Inclusive $H \rightarrow b\overline{b}/c\overline{c}$ with Run 2 data from LHCb

for questions/comments: davide.zuliani@cern.ch

Menglin Xu

CERN

on behalf of the LHCb Collaboration

EPS, 7 July 2025, Marseille

Università degli Studi di Padova

The LHCb Run 2 Detector

- Small angle spectrometer, covering the forward region, $2 < \eta < 5$
- The detector has high-precision tracking system
- Excellent track momentum resolution, $\Delta p/p \sim 0.5\%$
- Excellent vertex recontruction

JINST 3 (2008) S08005

Why LHCb

- Experimental strengths of LHCb
 - Lower pile-up: cleaner events
 - Low energy/momentum threshold triggers
 - Excellent secondary vertex (SV) reconstruction performance helps with *b*- and *c*-jet tagging
- Unique physics research in the forward region
 - LHCb enables tests of perturbative QCD prediction in the unique region, complementary to ATLAS and CMS
 - PDFs and proton structure can be studied in regions not accessible to other LHC experiments

Higgs Search @ LHCb

- LHCb Run1: search for $b\overline{b}$ and $c\overline{c}$ + lepton signatures with 2 fb⁻¹ dataset <u>LHCb-CONF-2016-006</u>
 - no signals were observed, upper limits on Yukawa couplings: $y^b < 7y_{SM}^b$, $y^c < 80y_{SM}^c$
- Pathfinder: search for $H \to b\overline{b}$ and $H \to c\overline{c}$ in the inclusive final state from pp collisions at 13 TeV, using 2016 data, $\mathcal{L} = 1.6 \text{ fb}^{-1}$ LHCb-PAPER-2025-034 (in preparation)
- A model-independent approach, the selection is independent from the Higgs production mechanism
 - just two jets are required, no requirements are applied to additional objects, e.g. μ
- New techniques have been used to
 - correct reconstructed jet energy
 - \succ search based on a fit to invariant mass
 - identify jets flavour

Regression Technique for Jet Energy Correction

- *b* and *c*-jets might be reconstructed differently, w.r.t light jets
 - semileptonic decay of b and c hadrons with undetected neutrinos
 - leading to jet energy underestimation and degraded energy resolution
- Run1 measurement used the standard Jet Energy Correction (JEC) with $k = \frac{E(\text{jet}_{\text{truth}})}{E(\text{jet}_{\text{reco}})}$
- New method: Gradient Boosting Regressor (GBR)
 - inputs: 51 observables from the jet kinematic and substructure
 - $\sim 50\%$ improvement on the Higgs invariant mass resolution
 - $~\sim~22\%$ improvement in the Higgs signal significance

LHCb-FIGURE-2023-029

Deep Neural Network for Jet Identification

- In the previous study, jet tagging relies on SV identification and BDTs to distinguish jet flavours
 - by reconstructing secondary vertices from significantly displaced tracks inside and outside the jet
- New approach: Deep Neural Network (DNN)
 - \sim 400 jet observables are used as input, related to jet constituents and sub-structure
 - SV is not strictly required
 - trained with $b\overline{b}$, $c\overline{c}$ and light dijets simulation
 - 3 outputs: b-, c- and light- probability, P_b , P_c and P_a

LHCb-FIGURE-2023-029

Deep Neural Network for Jet Identifiaction

LHCb-PAPER-2025-034 (in preparation)

• > 20(9)% improvement for c(b)-jet tagging with respect to standard SV tagging (SVT) algorithm

Analysis Region

- Event selection:
 - two reconstructed jets, originating from the same PV
 - $p_{\rm T}(j) > 20$ GeV, $2.2 < \eta(j) < 4.2$, the difference in the azimuthal angle between the jets >1.5
- The main challenge is the accurate modelling the multi-jet QCD background: data-driven method
- Use tagging DNN probabilities to define
 - signal region (SR), optimized for the signal significance
 - control region (CR), used to characterise the properties of the multi-jet QCD background

		_	LHCb Preliminary
	Search	$H ightarrow b\overline{b}$	$H \to c\bar{c}$
	SR requirements	$P_b > 0.25$ and SV-tag on both jets	$P_c > 0.15$ and SV-tag on both jets
- SD SD	CR requirements	$P_b > 0.25$ and SV-tag on one jet	$P_c > 0.15$ and SV-tag on one jet
$R_{\rm m} = \frac{N_{\rm sig}^{\rm SR}/N_{\rm data}^{\rm SR}}{N_{\rm data}^{\rm SR}}$		$P_b < 0.25$ on the other jet	$P_c < 0.02$ and SV-tag on the other jet
$N_{ m sig}^{p} = N_{ m sig}^{ m CR} / N_{ m data}^{ m CR}$	R_p	5.5	35

Simulation Correction

- MC samples are used to
 - determine selection efficiencies
 - model the signal dijet invariant mass distribution
 - investigate the properties of backgrounds
 - evaluate the performance of the GBR algorithm and DNN
- How is MC corrected
 - SV-tagging efficiency $\rightarrow p_{\rm T}$ dependent reweight
 - DNN selection efficiency \rightarrow tag and probe method, apply data/MC scale factors
 - Global event cut efficiency \rightarrow reweight nSPD hit distribution to data
 - Jet energy (GBR) \rightarrow also applied regression

Fit to Data

- Binned maximum likelihood fit to the dijet invariant mass in the SR
 - the background is modelled using data in the CRs, together with a transfer function to account for kinematic differences between CRs and SRs
- The fitted signal yields are compatible with zero within statistical uncertainties

Systematic Uncertainties

- The expected upper limit: all sources are implemented as nuisance parameters in the fit
- Impact is evaluated by removing each nuisance one at a time and re-fitting
- Systematic uncertainty dominated by SV-tagging and L0+HLT1 efficiencies

Systematic source	$H \to b\bar{b}$ search	$H \to c\bar{c}$ search			
GEC	0.4~%	0.1~%			
Trigger	3.2~%	$3.6 \ \%$			
Jet SV-tagging	$15 \ \%$	19~%			
Jet Identification	0.7~%	0.1~%			
Jet Energy Resolution	0.03~%	0.2~%			
Jet Energy Scale	1.2~%	0.3~%			
Background model	$\sim 1~\%$	$\sim 1.2~\%$			
Z boson yield	2%	1%			
Signal region contamination	< 1%	< 1%			
DNN	0.13~%	1.8~%			
SM cross sec. $+$ Acceptance	1.8%	1.7%			
Luminosity	1.2~%	0.2~%			
LHCb Preliminary					

Observed Upper Limits

• Upper limits are derived using the CLs method with 95% confidence level

Expected upper limits

Observed upper limits

$H \rightarrow bb$ upper limit

$H \rightarrow cc$ upper limit

In Run 1 conference note (LHCB-CONF-2016-006) observed upper limits (2 fb⁻¹ at 8 TeV)

- $V + H \rightarrow b\overline{b}$: $\sigma < 50 \sigma_{SM}$
- $\label{eq:V+H} {}^{\scriptscriptstyle \Box} V + H \to c \, \overline{c} {}^{\scriptscriptstyle \Box} : \sigma < 6400 \ \sigma_{\rm SM}$

Process

 $H \rightarrow b\bar{b}$

 $H \to c \bar{c}$

 $H \rightarrow b\overline{b}$

 $H \to c\bar{c}$

N_{UP}

2652

1414

 N_{UP}

1587

722

 $\sigma_{\rm UP} ~[{\rm pb}]$

353

2939

 $\sigma_{\rm UP}$ [pb]

211

1605

 $\sigma_{\mathrm{UP}}/\sigma_{\mathrm{SM}}$

11.1

1834

6.64

1003

Process $\mid \sigma_{\rm UP} / \sigma_{\rm SM} \mid$

LHCb-PAPER-2025-034 (in preparation)

- Dedicated trigger lines: trigger won't reply on SV-tagging, apply DNN at trigger level
- Removal of GEC: more statistics
- Improved tracking: increase SV-tagging efficiency
- HCAL removal: slightly degrades the performance of jets

LHCb Prelimi	nary ex	xtrapolated	limits		LHC	b Prelimi	inary	
$\begin{array}{c} H \rightarrow b \overline{b} \\ H \rightarrow c \overline{c} \end{array}$	$egin{array}{c} \sigma_{ m UP}/\sigma_{ m SM} \ 2016 \ 11.1 \ 1834 \end{array}$	$\begin{array}{c} \sigma_{\rm UP}/\sigma_{\rm SM} \\ {\rm Run} \ 2 \\ \hline 6.0 \\ 990 \end{array}$	$\begin{array}{c} \sigma_{\rm UP}/\sigma_{\rm SM} \\ {\rm Run} \ 4 \\ 1.1 \\ 141 \end{array}$	$egin{array}{c} \sigma_{\mathrm{UP}}/\sigma_{\mathrm{SM}} \ \mathrm{U2} \ 0.38 \ 45 \end{array}$	$\frac{y_c}{2}$	$\frac{y_c^{\rm SM}}{016}$	$\begin{array}{c} y_c/y_c^{\rm SM} \\ {\rm Run} \ 2 \\ 31 \end{array}$	$\frac{y_c/y_c^{\rm SM}}{\rm Run \ 4}$ 12

 $y_c/y_c^{\rm SM}$

U2

6.7

Conclusions

- LHCb-PAPER-2025-034 provides the first LHCb limits on the search for $H \to b\overline{b}$ and $H \to c\overline{c}$ in inclusive final state from the pp collisions using 2016 data, $\mathcal{L} = 1.6 \text{ fb}^{-1}$
- New techniques have been used to
 - correct reconstructed jet energy
 - identify jet flavour
- New upper limits significantly improve upon <u>LHCb-CONF-2016-006</u>
- The first evidence of the production of $H \rightarrow b\overline{b}$ in the forward region could be possible with Run 4 data
- The Upgrade II (Run 5) with 300 fb⁻¹ of integrated luminosity will be able to measure the $H \rightarrow b\overline{b}$ properties in more details

LHC Run Year	Integrated luminosity fb ⁻¹			
$\mathrm{cm}^{-1}\mathrm{s}^{-1}$	$1.0 imes 10^{34}$	$1.5 imes 10^{34}$	2.0×10^{34}	
Run 1-4	50	50	50	
LS4	_	_	_	
Run 5 Year 1	21	25	26	
Run 5 Year 2	43	50	51	
Run 5 Year 3	43	50	51	
LS5	_	_	_	
Run 6 Year 1	43	50	51	
Run 6 Year 2	43	50	51	
Run 6 Year 3	43	50	51	
Total	284	325	331	

LHCb-PAPER-2025-034 (in preparation)

Back Up

home.cern

$$f(x) = N_{QCD,SR} \cdot B_{CR}(x) \cdot TF(x) + N_{Hbb,SR} \cdot B_{Hbb}(x) + N_{Hcc,SR} \cdot B_{Hcc}(x) + N_{Zbb,SR}^{SM} \cdot R_Z \cdot B_{Zbb}(x) + N_{Zcc,SR}^{SM} \cdot R_Z \cdot B_{Zcc}(x)$$

- $N_{QCD,SR}$: multi-jet QCD yield (free paramter)
- $B_{CR}(x)$: CR mass distribution
- TF(x): transfer function (fitted in data)
- $B_{Hbb(cc)}(x): H \to b\overline{b}(c\overline{c})$ mass model (from simulation)
- $N_{Zbb(cc),SR}^{SM}$: $Z \rightarrow bb(cc)$ yield, from SM expectation
- $B_{Zbb(cc)}(x): Z \rightarrow bb(cc)$ mass model (from simulation)

$$TF(x) = N \cdot \sum_{i=0}^{n} c_i B_{i,n}(x),$$

$$B_{i,n}(x) = \binom{n}{i} x^i (1-x)^{n-i}.$$