes defining specific categories:
 VBF: at least two additional jets with large m_{ij}
 VH, ttH: at least one additional isolated lepton
 ttH, bbH: at least one additional b tagged jet
 ggF: all the events not passing the previous selections

H decay to a ρ , ϕ , or ${\cal K}^{0*}$ meson $+\gamma$ $_{\rm Phys. \ Lett.\ B \ 862 \ (2025) \ 139296}$

H decay to a $\Psi(\mathsf{nS}) + \gamma$ Phys. Lett. B 865 (2025) 139462

$\mathsf{H} \to (\rho, \phi, K^{0*})\gamma$

- Events collected with specifically-designed trigger algorithms:
 - one photon + a jet mimicking a two-pronged τ (2018)
 - one photon + a pair of VBF-like jets
 - one photon + one lepton, or single and double lepton
- The track pair with invariant mass closest to the meson candidate is used to define the signal region and the sidebands
- A BDT classifier, trained on the mass sidebands with event and angualr variables, is used to define two categories depending on S/\sqrt{B}

$\mathsf{H} ightarrow \Psi(\mathsf{nS})\gamma$

- Exploit the signal spin correlations to perform an angular analysis of the events
- One production angle (cos(θ^{*})) and two decay angles (cos(θ₁), Φ₁) are used as basis for a MELA-like discriminator
- Define an high- and low-purity categories depending on the Likelihood discriminator score

H decay to a $\rho,~\phi,~{\rm or}~{\cal K}^{0*}$ meson $+\gamma$ $_{\rm Phys.~Lett.~B~862~(2025)~139296}$

H decay to a $\Psi(\mathsf{nS}) + \gamma$ Phys. Lett. B 865 (2025) 139462

- Fit to the data with different families of parametric functions (power laws, exp., polynomials) for the bkg + peaking shape for the signal ($1 \sim 2\%$ resolution)
- Account for the assumption on the choice of the bkg. function with a penalty term in the Likelihood of the fit [Discrete Profiling method]

H decay to a ρ , ϕ , or K^{0*} meson $+\gamma$

Phys. Lett. B 862 (2025) 139296

H decay to a $\Psi(nS) + \gamma$

Phys. Lett. B 865 (2025) 139462

Significant improvement in the previous searches of H decays to a ρ , ϕ , or K^{0*}

- $H \rightarrow \Psi(nS)\gamma$ sets constraints on k_c : $-166 < k_c < +208$
- Closing to the sensitivity needed for the rare $Z \rightarrow \Psi(1S)\gamma$ decay

Purely loop induced process predicted by the SM:

- Final state with a photon and a pair of e or μ from Z decay
- New Physics might enter in loops
 - $\mathcal{B}(H \to Z\gamma) = (1.57 \pm 0.09) \cdot 10^{-3}$
 - \blacksquare but additional factor 10 reduction accounting for $\mathcal{B}(\mathsf{Z} \to \ell \ell)$

Full Run-2 analysis with 138 fb $^{-1}$:

- Events required to satisfy the trigger requirements for at least one of the dielectron or dimuon triggers
- \blacksquare Backgrounds: Drell-Yan with ISR γ or with jets
- Signal: narrow peak around the Higgs boson mass in $m_{\ell\ell\gamma}$
- 8 mutually exclusive categories according to:
 - 1 Presence of an additional lepton (ZH or WH Higgs boson production)
 - 3 Multivariate discriminant \mathcal{D}_{VBF} for VBF topology (2 jets)
 - 4 Multivariate discriminant \mathcal{D}_{kin} that exploits differences in the kinematic properties between signal and background for ggF (untagged) topology

CMS

(b) \mathcal{D}_{kin} multivariate discriminant

PRL 132 (2024) 021803

H decay to $Z + \gamma$

Sum over all categories of the data points and signal-plus-background model after the simultaneous fit to each $m_{\ell\ell\gamma}$ distribution.

Observed signal strength μ for a SM Higgs boson with $m_{\ell\ell,\gamma} = 125.38$ GeV.

The Z γ invariant mass distribution of events from all ATLAS and CMS analysis categories

H decay to $\mu\mu$ ______ JHEP 01 (2021) 148

15 / 16

Concluding remarks

- With the increase in integrated luminosity, the Higgs frontier will move to rare and rarer processes
- So far, the Higgs boson still looks like the SM predicted
 - coupling to the muon is perfectly compatible with SM
 - close to measurement of the couplings to the charm quark
 - \blacksquare small tension in the H \rightarrow Z γ channel, to be confirmed with new Run 3 data
- New Run 3 data (to date, 200fb⁻¹and counting) will shed more light on many measurements
- In rare process searches, the reach is still limited by statistics
- More data, in many cases, would also decrease systematic uncertainties (e.g. background estimation), further aiding progress
- Stay tuned for the next round of results with Run 3 data!

