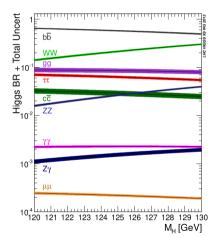


Measurements of the Higgs boson mass and width at CMS

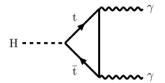
R. Gargiulo 12

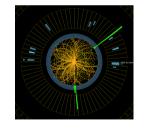
¹Sapienza University of Rome, ²INFN Section of Rome-1

EPS-HEP 2025, Marseille, Thu 10th Jul, 2025



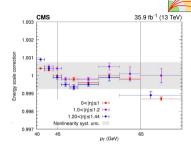
Introduction

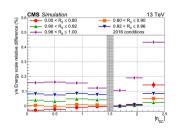

- Higgs boson mass (m_H) not predicted by the Standard Model (SM)
- However, all Higgs boson characteristics depend on m_{H}
- Mass measured precisely in two channels: $H \to \gamma \gamma$ and $H \to ZZ \to 4l$
- Decay width (Γ_H) predicted precisely → deviations may hint at new physics
- Γ_H constrained with $H \to ZZ/WW$, both directly from lineshape and indirectly from off-shell measurements



Mass measurement in $H \rightarrow \gamma \gamma$

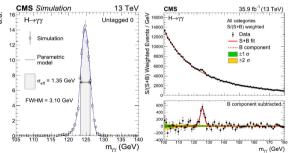
CMS


- Clean final state with 0.23% branching ratio
- Early Run 2 analysis with 2016 data (36 fb $^{-1}$): Phys. Lett. B, 805 (2020)
- After ECAL calibration of E_{γ} , MC correction (mainly for cluster containment) applied using multi-variate regression
- Data/MC residual corrections to E_γ scale and resolution derived from Z → ee treating e as γ:
 - → Per-LHC fill shifts in scale due to radiation
 - $ightarrow \ \eta$ -cluster shapes dependence (R_9 : high $R_9 \leftrightarrow \gamma$ conversions)
 - $\rightarrow \eta$ - p_T dependence (due to non-linearity)

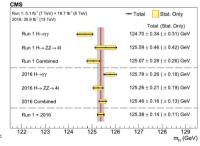


Systematic Uncertainties

- E_{γ} scale and resolution errors assessed by varying $Z \to ee$ selection criteria
- Residual p_T -dependent scale corrections errors:
 - \rightarrow Corrections from Z(ee) ($p_T\approx 45$ GeV) extended to $H\to \gamma\gamma~(p_T\approx 60$ GeV)
 - → Residual corrections reapplied → deviations from unity treated as systematic errors
- Non-uniformity of light collection caused by radiation damage on ECAL crystals:
 - → Photons (high R9) have deeper showers than electrons (used to calibrate)
 - → Error estimated with Geant4 + light-tracing simulations
 - + test beam data with irradiated crystals

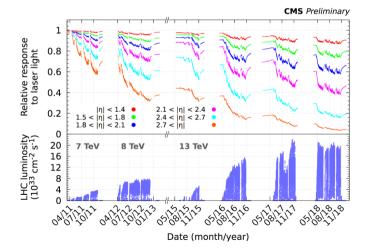


Results



- Binned fit performed in 7 categories based on σ_m , with $\langle \sigma_m \rangle \approx$ 1.68 GeV and $\sigma_m = 1.35$ GeV in the best category
- Result:

$$m_H = 125.78 \pm 0.18 \text{(stat.)} \pm 0.18 \text{(syst.)} \text{ GeV}$$


- Measurement precision is at the per-mille level
- Large uncertainty (0.11 GeV) from light collection non-uniformity

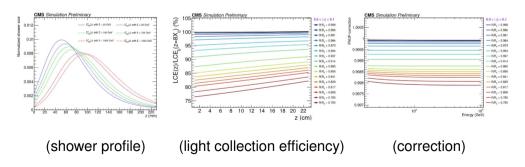
CMS ECAL transparency loss

- Scintillation light emitted by \sim 20 cm long PbWO $_4$ crystals measured by APDs
- Photons showers start deeper ($\sim 9/7X_0$) \rightarrow differences w.r.t. $Z \rightarrow e^+e^-$

- Crystals not anymore transparent due to integrated dose
- → Transparency measured online with a laser monitoring system
- → Depending on the path inside crystals a different fraction of light is lost

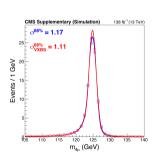
Correction of light collection non-uniformity

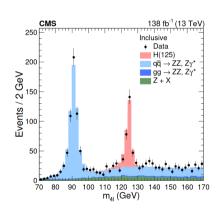
- In view of full Run 2 analysis this effect is corrected, otherwise its syst.
 uncertainty would dominate
- Light collection efficiency as a function of depth (z) simulated (CMS-DP-24-045) to determine energy scale corrections \rightarrow dedicated uncertainty assigned to the correction


$$F = \frac{S^e}{S^{\gamma}} = \frac{\frac{\int E_{\text{dep}}^e(z) \times \text{LCE}(z; R/R_0, \eta) dz}{\int E_{\text{dep}}^e(z) dz}}{\frac{\int E_{\text{dep}}^{\gamma}(z) \times \text{LCE}(z; R/R_0, \eta) dz}{\int E_{\text{dep}}^{\gamma}(z) dz}}$$

- S_e (S_γ): ECAL response to electrons (photons)
- E_{dep}(z): shower profile in PbWO₄ (Geant4)
- LCE(z): Light Collection Efficiency, simulated with Fluka+Light-tracing (Litrani code)
- R/R₀: ECAL laser response measured in data → per-run corrections possible

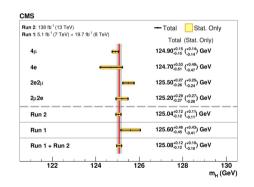
Correction of light collection non-uniformity


- Using crystal transparency measured online in data, corrections for light collection non-uniformity are evaluated
- This approach should significantly reduce uncertainty in full Run 2 mass measurement

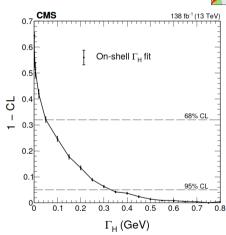


Mass measurement in $H \rightarrow ZZ \rightarrow 4l$

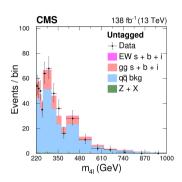
- Full Run 2 analysis (138 fb⁻¹) published in PhysRevD.111.092014
- Analysis improved from early studies:
 - 4-lepton tracks constrained to vertex within beam spot
 - One Z boson constrained to be on-shell
 - Categorization based on σ_m/m
 - Used kinematic discriminant to reduce background



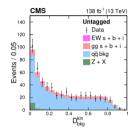
Results

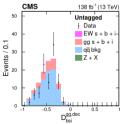

- Maximum likelihood fit performed using m_{4l} and a kinematic discriminant D_{bkg} to reduce background
- Major systematic uncertainties come from lepton scale (0.03% for μ and 0.15% for e)
- Result: $m_H = 125.04 \pm 0.11 (\mathrm{stat.}) \pm 0.11 (\mathrm{syst.}) \; \mathrm{GeV}$
- Most precise single-channel Higgs mass measurement to date

On-shell direct Γ_H measurement in $H \to ZZ \to 4l$


- Mass fit performed with Double Crystal Ball function convoluted with a Breit-Wigner to bound Γ_H
- $\Gamma_H <$ 50 (330) MeV at 68 (95) % C.L.
- Direct measurement oof BW width Γ_H limited by mass resolution
- Reduced precision, but model independent

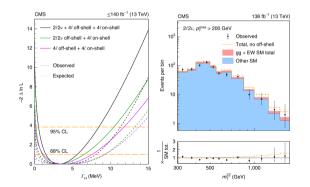
Off-shell indirect Γ_H measurement


- Measurement performed by combining 4l and $2l2\nu$
- Off-shell method based on theory assumptions:
 - ightarrow Off-shell/on-shell coupling ratio known $ightarrow \mu_{off-shell} \propto \Gamma_H$
 - → ggH loops dominated by top (no BSM)
- Large interference between off-shell signal and continuum background



$$\mathcal{P}_{jk}(\vec{x}; \vec{\xi}_{jk}, \vec{\zeta}) = \frac{\mu_j \Gamma_{\mathrm{H}}}{\Gamma_0} \, \mathcal{P}_{jk}^{\mathrm{sig}}(\vec{x}; \vec{\xi}_{jk}) + \sqrt{\frac{\mu_j \Gamma_{\mathrm{H}}}{\Gamma_0}} \, \mathcal{P}_{jk}^{\mathrm{int}}(\vec{x}; \vec{\xi}_{jk}) + \mu_j \, \mathcal{P}_{jk}^{\mathrm{cross}}(\vec{x}; \vec{\xi}_{jk}) + \mathcal{P}_{jk}^{\mathrm{bkg}}(\vec{x}; \vec{\xi}_{jk})$$

Analysis strategy for 4l



- Three kinematical discriminants built from matrix-elements to tag VBF, WH, ZH
- Events separated in VBF-Tagged, VH-Tagged and Untagged categories
- Two additional kinematical discriminants $D_{bkg},\,D_{int}$ build to tag interference and background
- Performed fit with observables: m_{4l} , D_{bkg} , D_{int}

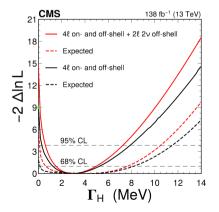
Analysis strategy for $2l2\nu$

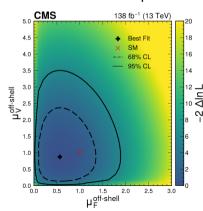
- $2l2\nu$ analysis published in *Nature Physics 18, 1329-1334, 2022*
- $2l2\nu$ not used on-shell because only p_T^{miss} is measured $o m_{2l2\nu}$ not precise
- In off-shell Higgs boson production, Z bosons are on-shell and m_{ZZ}^T (using only p_T^{miss}) is sufficient to observe the final states (no peak at m_H)

Fit performed with 2 or 3 observables:

 $\rightarrow m_{ZZ}^T$

 $ightarrow \ p_T^{ar{miss}}$, to reject Z+jets bkg


ightarrow a kinematical VBF-tagger


 D_{VBF} (only when $N_{jets} \geq 2$)

Results

- Best bound on Γ_H to date: $\Gamma_H=3.0^{+2.0}_{-1.5}~{\rm MeV}$ (Exp. $4.1\pm4.0~{\rm MeV}$)
- $\mu_{off-shell}$ evaluated for both ggH (fermion coupling) and EW (boson coupling) Higgs production modes using different categories
- $\mu_{off-shell}=0$ excluded at $>3\sigma$ ightarrow Evidence for off-shell production

Summary

- CMS measured Higgs boson mass and width with high-mass-resolution channels: $\gamma\gamma+ZZ$
- Most precise single-channel measurement on m_H in $H \to ZZ \to 4l$ made with full Run2 data
- Made studies to reduce uncertainty caused by light collection non-uniformity for full Run2 mass measurement in $H \to \gamma \gamma$
- Γ_H bounded effectively with off-shell Higgs boson production in $H \to ZZ$

Backup

$H o \gamma \gamma$ systematic uncertainties impacts

- Leading sources of systematic uncertainty:
 - → electron energy scale and resolution correction
 - \rightarrow residual p_T dependence of photon energy scale
 - → nonuniformity of light collection

Source	Contribution (GeV)
Electron energy scale and resolution corrections	0.10
Residual p_T dependence of the photon energy scale	0.11
Modelling of the material budget	0.03
Nonuniformity of the light collection	0.11
Total systematic uncertainty	0.18
Statistical uncertainty	0.18
Total uncertainty	0.26