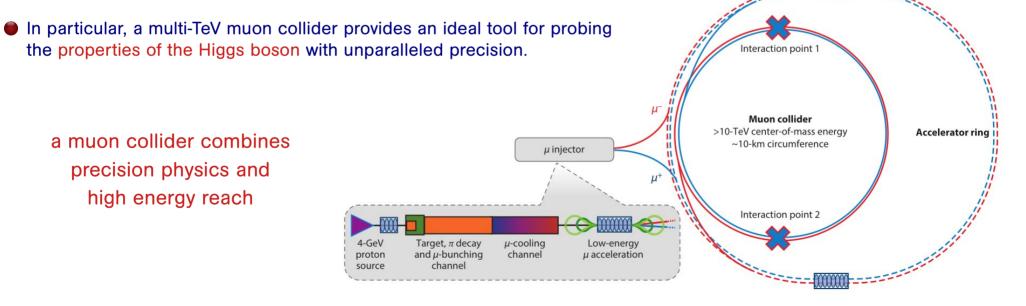


Higgs physics at a 10 TeV Muon Collider

P. Andreetto^(a), <u>M. Casarsa^(b)</u>, A. Gianelle^(a), D. Lucchesi^(a,c), L. Palombini^(a), L. Sestini^(d), D. Zuliani^(a,c)

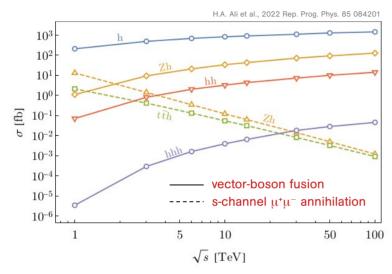
^(a)INFN-Padova, Italy ^(b)INFN-Trieste, Italy ^(c)University of Padova, Italy ^(d)INFN-Firenze, Italy

on behalf of the International Muon Collider Collaboration



European Physical Society Conference on High Energy Physics Palais du Pharo, Marseille, France, July 6-11, 2025

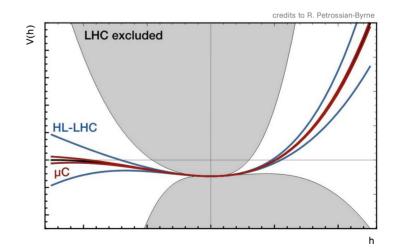
INFN Motivation for a muon collider

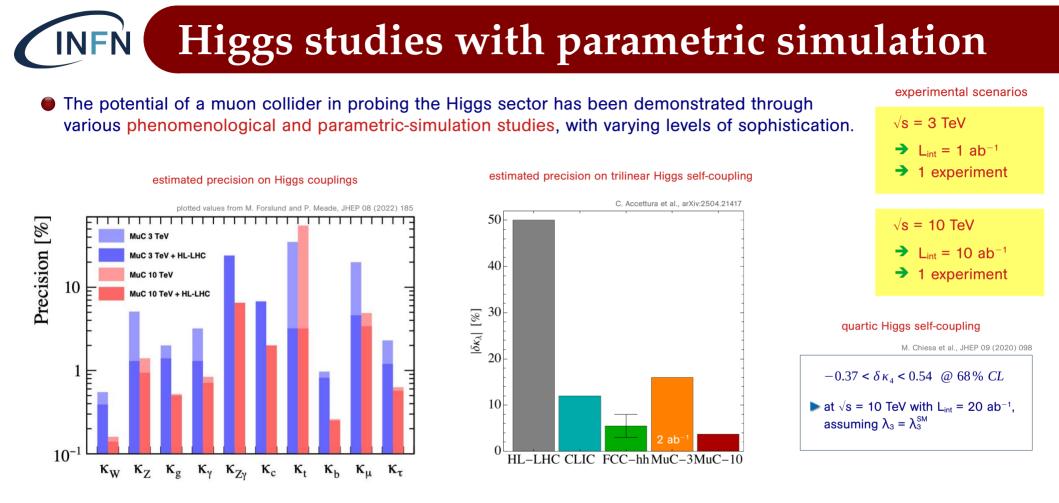

- A muon collider is the most efficient and effective way of achieving leptonic collisions at multi-TeV center-of-mass energies in a relatively compact circular machine.
- Multi-TeV μ⁺μ⁻ collisions will open the door to a broad and novel physics program, allowing high-precision tests of the Standard Model in a previously unexplored energy regime and enabling both direct and indirect extensive searches for new physics.

→ R. Taylor, "Muon Colliders and their future R&D" on July 7 in T13 – Accelerators for HEP

INFN Higgs physics at a muon collider

Higgs boson production cross sections in $\mu^{+}\mu^{-}$ collisions

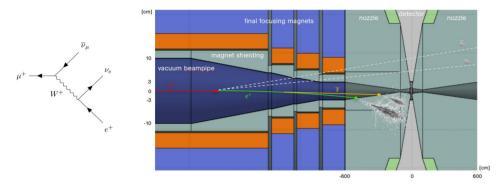


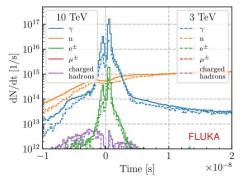

	cross section [fb]		expected events	
	3 TeV	10 TeV	1 ab^{-1} at 3 TeV	10 ab ⁻¹ at 10 TeV
Н	550	930	5.5×10^{5}	9.3×10^{6}
ZH	11	35	1.1×10^4	3.5×10^{5}
tīH	0.42	0.14	420	1.4×10^{3}
HH	0.95	3.8	950	3.8×10^4
HHH	3.0×10^{-4}	4.2×10^{-3}	0.30	42

- High production rates of Higgs bosons allow precise measurements in the Higgs sector:
 - Higgs boson couplings to fermions and bosons;
 - trilinear and possibly quartic self-couplings of the Higgs boson

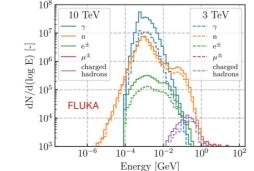
 $(\lambda_3, \lambda_4) \rightarrow$ determination of the Higgs potential shape

$$V(h) = \frac{1}{2}m_{h}^{2}h^{2} + \frac{\lambda_{3}}{\lambda_{4}}h^{3} + \frac{1}{4}\lambda_{4}h^{4}$$

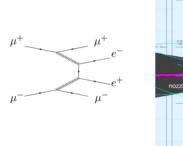


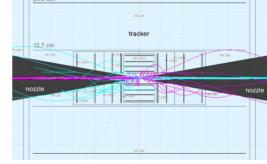

The results above include the physics backgrounds and use a parametric simulation for the detector response. However, the machine-induced backgrounds are not taken into account.

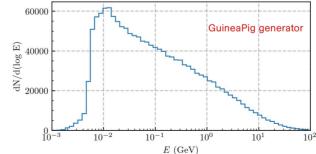
INFN Challenging experimental conditions


- Sources of the dominant machine-induced background in the detector:
 - background from muon decay (BIB)
 - mitigation: tungsten shields (nozzles) inside the detector

arrival time of BIB particles at the detector




energy of the BIB particles within [-1, 15] ns


bkg from incoherent e⁺e⁻ pair production (IPP)

mitigation: strong detector solenoidal field

electron and positron energy

particles entering the detector at each bunch crossing

C. Accettura et al., arXiv:2504.21417

10 TeV	BIB	IPP
Photons	9.9E+07	4.0E+06
Neutron	1.1E+08	1.3E+05
e+/e-	1.2E+06	2.1E+05

5

M. Casarsa

Full-simulation studies at $\sqrt{s} = 3$ **TeV**

- An initial campaign of Higgs studies at $\sqrt{s} = 3$ TeV with a detailed detector simulation was carried out for Snowmass 2021:
 - assuming 1 ab⁻¹, collected by 1 experiment in 5 years;
 - background from muon decays included.
- Confirmed results from parametric simulation with an ideal detector.

\sqrt{s} = 3 TeV, 1 ab ⁻¹ , 1 exp.	full simulation with beam-induced bkg	parametric simulation
$\sigma(H \rightarrow b\overline{b})$	0.78%	0.76%
$\sigma(H \rightarrow WW^{\star} \rightarrow q \overline{q}' \mu \nu_{\mu})$	2.9%	1.7% *
$\sigma(H \rightarrow ZZ^{\star} \rightarrow q\overline{q}\mu^{\star}\mu^{-})$	17%	11% *
$\sigma(\text{H} \rightarrow \mu^{*}\mu^{-})$	39%	40%
$\sigma(H \to \gamma \gamma)$	7.5%	6.1%
$\sigma(HH \rightarrow b\overline{b}b\overline{b})$	33%	-
λ_3/λ_3^{SM}	[0.81, 1.44] @ 68% C.L.**	[0.73, 1.35] U [1.85, 1.94] @ 68% C.L.**
		* includes also the electron channel

* includes also the electron channel ** uses only the HH \rightarrow bbbb channel

P. Andreetto et al., Eur. Phys. J. C 85 (2025) 85

Eur. Phys. J. C (2025) 85:221 https://doi.org/10.1140/epjc/s10052-025-13923-6	
Regular Article - Experimental Physics	
Aspects of Higgs Physics at a $\sqrt{s} = 3$ with detailed detector simulation Paolo Andreetto ⁶ , Nazar Bartosik ² o, Laura Buonincon Massimo Casarsa ^{3,4} o, Luca Castell ^{1,2} o, Mauro Chiesa ⁹ Matthew Forslund ¹³ o, Luca Giambastiani ¹⁴ o, Alessio C Sergo Jindraina ¹¹ o, Anton Lencher ⁴ o, Donatella Luce Patrick Meade ¹³ o, Ressandra Venditti ^{10,11} o, Angela 2 Internoz Sestim ¹³ o, Rossandraina Venditti ^{10,11} o, Angela 2 ¹ NIN Secione di Padon, Padua, Italy ² Università di Triest, Triest, Italy ³ Università di Triest, Triest, Italy ⁴ Diversità La Supienza, Rome, Italy ⁴ Diversità La Supienza, Bendely, Vasiana La Davienza, Berkely, USA ⁴ Diversità Canto Davienza, Paterene, Bettery, Vasiana La Davienza, Berkely, USA	ttr ^{11,2,3} , Daniele Catzolari ^{3,4} , Vieri Candelise ^{5,6} , , Anna Colaleo ^{10,11} G, Giacomo Da Molin ¹² , ianell ⁴ , Carlo Giraldin ^{5,40} , Karol Krizka ¹⁴ , na Girko ¹⁴ , Leo Marso ¹ , Paola Mastrapasqua ¹⁶ , n Girko ¹⁴ , Leonardo Palombini ¹³ , Nadia Pastrone ² aza ^{10,11} , Davide Zuliani ^{1,2}
Received: 30 May 2024 / Accepted: 10 February 2025 © The Author(s) 2025	
Abstract The Muon Collider is one of the most promising future collider facilities with the potential to reach multi- TeV center-of-mass energy and high luminosity. Due to the significant Higgs boson production cross section in muon- antimuon collisions at such high energies, the collider offers an excellent opportunity for in-depth exploration of Higgs boson properties. It holds the capability to significantly obsone properties functions and the properties of the properties	of achieving high precision results with the current stat of-the-art detector design. In addition, the paper discuss the detector requirements necessary to achieve this level accuracy.
advance our understanding of the Higgs sector to a very high level of precision. However, the presence of beam-induced	1 Introduction
background resulting from the decay of the beam muons poses unique challenges for detector development and event reconstruction. In this paper, the prospects for measuring var- ious Higgs boson properties at a center-of-mass energy of 3 TeV are presented, using a detailed detector simulation in a realistic environment. The study demonstrates the feasibility " e-mail: massime coarst 0% infini " e-mail: lorenzo sestint@cern.ch (corresponding author)	The Higgs boson (H) is considered a portal to new physis because it is connected to some of the fundamental que tions about the Universe [1], including the mechanism Electroweak Symmetry Breaking (EWSB), the origin of 1 masses, the matter-antimatter asymmetry, and the nature dark matter. The EWSB [2–5] is formulated via the scal optential, which is written below in a form that includes pe sible deviations from the Standard Model (SM):
Published online: 04 March 2025	Spring

cross sections from M. Forslund and P. Meade, JHEP 08 (2022) 185

trilinear self-coupling from J. de Blas et al., arXiv:2203.07261

New full-simulation studies at $\sqrt{s} = 10$ TeV

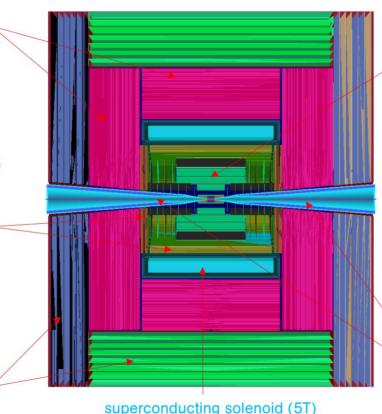
- New set of full-simulation studies at $\sqrt{s} = 10$ TeV, targeted to the 2026 update of the European Strategy for Particle Physics:
 - b the machine lattice at the interaction region, the nozzles, and the detector specifically designed for 10 TeV $\mu^+\mu^-$ collisions:
 - P. Andreetto et al., "Performance study of the MUSIC detector in \sqrt{s} = 10 TeV muon collisions", Contribution #32 to the 2026 ESPP Update
 - ◆ P. Andreetto et al., "Sensitivity study on H → bb, H → WW*, and HH → bbbb cross sections and trilinear Higgs self-coupling with the MUSIC detector in √s = 10 TeV muon collisions", Contribution #184 to the 2026 ESPP Update
- Experimental scenario: 10 ab⁻¹, expected to be collected by 1 experiment in 5 years.
- Methodology:
 - signal and physics-background samples generated with WHIZARD + PYTHIA for parton hadronization;
 - detector response simulated with GEANT4: BIB + IPP overlaid to the physical processes event by event;
 - reconstruction algorithms for physics objects revised to account for the machine-induced backgrounds, but still not fully optimized.
- Estimated the statistical sensitivity on:

•
$$\sigma(H \to XX) = \frac{N_H}{\varepsilon_H L_{int}}$$
 for $H \to b\overline{b}$, $H \to WW^*$, and $HH \to b\overline{b}b\overline{b}$;

lacktriangleright trilinear Higgs self-coupling λ_3 .

NFN The detector model: MUSIC

hadronic calorimeter


- sampling calorimeter with 70 layers of 2-cm iron absorber + 3 x 3 cm² plastic scintillating tiles
- \rightarrow timing with σ_t = 100 ps
- 7 nuclear interaction lengths
- serves as magnetic field return yoke

electromagnetic calorimeter (CRILIN)

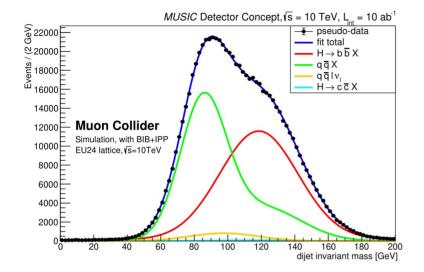
- semi-homogeneous PbF₂ crystal calorimeter with longitudinal segmentation
- \rightarrow 6 layers of 1 x 1 x 4 cm³ crystals
- \rightarrow timing with σ_t = 100 ps
- ♦ 26.5 X₀

muon detectors

- ♦ 7-barrel, 6-endcap RPC layers
- 3 x 3 cm² cell size
- timing with σ_t = 100 ps

MUon System for Interesting Collisions

tracking system


- Vertex Detector
 - 5 barrel layers at R = 2.9 10.1 cm and 4 + 4 endcap disks at |z| = 18.0 - 36.6 cm
 - 25 x 25 µm² pixel Si sensors
 - timing with σ_t = 30 ps
- Inner Tracker
 - 3 barrel layers at R = 16.1 55.4 cm and 7 + 7 endcap disks at |z| = 60.7 - 219.0 cm
 - 50 µm x 1 mm macropixel Si sensors
 - timing with σ_t = 60 ps
- Outer Tracker
 - 3 barrel layers at 81.9 148.6 cm and 4 + 4 endcap disks at |z| = 141.0 - 219.0 cm
 - 50 µm x 1 mm macropixel Si sensors
 - timing with σ_t = 60 ps

shielding nozzles

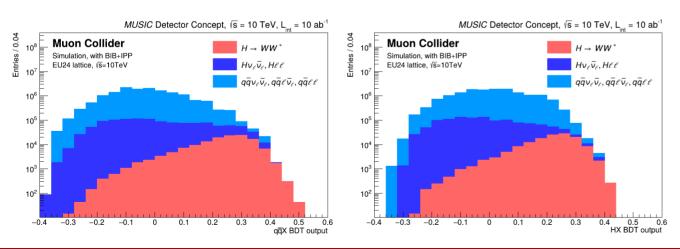
 tungsten cones + borated polyethylene cladding

8

Process	σ [fb]	ϵ_{presel} [%]	$\epsilon_{tag} [\%]$	N_{exp}
$\mu^+\mu^- \to H(\to b\bar{b})X$	490	22.2	32.4	351518
$\mu^+ \mu^- \to H(\to c\bar{c})X$	24.3	22.2	4.49	2422
$\mu^+\mu^- o q ar q u_\ell ar u_\ell$	2674	25.6	5.00	341598
$\mu^+\mu^- o q \bar{q} \ell \ell$	4339	1.86	1.31	10533
$\mu^+\mu^- \to q\bar{q}\ell\nu_\ell$	9763	21.46	0.10	20974

10 ab⁻¹, 1 experiment

• $H \rightarrow b\overline{b}$ event selection:


- at least two reconstructed jets (k_t algorithm with R = 0.5) satisfying:
 - quality cuts to remove fake jets from machine bkg;
 - p_T > 40 GeV and 10° < θ < 170°;
 - b-flavor tagged.
- Statistical sensitivity estimated with a toy MC study built from signal and background's di-jet invariant mass distributions:

$$\frac{\Delta\sigma(H \rightarrow b\,\overline{b})}{\sigma(H \rightarrow b\,\overline{b})} = 0.28\,\%$$

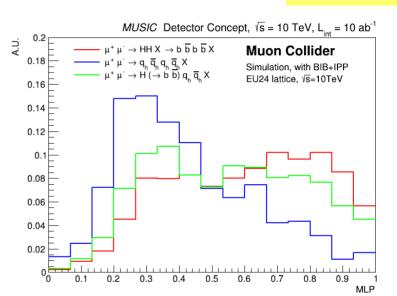
$(\text{INFN} H \to WW^* \to q \overline{q}' \mu \nu_{\mu}$

- Semileptonic final state: $H \rightarrow WW^* \rightarrow q\overline{q}' \mu \nu_{\mu}$.
- Event selection:
 - at least two reconstructed jets (k_t algorithm with R = 0.5) and one isolated muon:
 - quality cuts on jets to remove fakes from machine bkg;
 - jets with $p_T > 20$ GeV and $10^\circ < \theta < 170^\circ$;
 - muon with $p_T > 10$ GeV and $10^\circ < \theta < 170^\circ$.

• Two BDTs trained to distinguish the signal from the bkgs $q\overline{q}X$ and HX.

Process	σ [fb]	$\epsilon_{presel} [\%]$	N_{exp}
$\overline{\mu^+\mu^- \to H(\to WW^* \to q\bar{q}\mu\nu_\mu)X}$	26.3	47.3	137493
$\mu^+ \mu^- \to H \nu_\ell \bar{\nu}_\ell$	820	12.2	1000906
$\mu^+\mu^- o H\ell\ell$	84.8	12.5	106226
$\mu^+\mu^- o q ar q \ell u_\ell$	9763	11.4	11110294
$\mu^+\mu^- o q \bar{q} u_\ell \bar{ u}_\ell$	2674	10.2	2731663
$\mu^+\mu^- \to q\bar{q}\ell\ell$	4339	1.8	772342

Sensitivity estimated from a toy MC study that uses the 2D distributions BDT(HX) vs BDT(qqX):

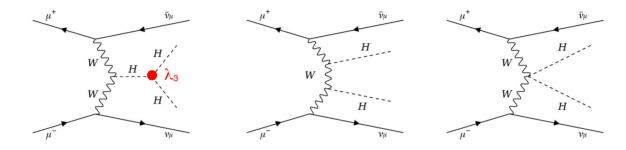

$$\frac{\Delta \sigma (H \rightarrow WW)}{\sigma (H \rightarrow WW)} = 0.58\%$$

10 ab⁻¹, 1 experiment

$(INFN HH \rightarrow b\overline{b}b\overline{b}$

- Only all-hadronic final state: $HH \rightarrow b\overline{b}b\overline{b}$.
- Event selection:
 - **b** at least four reconstructed jets (k_t algorithm with R = 0.5):
 - $p_T > 20$ GeV and $10^\circ < \theta < 170^\circ$;
 - H candidates built pairing jets that minimize $\sqrt{(m_{ij}-m_{H})^{2}+(m_{kl}-m_{H})^{2}}$;
 - b-tagging is required for at least one jet per pair.
- MLP trained to separate signal from backgrounds.
- Sensitivity estimated with a toy MC study built from signal and bkg distributions of the MLP output:

 $\frac{\Delta \sigma (HH \rightarrow b \,\overline{b} \, b \,\overline{b})}{\sigma (HH \rightarrow b \,\overline{b} \, b \,\overline{b})} = 6\%$



Process	σ [fb]	ϵ [%]	N_{exp}
$\mu^+\mu^- \to HHX \to b\bar{b}b\bar{b}X$	1.14	18.47	2100
$\mu^+\mu^- \to H(\to b\bar{b})q_h\bar{q}_hX$	7.27	15.56	11307
$\mu^+\mu^- \to q_h \bar{q}_h q_h \bar{q}_h X$	10.89	8.99	9787

NFN (Trilinear Higgs self-coupling)

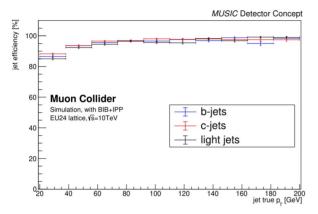
• The double-Higgs production cross section is sensitive to the trilinear Higgs self-coupling λ_3 :

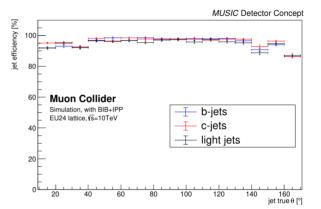
10 ab⁻¹, 1 experiment

- Only all-hadronic final state $HH \rightarrow b\overline{b}b\overline{b}$:
 - same selection as used in the cross section analysis;
 - ▶ two MLPs trained to distinguish HH signal from physics backgrounds and the production via $H^* \rightarrow HH$ from the other modes.
- λ_3 is extracted from a maximum-likelihood template fit to the 2D distribution of the two MLP outputs:

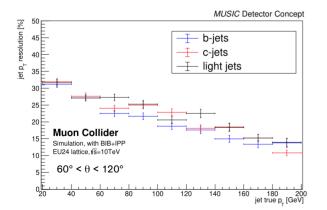
$$0.94 < \frac{\lambda_3}{\lambda_3^{SM}} < 1.08 @ 68\% C.L.$$

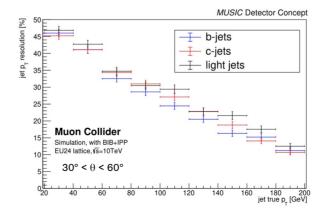
MUSIC Detector Concept, vs = 10 TeV, L = 10 ab Ľ. ΗH Muon Collider nulation with BIB+IPP trilinear 0.25 EU24 lattice, s=10TeV 0.2 0.15 0.1 0.05 _____ 04 0.5 0.6 0.7 0.8 0.9 0.3 MI P

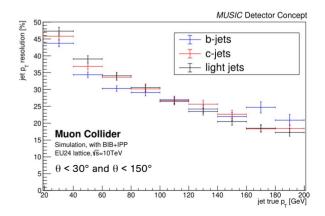

- A 10 TeV muon collider is expected to yield abundant samples of single and double Higgs bosons, enabling studies of Higgs properties with unprecedented precision.
- The presented full-simulation studies, which assume 10 ab⁻¹ collected by 1 experiment in 5 years and take into account the dominant machine-induced backgrounds, demonstrate that:
 - ▶ the production cross sections for $H \rightarrow b\overline{b}$ and $H \rightarrow WW^*$ can be measured with permille-level precision, and the trilinear Higgs self-coupling at the percent level using only the HH $\rightarrow b\overline{b}b\overline{b}$ channel, even with detector and reconstruction algorithms not yet fully optimized;
 - the machine-induced background effects can be effectively mitigated and the precision levels projected in parametric analyses are attainable.
- Work is in progress to extend cross-section studies to all major Higgs boson channels and final states, with the goal of enabling a global fit to assess sensitivity to the Higgs boson couplings.



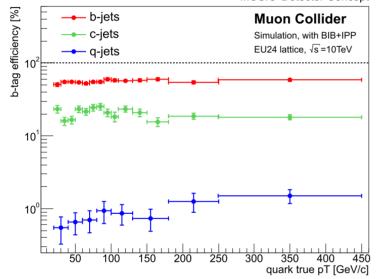
Jet reconstruction performance


jet reconstruction efficiency vs true jet pr

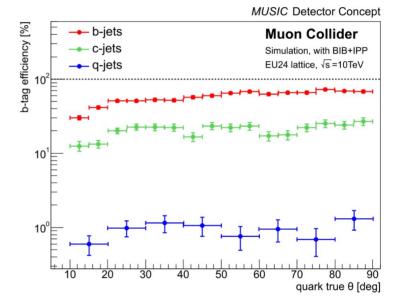

jet reconstruction efficiency vs true jet $\boldsymbol{\theta}$



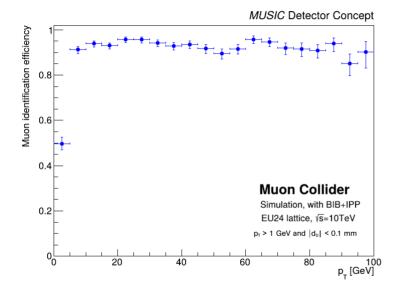
jet p_T resolution vs true jet p_T



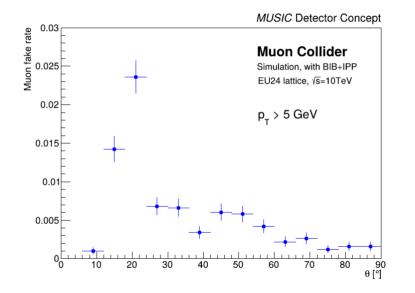
INFŃ


INFN Jet flavor identification

b tagging efficiency vs true quark p_T


MUSIC Detector Concept

b tagging efficiency vs true quark $\boldsymbol{\theta}$



NFN Muon reconstruction performance

muon identification efficiency vs true muon p_T

muon fake rate vs true muon $\boldsymbol{\theta}$

INFN Comparison with parametric simulation

\sqrt{s} = 10 TeV, 10 ab ⁻¹ , 1 exp.	full simulation with BIB and IPP bkgs	parametric simulation
$\sigma(H \rightarrow b\overline{b})$	0.28%	0.21%
$\sigma(H \rightarrow WW^{\star} \rightarrow q\overline{q}' \mu \nu_{\mu})$	0.58%	0.45% *
$\sigma(HH \rightarrow b\overline{b}b\overline{b})$	6.0%	-
λ_3/λ_3^{SM}	[0.94, 1.08] @ 68% C.L.**	[0.965, 1.037] @ 68% C.L.**

* includes also the electron channel

** uses only the HH $\rightarrow b\overline{b}b\overline{b}$ channel

cross sections from M. Forslund and P. Meade, JHEP 08 (2022) 185

trilinear self-coupling from J. de Blas et al., arXiv:2203.07261