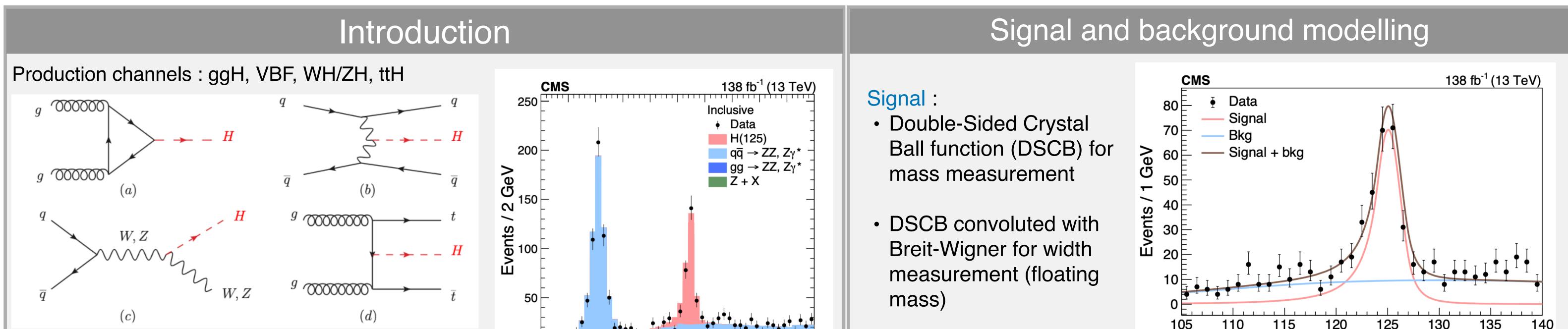

Measurement of the Higgs Boson mass and width at CMS



Neha Rawal, University of Florida

On behalf of the CMS collaboration

 $H \rightarrow ZZ \rightarrow 4l$

 (c) (d) The Higgs boson mass is a free parameter of the Standard Model Clean final state with large S/B ~ 4:1 at peak Categorised in 4μ, 4e, 2μ2e, 2e2μ final states (different resolutions, different S/B) In 2μ2e, the μμ pair forms Z₁ (closest to nominal Z), in 2e2μ, the ee pair forms Z₁ 	 Backgrounds : Irreducible (qq->ZZ, gg->ZZ) - estimated from MC Reducible (Z+X), with at least one non-prompt/misidentified lepton - derived from data
Triggers and selections	Results
 Single lepton, di-lepton, and tri-lepton triggers with relaxed pT requirements Select prompt muons/electrons with impact parameter and isolation criteria Leptons are dressed with final state radiation recovered photons To build Higgs candidate - select opposite-sign and same-flavour lepton pairs (4μ, 4e, 2μ2e, 2e2μ) with 12< m_{ll} <120 GeV 	Most precise single-channel measurement of Higgs massCMSRun 2: 138 fb ⁻¹ (13 TeV) Run 1: 5.1 fb ⁻¹ (7 TeV) + 19.7 fb ⁻¹ (8 TeV)TotalStat. Only4 μ Image: 124.90 +0.15 (+0.14) GeV
Improvements in measurement	4e 124.70 ^{+0.53} _{-0.51} (^{+0.49} _{-0.47}) GeV
Beam Spot (BS) constraint for muons • Constrain muon tracks to come from BS, with transverse size (σ) ~ 10 μm • Improves muon momentum resolution by 8%	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
 Overall improvement in the Higgs mass measurement ~ 5% 	

138 fb⁻¹ (13 TeV)

 $105 < m_{41} < 140 \text{ GeV}$

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 D^{kin}_{bkg}

CMS

100 ⊢ Inclusive

0.1

Events

60

40

20

0.1

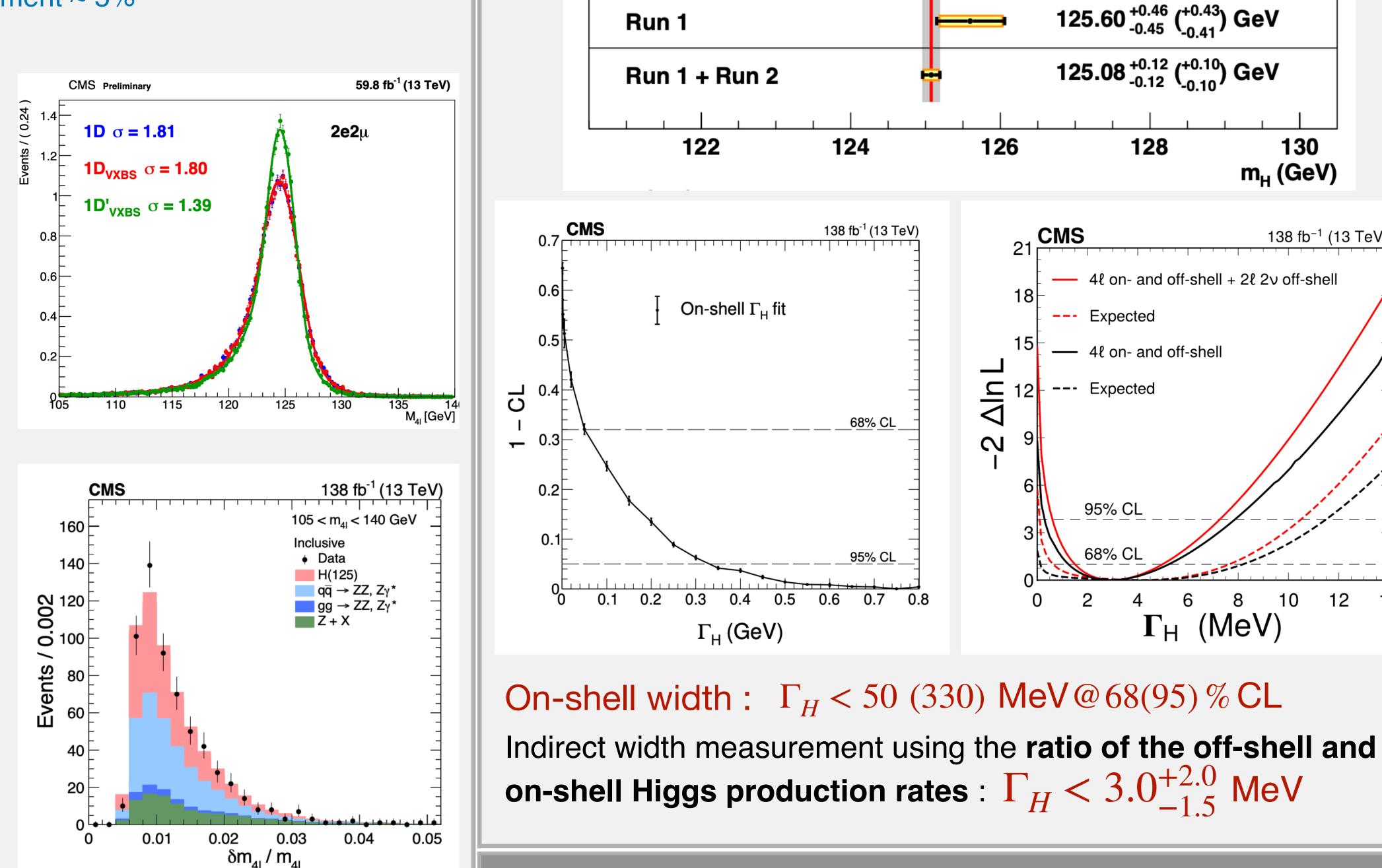
Data

Z + X

H(125)

∎qq → ZZ, Zγ*

gg → ZZ, Zγ^{*}


Overall improvement in the miggs mass measurement ~ 5%

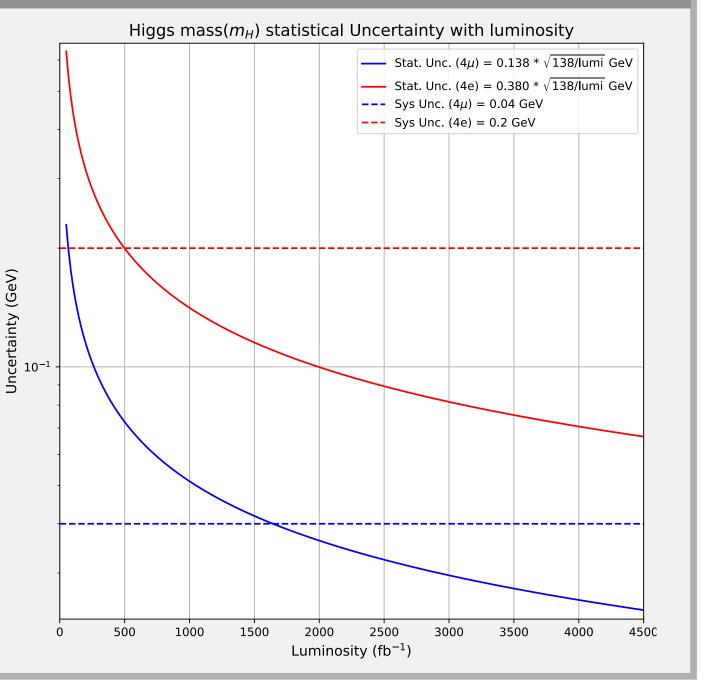
Z1 lineshape constraint

- $H \rightarrow Z_1 Z_2 \rightarrow 4l, Z_1$ is mostly on-shell with $m(Z_1) \sim m(Z)$
- Use $pdf(m_{2l})$ for the Z_1 lepton pair to refit the leptons momenta
- Works the best for di-electrons that have a worse momentum resolution
- Overall improvement in the Higgs mass measurement ~ 8%

Categorisation based on relative mass resolution ($\delta m_{4l}/m_{4l}$)

- In each of the four-lepton categories, events are further divided into 9 sub-categories based on $\delta m_{41}/m_{41}$ to isolate events with better mass resolution
- Per-event lepton momentum resolutions are validated using $Z \rightarrow 2l$ events
- Overall improvement in the Higgs mass

measurement ~ 8%


Matrix Element (ME) based Kinematic discriminant

- Built using Kinematic of leptons in the four-lepton COM frame :
- Ratio R = $|ME(event | \tilde{H})/ME(event | ZZ)|^2$ • \tilde{H} - Higgs with mass $m_{\tilde{H}} = m_{41}$ ZZ - background
- R is transformed to $D^{kin}[0,1]$
- Helps separate signal and background
- Introduced in the mass fit as a second observable : pdf (m_{4l}, D^{kin})
- Overall improvement in the Higgs mass measurement ~ 4%

Future projections and limitations

• Muon momentum scale (4μ) : 40 MeV

- Electron momentum scale (4e) : 200 MeV
- Future challenge : If systematic uncertainties remain the same, the Higgs boson mass measurement would be systematic limited before the end of HL-LHC program (3000 fb^{-1}

128

130

138 fb⁻¹ (13 TeV)

12

10

 Γ_{H} (MeV)

m_H (GeV)