Higgs anomalous couplings and CP properties at CMS

Dermot Moran [CIEMAT] On behalf of the CMS Collaboration

EPS-HEP 2025 7-11 July 2025 (Marseille)

Grant PID2020-11626288-C

GOBIERNO MINISTERIO DE ESPAÑA DE CIENCIA, INNOV. Y UNIVERSIDADES

Dermot Moran (CIEMAT)

Why is the Higgs boson so light?

IT'S A UITLE TOO HOT FOR 125 GeV ...

BSM ideas to solve the Hierarchy problem :

• A new symmetry protects the higgs mass : **SUSY**

Higgs is a bound state of new strong interaction : Composite Higgs

Can significantly alter Higgs phenomenology

Dermot Moran (CIEMAT)

SM picture observed so far

SM picture observed so far

SM picture observed so far

Anomalous couplings (AC) approach

Framework for general study of the Higgs coupling structure

For a given **vertex**, consider **scattering amplitude** with multiple contributions (**tree-level**, **loops/BSM**)

Exploit full event kinematics to constrain contributions AC have q^2 dependance \rightarrow Effects at production vertex dominate

Higgs to Electroweak vector bosons

HVV scattering amplitude :

$$\mathcal{A}(\text{HVV}) \sim \left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}}q_{1}^{2} + \kappa_{2}^{\text{VV}}q_{2}^{2}}{\left(\Lambda_{1}^{\text{VV}}\right)^{2}}\right] m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}} \epsilon_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$$

- **HVV** couplings :
- a_1 : SM tree level coupling
- k/Λ^2 : **CP-Even AC**
- a₂ : CP-Even AC
- a₃ : CP-Odd AC

 \rightarrow Target VBF, VH production + HWW/HZZ decay

Higgs to gluons

Hgg scattering amplitude :

$$\mathcal{A}(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} \epsilon_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$$

Hgg couplings :

- a₂ : SM loop
- a₃ : CP-Odd AC

 \rightarrow Target **ggH + 2 Jets** process (VBF-like events)

Higgs to gluons

 \rightarrow Target **ggH + 2 Jets** process (VBF-like events)

Equivalent to SM EFT

Assuming **SU(2)**x**U(1)** relationship between a_i^{WW} and a_i^{ZZ}

EFT couplings (Higgs basis) map directly to amplitude couplings

Dedicated discriminants

built using Machine learning (ML) techniques and/or ME based tools (MELA)

Will present latest Run 2 results today

11 / 30

HVV AC in H $\gamma\gamma$ channel

STXS H $\gamma\gamma$ but with **VBF** and **VH** (jj, 0- ℓ , 1- ℓ , 2- ℓ) categorisation based on dedicated AC discriminants

Signal extracted through fit to $\mathbf{m}_{\gamma\gamma}$ in each category

12/30

VBF H $\gamma\gamma$ 3D categorisation

 \rightarrow Similar **2D** approach in **VH** channels

HVV AC in H $\gamma\gamma$ channel

$Z(\ell\ell)H BDT (SM Vs BSM)$:

HVV f_{ai} scans

4 f_{ai} analyzed independently (μ_V and μ_F floating)

 $f_{ai} \sim 0$ consistent with SM H (Constraints at the 10^{-4} level)

Dermot Moran (CIEMAT)

HVV f_{ai} scans

4 f_{ai} analyzed simultaneously (μ_V floating)

 $f_{ai} \sim 0$ consistent with SM H (Constraints at the 10⁻⁴ level)

HVV f_{ai} scans

HVV measurements consistent across several decay channels

Hgg AC in H $\gamma\gamma$ channel

30 categories included in final Hgg analysis

Dermot Moran (CIEMAT)

Hgg f_{ai} scans

CP-Odd effective fraction in Hgg consistent with SM

JHEP 03 (2025) 114

VH(→bb) EFT study

20 / 30

VH(→bb) EFT study

Fit considers several Warsaw basis coefficients simultaneously g_2^{ZZ}/g_4^{ZZ} : rotate to mass eigenstate basis $[g_2^{ZZ} \sim c_{HW} + c_{HWB} + c_{HB}]$

Results consistent with SM expectation

HWW + 2 jets - $\Delta \phi_{jj}$

Differential σ measurement in the **CP** sensitivity variable $\Delta \phi_{ii}$

Discriminate signal from background but be agnostic about signal hypothesis

→ Adversarial Deep Neural Networks [ADNNs]

Fit to 2D $D_{VBF} - D_{ggF}$ variable in **4** $\Delta \phi_{jj}$ **bins**

HWW + 2 jets - $\Delta \phi_{jj}$

Likelihood-based unfolding to extract ggF and VBF σ Parameterize diff σ & decay as functions of CP-even vs CP-odd c_i

Conclusions

Measurement of Higgs boson coupling structure a crucial test of SM

Recent dedicated studies in multiple channels with full Run 2 data presented

Covering Higgs to electroweak vector bosons and gluons

To date measurements consistent with SM Higgs boson

Many of these analyses are statistically limited

 \rightarrow A lot to gain in the future so watch this space

Currently statistically limited

 \rightarrow A lot to gain in the future..

26 / 30

$SU(2) \times U(1)$ and Higgs basis relationships

$$\begin{split} a_1^{\text{WW}} &= a_1^{\text{ZZ}}, \\ a_2^{\text{WW}} &= c_w^2 a_2^{\text{ZZ}}, \\ a_3^{\text{WW}} &= c_w^2 a_3^{\text{ZZ}}, \\ \vdots &\vdots \\ \frac{\kappa_1^{\text{WW}}}{(\Lambda_1^{\text{WW}})^2} &= \frac{1}{c_w^2 - s_w^2} \left(\frac{\kappa_1^{\text{ZZ}}}{(\Lambda_1^{\text{ZZ}})^2} - 2s_w^2 \frac{a_2^{\text{ZZ}}}{m_Z^2} \right), \\ \frac{\kappa_2^{\text{Z}\gamma}}{(\Lambda_1^{\text{Z}\gamma})^2} &= \frac{2s_w c_w}{c_w^2 - s_w^2} \left(\frac{\kappa_1^{\text{ZZ}}}{(\Lambda_1^{\text{ZZ}})^2} - \frac{a_2^{\text{ZZ}}}{m_Z^2} \right). \end{split}$$

$$\begin{split} \delta c_{z} &= \frac{1}{2}a_{1}^{ZZ} - 1, \\ c_{zz} &= -\frac{2s_{w}^{2}c_{w}^{2}}{e^{2}}a_{2}^{ZZ}, \\ \tilde{c}_{zz} &= -\frac{2s_{w}^{2}c_{w}^{2}}{e^{2}}a_{3}^{ZZ}, \\ c_{z\Box} &= \frac{m_{z}^{2}s_{w}^{2}}{e^{2}}\frac{\kappa_{1}^{ZZ}}{(\Lambda_{1}^{2Z})^{2}}. \end{split}$$

Fiducial differential Higgs measurements

Measure σ in bins of some **observable** $[p_T^H, m_{jj}..]$

Fiducial : restricted phase space that matches as closely as possible the experimental selections

[Reduced model dependence]

HWW + 2 jets ADNN

Two ADNNs have been trained within the inclusive $\ensuremath{\mathsf{SR}}$:

	VBF-ADNN	GGH-ADNN	
Signal label	SM VBF + 7 AC hypotheses	SM ggF + 2 AC hypot	heses
Background label	All backgrounds + SM ggF	All backgrounds + SM	1 VBF

Classifier: Binary NN trained on signal and background for S Vs B Adversary: Multiclass NN trained only on signals, aims to infer the physics model of signal events

 \rightarrow **Penalize classifier** if its data representation is sensitive to the signal hypothesis

HWW + 2 jets ADNN inputs

$p_{ m T}^{j_1}, p_{ m T}^{j_2}$	Magnitudes of the transverse momentum of the leading jets	
η_{j_1}, η_{j_2}	Pseudorapidity of the leading jets	
m _{ij}	Invariant mass of the dijet system	
$\Delta \eta_{jj}$	Pseudorapidity gap between the leading jets	
ϕ_{j_1}, ϕ_{j_2}	Azimuthal angle of the leading jets	
$p_{\rm T}^{\ell 1}$, $p_{\rm T}^{\ell 2}$	Magnitudes of the transverse momentum of the leading leptons	
$p_{\mathrm{T}}^{\ell\ell}$	Magnitudes of the transverse momentum of the dilepton system	
$\eta_{\ell_1}, \eta_{\ell_2}$	Pseudorapidity of the leading leptons	
$\phi_{\ell_1}, \phi_{\ell_2}$	Azimuthal angle of the leading leptons	
$m_{\ell\ell}$	Invariant mass of the dilepton system	
$\Delta \phi_{\ell\ell}, \Delta R_{\ell\ell}$	Angular and radial separation between the leading leptons	
$m_{\ell j}$	Invariant mass of the lepton-jet system ($\ell = \{\ell_1, \ell_2\}, j = \{j_1, j_2\}$)	
C _{tot}	Centrality, defined as $C_{ ext{tot}} = \log \Big(\sum_{\ell_1, \ell_2} (2\eta_\ell - \sum_{j_1, j_2} \eta_j) / \Delta \eta_{jj} \Big)$	
$E_{\rm T}^{\rm miss}$	Missing transverse energy	
qgl_{j_1}, qgl_{j_2}	Quark-gluon likelihood discriminant for the leading jets	
m_{T}	Transverse mass	
$m^{\rm vis}$	Visible mass	
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\ \ell \ell}, \vec{E}_{\mathrm{T}}^{\ \mathrm{miss}})$	Azimuthal opening angle between $\vec{p}_{T}^{\ell \ell}$ and \vec{E}_{T}^{miss}	
h_{T}	Hadronic activity, defined as the scalar sum of the transverse	
	momenta of all jets in the event	
$\mathcal{D}_{VBF,ggF}^{(ME)}$	ME-based discriminant between the VBF and ggH productions	
$\mathcal{D}_{VBF,VH}^{(ME)}$	ME-based discriminant between the VBF and VH productions	
$\mathcal{D}_{ggF,VH}^{(ME)}$	ME-based discriminant between the ggH and VH productions	
$\mathcal{D}_{VBF,DY}^{(ME)}$	ME-based discriminant between the VBF and DY productions	
y ₂₀₁₆	Boolean indicator of the 2016 data set	
y ₂₀₁₇	Boolean indicator of the 2017 data set	
y ₂₀₁₈	Boolean indicator of the 2018 data set	