# Higgs decays and couplings at FCC-ee

Alexis Maloizel (APC-Paris, CNRS/IN2P3)

On behalf of FCC Collaboration





EPS-HEP 2025 (Marseille) - 07/07/2025

# **FCC Project**

- FCC is the proposed post-LHC CERN's flagship 2-stage project (e+e-, pp)
- 4 Interaction Points
- 90 km circular collider
- FCC-ee
- extremely large Z-pole dataset
- millions of clean Higgs boson
- high stats Top studies
- FCC-hh
- Energy-frontier physics exploration
- 85 TeV at ~1 ab<sup>-1</sup>



# **Motivations**

- Precise measurements of Higgs couplings might yield to deviation from SM  $\rightarrow$  Possible BSM physics
- FCC-ee allows precise, model-independent measurement of numerous couplings including some unobservable at the LHC
- H→Hadrons = 80% of H decays and LHC only measures bottom Yukawa
- $_{\circ}~$  H $\rightarrow$ gg is very sensitive to BSM

#### 4 interactions points

| -     | $\sqrt{s} \; ({ m GeV})$ | Luminosity $(ab^{-1})$ | ZH Events | WW Fusion Events | u (fb)    | F               |  | e⁺e⁻ → HZ               |                  |
|-------|--------------------------|------------------------|-----------|------------------|-----------|-----------------|--|-------------------------|------------------|
| 3 yea | rs 240                   | 10.8                   | 2.2M      | 65k              | ss sectic | Ē               |  | $-HZ, Z \rightarrow vv$ | Higgsstrahlung   |
| J yeu | 3 305                    | 3.12                   | 0.37M     | 92K              | Ö 20      | ) <del>[_</del> |  | $- ZZ \rightarrow H$    | e <sup>+</sup> . |

150

100

50

220

240

260

280

300

320

340 36 √s (GeV)

- Extremely clean environment (e<sup>+</sup>e<sup>-</sup>)
- small backgrounds
- $_{\circ}\,$  high signal efficiency for most Higgs decays
- Precise kinematics constraints



 $\nu_{\rm e}/{\rm e}$ 

3

# Couplings to b, c, g, s

## Z decay channels

 $Z \rightarrow II, I = e,\mu$ BR(Z $\rightarrow$ II) ~ 6.7 %  $Z \rightarrow qq$ BR(Z $\rightarrow$ qq) ~ 67% Limited by jet clustering

 $Z \rightarrow \nu \nu$ 

 $BR(Z \rightarrow vv) \sim 20\%$ Requires a separation of ZH and VBF productions processes (separe templates/signal strengths)





## Analysis strategy

- S/B optimization with kinematic selection
- Categorization using ParticleNet
   tagger output

(7 outputs (b,c,s,g,d,u,tau) for each jets)

- Simultaneous fit on all categories
- Combination of all Z decay channe

Measurement of Higgs boson hadronic decays at FCC-ee https://doi.org/10.17181/3jjdh-6fz97

ecoil strategy (Z
$$\rightarrow$$
xx)  
 $m_{recoil}^2 = (\sqrt{s} - E_{x\overline{x}})^2 - p_{x\overline{x}}^2$ 

**Frue label** 

| Categorisation confusion matrix ( $Z \rightarrow II$ ) |      |        |      |        |        |        |              |       |       |       |  |      |
|--------------------------------------------------------|------|--------|------|--------|--------|--------|--------------|-------|-------|-------|--|------|
| Hbb -                                                  | 96   | 0.15   | 0.97 | 0.0029 | 90.13  | 2.2    | 0            | 0.8   | 0     | 0     |  |      |
| Hcc -                                                  | 0.11 | 93     | 1.6  | 0.63   | 2.8    | 1.30   | .001         | 60.92 | 0.021 | . 0   |  | - 80 |
| Hgg -                                                  | 1.8  | 2.1    | 83   | 5.4    | 3.8    | 2.6    | 0            | 0.93  | 0     | 0     |  | 00   |
| Hss -                                                  | 0.02 | 0.33   | 7.6  | 88     | 1.2    | 1.7    | 0.004        | 1.3   | 0.024 | 0.002 |  | . 60 |
| HWW -                                                  | 0.2  | 4      | 9.7  | 1.9    | 70     | 8.7    | 2.2          | 3     | 0.18  | 0.082 |  | 00   |
| HZZ -                                                  | 10   | 5.9    | 9.1  | 5.1    | 12     | 47     | 1.5          | 9.4   | 0.29  | 0.024 |  | 40   |
| Htautau -                                              | 0 (  | 0.0012 | 20   | 0      | 0.078  | 0.23   | 99           | 0.14  | 0.41  | 0.4   |  | 40   |
| ZZ -                                                   | 12   | 7.8    | 3.4  | 8.4    | 4.3    | 7.3    | 4.5          | 52    | 0.42  | 0.59  |  | 20   |
| ww -                                                   | 0.18 | 0.77   | 0    | 0.47   | 9.4    | 16     | 4.6          | 2.3   | 45    | 21    |  | 20   |
| ee -                                                   | 0    | 0      | 0    | 0      | 0.059  | 0.015  | 1.3          | 0.11  | 1.8   | 97    |  |      |
|                                                        | Hbb  | Hcc    | Hgg  | Hss    | HWW    | HZZ    | l<br>Htautau | zz    | ww    | ee    |  | - 0  |
|                                                        |      |        |      | Pr     | edicte | ed lab | el           |       |       |       |  |      |

4

# **Couplings to b, c, g, s**

- Monte Carlo stats uncertainties included
- WW, ZZ, ττ are byproducts of this hadronic decays study and dedicated analysis yield better sensitivities

#### Expected sensitivity (%) of $\sigma$ .BR(H $\rightarrow$ jj) at 68% CL

https://doi.org/10.17181/3jjdh-6fz97

#### FCCAnalyses: FCC-ee Simulation (Delphes)





| <b>240 GeV</b> L = 10.8ab <sup>-1</sup> |                                | H→bb | Н→сс | H→gg | H→ss | H→ZZ | H→WW | Η→ττ |
|-----------------------------------------|--------------------------------|------|------|------|------|------|------|------|
| Combined                                | ZH                             | 0.21 | 1.6  | 0.80 | 120  | 9.94 | 1.17 | 3.67 |
|                                         | VBF                            | 1.9  | 19   | 5.50 | 990  | 130  | 15.6 | œ    |
| 365 GeV L                               | = <b>3.12</b> ab <sup>-1</sup> | H→bb | H→cc | H→gg | H→ss | H→ZZ | H→WW | Η→ττ |
| <b>•</b> • • •                          | 711                            | 0.00 |      |      |      |      |      |      |
| Combined                                | 20                             | 0.38 | 2.9  | 2.1  | 350  | 26.0 | 3.18 | 11.0 |

# Light Yukawa couplings and FCNC

Using a similar analysis strategy, one can also extract upper limits at 95% CL of :
 Light quark Yukawa couplings (*u* and *d*)
 Flavour changing neutral currents Higgs decays (H → bs, bd, sd, cu)

Measuring Light Yukawa couplings and Flavour Changing Neutral Currents in Higgs hadronic decays at the FCC-ee <u>https://doi.org/10.17181/7xide-ebi4</u>5



| L=10.8ab <sup>-1</sup> | at 240 | GeV |
|------------------------|--------|-----|
|------------------------|--------|-----|

| Decay                                | SM Prediction        | this work (95% CL)     | current constraints    |
|--------------------------------------|----------------------|------------------------|------------------------|
| $\rm H \rightarrow uu$               | $1.2 \times 10^{-7}$ | $< 1.2 \times 10^{-3}$ | $3 \times 10^{-2}$     |
| $\mathrm{H} \to \mathrm{dd}$         | $5.5 \times 10^{-7}$ | $< 1.2 \times 10^{-3}$ | $7 	imes 10^{-3}$      |
| $\mathrm{H} \rightarrow \mathrm{bs}$ | $9 \times 10^{-8}$   | $< 3.1 \times 10^{-4}$ | $< 1.6 \times 10^{-3}$ |
| $\mathrm{H} \to \mathrm{bd}$         | $4 \times 10^{-9}$   | $< 2.2 \times 10^{-4}$ | $< 10^{-3}$            |
| ${\rm H} \rightarrow {\rm cu}$       | $3 \times 10^{-20}$  | $< 2.0 \times 10^{-4}$ | $< 2 \times 10^{-3}$   |
| $\mathrm{H} \to \mathrm{sd}$         | $2 \times 10^{-15}$  | $< 6.5 \times 10^{-4}$ | 6 <del></del> 8        |

# $\textbf{H} \rightarrow \textbf{ZZ}$

- Analysis only performed at 240 GeV
- Need to consider all the possible final states
- ∘  $Z \rightarrow II, \nu\nu$  &  $H \rightarrow ZZ \rightarrow jjjj$  (slides <u>4-5</u>)
- ∘ Z→jj & H→ZZ→jjjj
- Exclusive jet reconstruction with N=6
- Use of combinatorics for jets pairing
- 2 BDTs to separate sig/bkg and ZZ/WW signal components
- $\circ$  **ZH** $\rightarrow$ **jjll** $\nu\nu$  (best sensitivity)
- Separation with WW signal components done with the same BDT
- ∘ Z→II,jj,vv & H→ZZ→4I
- Similar strategy as above

#### Expected sensitivity (%) of $\sigma$ .BR(H $\rightarrow$ ZZ)

| 240 GeV | L = 10.8ab <sup>-1</sup> | H→ZZ |
|---------|--------------------------|------|
|         | Combined                 | 2.5  |



Precision measurement of Higgs production cross section in the four-lepton final state at the FCC-ee https://doi.org/10.17181/ev2ff-bay83

# $H \rightarrow WW$

- Analysis only performed at 240 GeV
- Leptonic decays of the WW pair have not yet been studied
- $Z \rightarrow \nu \nu \& H \rightarrow WW \rightarrow jjjj$  (slides <u>4-5</u>)
- Z→ll & H→WW→jjjj
- N = 4 exclusive Durham jet reconstruction
- Classification using a BDT
- Z→jj & H→WW→jjjj
- $_{\circ}\,$  Same analysis than the one for Z



Expected sensitivity (%) of  $\sigma$ .BR(H $\rightarrow$ WW)

| <b>240 GeV</b> L = 10.8ab <sup>-1</sup> | H→WW | HWW and HZZ in the fully hadroni<br>final states at the FCC-ee<br>https://doi.org/10.17181/jxx9k-b | c Measurement of the Higgs boson decay<br>in Z(11)H, H→WW at FCC-ee<br>9297 https://doi.org/10.17181/1d9a2-gqm |
|-----------------------------------------|------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Z→vv & H→WW→jjjj                        | 1.3  | -                                                                                                  |                                                                                                                |
| Z→II & H→WW→jjjj                        | 1.6  | <b>240 GeV</b> L = 10.8ab <sup>-1</sup>                                                            | H→WW                                                                                                           |
| Z→jj & H→WW→jjjj                        | 1.5  | combined                                                                                           | 0.8                                                                                                            |

#### Measurements of Hit cross-section at FCC-ee Coupling to $\tau$

- Analysis of  $\mathbf{H} \rightarrow \tau \tau$  for ZH with  $\mathbf{Z} \rightarrow \mathbf{II}, \nu \nu, \mathbf{ij}$
- τ<sub>1</sub>τ<sub>1</sub>, τ<sub>1</sub>τ<sub>b</sub>, τ<sub>b</sub>τ<sub>b</sub> pairs considered

### Selection:

- Exactly two leptons (jets) for  $Z \rightarrow II (Z \rightarrow jj)$
- two taus with opposite charge
- cuts on kinematics

## **Categorization:**

- BDT classification trained using the kinematics of the reconstructed pairs
- Separation of ZH and VBF contributions at 365GeV in **vvH** final state

Results are obtained by fitting the BDT outputs.

#### **240 GeV** L = 10.8ab<sup>-1</sup> Η→ττ ZH 0.58





#### Expected sensitivity (%) of $\sigma$ .BR(H $\rightarrow$ tt) at 68% CL

| Expected ser | nsitivity (%) of σ.Β     | R(H→ττ) at 68% CL | 365 GeV | L = <b>3.12</b> ab <sup>-1</sup> | Η→ττ  |
|--------------|--------------------------|-------------------|---------|----------------------------------|-------|
| 240 GeV      | L = 10.8ab <sup>-1</sup> | Η→ττ              |         | ZH                               | 1.27  |
|              | ZH                       | 0.58              |         | VBF                              | 13.54 |

# Coupling to $\mu$

- Analysis on Z(II,νν,jj)H(μμ) both at 240 & 365 GeV
- Selection on the Z kinematics, angular variables of the muon pair, ... (see bottom right table)
- Fit on the invariant mass of the muon pair





Measurement of the Higgs to muons branching fraction at the FCC-ee tps://doi.org/10.17181/63abg-gc1

## Electron Yukawa arXiv:2107.02686

- Dedicated run at  $\sqrt{s} = 125 \text{GeV}$  with resonant H production (only possibility to probe e<sup>-</sup> Yukawa, B(H $\rightarrow$ ee) ~ O(10<sup>-9</sup>))
- Coupling constrained from the production mode



- Multiple H decays analysis, count on BDT classification
- e<sup>+</sup>e<sup>-</sup>→gg is best channel (Z→gg is forbidden, but very good light-q vs. gluon jet tagging needed)
- Potential probing of  $\boldsymbol{y}_{e}$  at  $\boldsymbol{SM}$  level
- Estimate of 4*σ* expected with 4 IP in 4 years

### **Requirements:**

- Excellent beam monochromatisation (~  $\Gamma_{\rm H}$  (4Mev))
- Large luminosity (very rare counting experiment)
- $_{\circ}$  2.8k expected events/year at 10 ab<sup>-1</sup>
- Precision on H mass < 5 MeV</li>



# $H \longrightarrow \gamma \gamma, \, Z \gamma$

- Very low statistics channel but with clean signatures
- Performed both at 240 & 365 GeV with ZH and VBF separation

## Н→үү:

- Cut-based analysis on the invariant mass of the Higgs decay
- Selection on event kinematics
- Categorization depending on the Z decay (II, jj,  $\nu\nu$ )
- Simultaneous fit on the  $\gamma\gamma$  pair invariant mass



## H→Zγ:

- Z decays to jj or vv
- Veto on leptons and high missing energy
- Classification with a BDT
- Fit on the BDT output

Precision on  $\sigma(e^+e^-\to ZH)\times \mathcal{B}(H\to Z\gamma)$ 

| Final State                                                                        | Description                                                | Precision | u (%)                                          |
|------------------------------------------------------------------------------------|------------------------------------------------------------|-----------|------------------------------------------------|
| $\overline{At \sqrt{s} = 240 \ GeV (cc}$ $\nu \nu j j \gamma$ $j j \nu \nu \gamma$ | $pmbined) \ Z( u u)H[Z(jj)\gamma] \ Z(jj)H[Z( u u)\gamma]$ | 11.8      | great improvement fro<br>previous expectations |
| $\overline{At \sqrt{s} = 365 \ GeV}$                                               |                                                            |           |                                                |
| ZH production                                                                      | $H \to Z \gamma$                                           | 22.0      |                                                |
| WW $\rightarrow$ H production                                                      | $H\to Z\gamma$                                             | 23.0      |                                                |

**Precision on**  $\sigma(e^+e^- \to ZH) \times \mathcal{B}(H \to \gamma\gamma)$ 

| Final State                                                                                  | Description                     | Precision (%) |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------|---------------|--|--|--|--|--|
| $At \sqrt{s} = 240 \ GeV \ (co$                                                              | mbined)                         |               |  |  |  |  |  |
| $ u  u \gamma \gamma$                                                                        | Invisible Z recoil              |               |  |  |  |  |  |
| $\ell\ell\gamma\gamma$                                                                       | Leptonic Z decay                | 3.6           |  |  |  |  |  |
| $jj\gamma\gamma$                                                                             | Hadronic Z decay                |               |  |  |  |  |  |
| $\overline{At \sqrt{s} = 365 \ GeV \ (by \ production \ mode, \ \nu\nu\gamma\gamma \ only)}$ |                                 |               |  |  |  |  |  |
| ZH production                                                                                | $Z( u u)H(\gamma\gamma)$        | 13.0          |  |  |  |  |  |
| WW $\rightarrow$ H production                                                                | $WW  ightarrow H(\gamma\gamma)$ | 15.0          |  |  |  |  |  |

# $H \rightarrow invisible$

- Potential BSM couplings would induce deviations from SM (BR=0.1%)
- ZH production with all **visible Z decays**  $(Z \rightarrow II, qq)$
- Analysis of H→ZZ→vvvv performed at 240 & 365 GeV

Higgs to invisible at the FCC-ee

- Categorization based on number of leptons  $(Z \rightarrow II)$  and number of tagged b/c-jets  $(Z \rightarrow qq)$
- Fit on missing mass distribution





Expected sensitivity (%) of  $\sigma$ .BR(H $\rightarrow$ inv)

| <b>240 GeV</b> L = 10.8ab <sup>-1</sup> | H→inv |
|-----------------------------------------|-------|
| combined                                | 0.027 |
| <b>365 GeV</b> L = 3.12ab <sup>-1</sup> | H→inv |
| combined                                | 0.082 |

# Conclusions

- We can reach %-level or better sensitivity for many couplings
- Great prospects in comparison to other future proposed experiments
- Some improvement still obtainable in some analysis
- Great complementarity with FCC-hh
- FCC-ee measures greatly abundant decays
- Rare H decays (μμ, Ζγ, γγ, Za...) can be accessed at %-level at FCC-hh
- FCC-ee provides absolute normalisation for FCC-hh thanks to g<sub>7</sub> absolute measurement



|     |       | 240 GeV L= | 10.8ab <sup>-1</sup> | <b>365 GeV</b> L = 3.12ab <sup>-1</sup> |      |  |
|-----|-------|------------|----------------------|-----------------------------------------|------|--|
| -   |       | ZH         | VBF                  | ZH                                      | VBF  |  |
|     | H→bb  | 0.21       | 1.9                  | 0.38                                    | 0.66 |  |
| 5   | Н→сс  | 1.6        | 19                   | 2.9                                     | 3.4  |  |
| t . | H→gg  | 0.80       | 5.5                  | 2.1                                     | 2.6  |  |
|     | H→ss  | 120        | 990                  | 350                                     | 280  |  |
|     | H→WW  | 0.80       |                      | 1.8*                                    | 2.1* |  |
|     | H→ZZ  | 2.5        |                      | 8.3*                                    | 4.6* |  |
|     | Н→тт  | 0.58       |                      | 1.2*                                    | 5.6* |  |
|     | H→µµ  | 11         |                      | 25                                      |      |  |
|     | Н→үү  | 3.6        |                      | 13                                      | 15   |  |
|     | Н→Ζү  | 11.8       |                      | 22                                      | 23   |  |
|     | H→inv | 0.027      |                      | 0.082                                   |      |  |

14

Expected sensitivity (%) of  $\sigma$ .BR(H $\rightarrow$ XX)

# Backup

## **IDEA** Detector concept



# **ZH & VBF** separation

∘ ZH :  $e^+e^- \rightarrow v_\mu v_\mu^* 3$ ∘ VBF :  $e^+e^- \rightarrow v_e v_e^- - e^+e^- \rightarrow v_\mu v_\mu^-$  (w/ interference)





## Coupling to $\tau$ : detailed contributions @240GeV

|    |                                                | Cut-base                                             | d analysis              | BDT analysis          |                         |  |
|----|------------------------------------------------|------------------------------------------------------|-------------------------|-----------------------|-------------------------|--|
|    | Inclusiv                                       |                                                      | Exclusive jets          | Inclusive jets        | Exclusive jets          |  |
| ZH | $Z \to qq, \ H \to \tau_\ell \tau_\ell$        | $-26.36\%\ ,\ +26.12\%$                              | $-23.40\%\ ,\ +23.09\%$ | $-4.18\%\ ,\ +4.31\%$ | -2.86% , $+2.91%$       |  |
|    | $Z \to qq, \ H \to \tau_\ell \tau_h$           | -2.52% , $+2.50%$                                    | -2.47% , $+2.42%$       | $-1.51\%\ ,\ +1.50\%$ | -1.22% , +1.23%         |  |
|    | $Z \to qq, \ H \to \tau_h \tau_h$              | -1.44% , +1.43%                                      | -2.22% , $+2.18%$       | $-1.51\%\ ,\ +1.50\%$ | $\pm 0.97\%$            |  |
|    | $Z \rightarrow qq$                             | $\pm 1.17\%$                                         | -1.42% , $+1.46%$       | $\pm 0.79\%$          | $\pm 0.67$              |  |
|    | $Z \to \ell \ell, \ H \to \tau_\ell \tau_\ell$ | -16.95% , $+17.41%$                                  |                         | -                     |                         |  |
|    | $Z \to \ell \ell, \ H \to \tau_\ell \tau_h$    | -4.10% , $+4.18%$                                    | -5.22% , $+5.39%$       | _                     |                         |  |
|    | $Z \to \ell \ell, \ H \to \tau_h \tau_h$       | $_{n}$ -1.81% , +1.83% -2.24% , +2.26%               |                         |                       | -                       |  |
|    | $Z \to \ell \ell$                              | $-1.66\% \ , \ +1.67\% \qquad -2.03\% \ , \ +2.08\%$ |                         | _                     |                         |  |
|    | $Z \to \nu \nu, \ H \to \tau_\ell \tau_\ell$   | -420.15%,+418.79%                                    |                         | -104.80%, +105.46%    |                         |  |
|    | $Z \to \nu \nu, \ H \to \tau_\ell \tau_h$      | $\textbf{-64.14\%}\ ,\ \textbf{+64.10\%}$            | $-53.90\%\ ,\ +53.87\%$ | -13.67% , +13.72%     | $-16.64\%\ ,\ +16.67\%$ |  |
|    | $Z \to \nu \nu, \ H \to \tau_h \tau_h$         | $\textbf{-30.33\%}\ , \ \textbf{+30.19\%}$           | $-39.76\%\ ,\ +39.59\%$ | -6.15% , $+6.13%$     | -6.27\% , +6.31\%       |  |
|    | Z  ightarrow  u  u                             | $-10.06\%\ ,\ +10.10\%$                              | $-13.19\%\ ,\ +13.22\%$ | $-4.39\%\ ,\ +4.45\%$ | $-4.73\%\ ,\ +4.71\%$   |  |
|    | Combined                                       | -0.90%, +0.91%                                       | $\pm 1.01\%$            | -0.77%, +0.78%        | $\pm 0.66\%$            |  |

## **Coupling to τ : detailed contributions @365GeV**

|                                                | ParticleNet tau reconstruction |                  |                  |                  |  |
|------------------------------------------------|--------------------------------|------------------|------------------|------------------|--|
|                                                | Cut-base                       | d analysis       | BDT analysis     |                  |  |
|                                                | Inclusive jets Exclusive jets  |                  | Inclusive jets   | Exclusive jets   |  |
| $Z 	o qq, \ H 	o 	au_\ell 	au_\ell$            | -63.23%,+63.32%                | -45.10%, +44.97% | -18.75%, +18.93% | -10.96%, +11.08% |  |
| $Z \to qq, \ H \to \tau_\ell \tau_h$           | -22.63%, +22.48%               | -16.82%, +16.64% | -3.24%, +3.29%   | -2.36%, +2.38%   |  |
| $Z \to qq, \ H \to \tau_h \tau_h$              | -8.58%, +8.54%                 | -8.61%, +8.42%   | -2.31%, +2.36%   | -1.86%, +1.87%   |  |
| Z  ightarrow qq                                | -8.04%, +8.01%                 | -7.77%, +7.64%   | -1.79%, +1.85%   | -1.38%, +1.39%   |  |
| $Z \to \ell \ell, \ H \to \tau_\ell \tau_\ell$ | -43.18%,                       | +45.44%          |                  | -                |  |
| $Z \to \ell \ell, \ H \to \tau_\ell \tau_h$    | -9.97%,+10.47%                 | -13.75%, +14.56% |                  | -                |  |
| $Z \to \ell \ell, \ H \to \tau_h \tau_h$       | -4.77%, +4.89%                 | -5.41%, +5.56%   |                  | -                |  |
| $Z \to \ell \ell$                              | -4.32%, +4.41%                 | -5.04%, +5.16%   |                  | -                |  |
| $Z \to \nu \nu, \ H \to \tau_\ell \tau_\ell$   | $\pm 235.98\%$                 |                  | $\pm 208.72\%$   |                  |  |
| $Z \to \nu \nu, \ H \to \tau_\ell \tau_h$      | $\pm 71.81\%$                  | $\pm 69.37\%$    | $\pm 65.43\%$    | $\pm 79.14\%$    |  |
| $Z \to \nu \nu, \ H \to \tau_h \tau_h$         | $\pm 26.42\%$                  | $\pm 26.55\%$    | $\pm 25.71\%$    | $\pm 30.04\%$    |  |
| Z  ightarrow  u  u                             | $\pm 25.78\%$                  | $\pm 26.60\%$    | $\pm 23.98\%$    | $\pm 27.90\%$    |  |
| Combined                                       | $\pm 3.63\%$                   | $\pm 3.19\%$     | $\pm 1.69\%$     | $\pm 1.32\%$     |  |

|   |                                            | Cut-based analysis |                | BDT analysis   |                |
|---|--------------------------------------------|--------------------|----------------|----------------|----------------|
| _ |                                            | Inclusive jets     | Exclusive jets | Inclusive jets | Exclusive jets |
|   | $\nu_e \nu_e \ H(\to \tau_\ell \tau_\ell)$ | $\pm 336.67\%$     |                | $\pm 215.14\%$ |                |
|   | $\nu_e \nu_e \ H(\to \tau_\ell \tau_h)$    | $\pm 81.15\%$      | $\pm 77.27\%$  | $\pm 55.37\%$  | $\pm 64.16\%$  |
|   | $ u_e \nu_e \ H(\to \tau_h \tau_h) $       | $\pm 24.00\%$      | $\pm 23.18\%$  | $\pm 24.88\%$  | $\pm 26.89\%$  |
|   | $ u_e \nu_e H$                             | $\pm 23.41\%$      | $\pm 24.02\%$  | $\pm 22.07\%$  | $\pm 25.06\%$  |



ΖH

# **Coupling to Z and W : detailed contributions**

| H(77)  | <b>Final State</b>       | Description                                 | Precision (%) |
|--------|--------------------------|---------------------------------------------|---------------|
| ••\~~) | u  u j j j j             | $Z(\nu\nu)H(jjjj)$ , hadronic Higgs decay   | 11.0          |
|        | $\ell\ell j j j j$       | $Z(\ell\ell)H(jjjj)$ , hadronic Higgs decay | 7.6           |
|        | jjjjjj                   | Fully hadronic (6 jets), $\chi^2$ fit       | 8.2           |
|        | $ u  u \ell \ell j j$    | $Z( u u)Z(\ell\ell)Z^*(jj)$                 | 4.7           |
|        | $\ell\ell u u j j$       | $Z(\ell\ell)Z( u u)Z^*(jj)$                 | 5.0           |
|        | $\ell\ell j j  u  u$     | $Z(\ell\ell)Z(jj)Z^*( u u)$                 | 7.3           |
|        | $jj\ell\ell u u$         | Orthogonal sub-channel                      | 13.0          |
|        | $jj u u\ell\ell$         | Orthogonal sub-channel                      | 19.0          |
|        | $(Z 	o jj/ u u) + 4\ell$ | $H \to 4\ell$ , extra Z hadronic/invisible  | 10.0          |
|        | $6\ell$                  | Fully leptonic (rare) final state           | 30.0          |
|        | Combined                 |                                             | 2.5           |

| H(WW) | Final State        | Description                                                | Precision (%) |
|-------|--------------------|------------------------------------------------------------|---------------|
| • •   | u  u j j j j       | $Z(\nu\nu)H[W(jj)W(jj)]$ , hadronic H                      | 1.3           |
|       | $\ell\ell j j j j$ | $Z(\ell\ell)H[W(jj)W(jj)]$ , likelihood fit on recoil mass | 1.6           |
|       | jjjjjj             | simultaneous $H \to WW^*$ and $ZZ^*$ extraction            | 1.48          |
|       | Combined           |                                                            | 0.8           |

## **Comparison with ILC**

- Results rescaled to reach similar luminosity
- Additional scalings to remove impact of beam polarization
- Results for ILC would correspond to a  $\sim$ 4x longer data taking period compared to FCC

| Collider                              | FCC CDR                | FCC ESPPU              | LCF ESPPU             | LCF                    | LCF $\times \sqrt{1.2}$ |
|---------------------------------------|------------------------|------------------------|-----------------------|------------------------|-------------------------|
| Integrated luminosity                 | $10.8 \text{ ab}^{-1}$ | $10.8 \text{ ab}^{-1}$ | $2.7 \text{ ab}^{-1}$ | $10.8 \text{ ab}^{-1}$ | $10.8 \text{ ab}^{-1}$  |
| $H \rightarrow any$                   | $\pm 0.36$             | $\pm 0.31$             | $\pm 0.62$            | $\pm 0.31$             | $\pm 0.34$              |
| $\mathrm{H} \rightarrow \mathrm{bb}$  | $\pm 0.20$             | $\pm 0.21$             | $\pm 0.41$            | $\pm 0.21$             | $\pm 0.22$              |
| $\mathrm{H} \rightarrow \mathrm{cc}$  | $\pm 1.5$              | $\pm 1.6$              | $\pm 2.5$             | $\pm 1.25$             | $\pm 1.37$              |
| $\mathrm{H} \to \mathrm{gg}$          | $\pm 1.3$              | $\pm 0.8$              | $\pm 2.1$             | $\pm 1.05$             | $\pm 1.15$              |
| ${ m H}  ightarrow { m W}^+ { m W}^-$ | $\pm 0.8$              | $\pm 0.8$              | $\pm 1.4$             | $\pm 0.70$             | $\pm 0.77$              |
| $\mathrm{H} \to \mathrm{ZZ}$          | $\pm 3.0$              | $\pm 2.5$              | $\pm 5.5$             | $\pm 2.75$             | $\pm 3.01$              |
| $H \to \tau^+ \tau^-$                 | $\pm 0.6$              | $\pm 0.58$             | $\pm 0.95$            | $\pm 0.48$             | $\pm 0.52$              |
| ${ m H}  ightarrow \gamma \gamma$     | $\pm 6.1$              | $\pm 3.6$              | $\pm 10$              | $\pm 5.00$             | $\pm 5.48$              |