

EPS-HEP 2025 July 7-11,2025

Search for CP violating effects in HWW vertex in the WH production channel in 13 TeV pp collisions with the ATLAS detector

Marina Kholodenko (LIP, Portugal) on behalf of ATLAS collaboration

Introc	luction	Fit Model					
Baryon asymmetr	y of the Universe	• Maximum li	ikelihood fit	Systematic uncertainties:			
 One of three Sakharov conditions: Charge-Parity symmetry violation 	 SM Higgs boson - scalar particle CP violating interactions allowed 	 Float nor backgrou Effect o 	rmalisation of dominant Inds f systematics - via	 Experimental Modelling: Normalisation uncertainties, acceptance ratios, shape uncertainties 			

Events /

STXS measurements

Simplified template cross section framework

• Signal MC events are classified with truth p_{τ}^{W} and $Q_{\rho}Cos\delta^{+}$ • 8 STXS reconstruction-level regions

- \circ constrain c_{HW}, only via linear term
- \circ Truth-level cross-section in each STXS bin as a function of $c_{\mu\nu\nu}$ using SMEFTSIM 3.0 ([4])

Event selection and categorisation

Resolved and **boosted** regimes of Higgs candidate reconstruction

Multivariate analysis:

• Set of Boosted Decision Trees

Signal WH process:

- Isolated lepton
- Missing transverse energy • W+jets

Dominant backgrounds:

- Top quark (tt, Wt)
- Minor backgrounds:
- Single top s/t-channels

• The fraction of correctly assigned events ranges between 60-80%

Measured WH production cross sections times branching ratios

			· · ·	· · ·		
	ATLAS Pre	eliminary V	VH, H→	b <mark>b √s=</mark>	-13 TeV, 140 fb ⁻¹	(
	• Obs. –	- Tot. unc.	— Sta	at. unc.	Theo. unc.	
				Tot.	(Stat., Syst.)	
WH, 75 < $p_T^{W,t}$ < 150 GeV, $Q_1 \cos \delta^+ \leq 0$) — +		1.56	+ 1.46 	$\begin{pmatrix} + 0.79 \\ -0.79 \end{pmatrix}$, $\begin{pmatrix} + 1.22 \\ -1.22 \end{pmatrix}$	
WH, 75 < $p_T^{W,t}$ < 150 GeV, $Q_l \cos \delta^+ > 0$	⊢ ,	-	0.03	+ 1.47 	$\begin{pmatrix} + 0.79 & + 1.24 \\ -0.79 & -1.31 \end{pmatrix}$	
WH, 150 < p _T ^{W,t} < 250 GeV, Q ₁ cosδ⁺ ≤0	H∔●→H		0.24	+ 0.60 -0.58	$\begin{pmatrix} + 0.45 & + 0.40 \\ -0.43 & -0.39 \end{pmatrix}$	
WH, 150 < p _T ^{W,t} < 250 GeV, Q _I cosδ ⁺ > 0	i i	┝┿╼╾┿┥	1.81	+ 0.66 -0.61	$\begin{pmatrix} + 0.47 & + 0.46 \\ -0.46 & -0.40 \end{pmatrix}$	
WH, 250 < $p_T^{W,t}$ < 400 GeV, $Q_1 \cos \delta^+ \le 0$	1	 1	1.60	+ 0.57 -0.52	$\begin{pmatrix} + 0.51 & + 0.25 \\ -0.48 & -0.20 \end{pmatrix}$	
WH, 250 < $p_T^{W,t}$ < 400 GeV, $Q_l \cos \delta^+ > 0_{max}$	-	-1	0.80	+ 0.54 -0.49	$\begin{pmatrix} +0.49 & +0.21 \\ -0.46 & -0.17 \end{pmatrix}$	
WH, $p_T^{W,t} > 400 \text{ GeV}$, $Q_1 \cos \delta^+ \leq 0$	••• •		0.03	+ 0.68 -0.59	$\begin{pmatrix} + 0.63 & + 0.26 \\ - 0.53 & - 0.27 \end{pmatrix}$	
WH, $p_T^{W,t} > 400 \text{ GeV}$, $Q_1 \cos \delta^+ > 0$	1	•	0.47	+ 0.76 -0.66	$\begin{pmatrix} + 0.69 & + 0.31 \\ - 0.59 & - 0.29 \end{pmatrix}$	
_	-2 0	2	4 σ	- <u>-</u> 6 → Br	8 10 normalised to SM)

- The results are in agreement with SM
- The experimental precision is generally dominated by the statistical uncertainty

CP-odd interpretation

E	xpected a	nd observed likelihood scan f	for c _{HŴ}	Fit to STXS regions:
Ĺ	4.5 _E ' '		· · ·	 Use only the shape of Q_ρCosδ⁺ in each
∆ log(4	<i>ATLAS</i> Preliminary √s = 13 TeV, 140 fb ⁻¹		p_T^W region to fit c_{HW}

(mainly heavy flavoured) • Diboson, Z+jets, from the neutrino

Multijets

• 2 b-jets in the final state

Event categorization diagram

TopBC region		3	iet	2	iet	3	et	2	iet	3	iet				
1 b-tag 1 c-tag (BC tag)	TopB	BC CR $u_{bc})$	TopBC CR (m_{bc}) TopBC CR (m_{bc})		$\begin{array}{c c} \text{TopBC CR} \\ (m_{bc}) \end{array} \begin{array}{c} \text{TopBC CR} \\ (m_{bc}) \end{array}$			TopBC CR (m_{bc})							
R	Resolved				-					• •			Bo	posted	
2 b-tag (BB tag)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 2 \text{ jet} \end{array} \end{array} \\ \hline \\ \begin{array}{c} \text{Low } \Delta \text{R CR} \\ (\text{BDT}_{\text{CRLow}}) \end{array} \\ \hline \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \hline \\ \begin{array}{c} \begin{array}{c} \\ \text{High } \Delta \text{R CR} \\ (p_{\text{T}}^{\text{W}}) \end{array} \end{array} \end{array}$		$\begin{array}{c c} \textbf{Low} \Delta \textbf{R} \textbf{CR} \\ (BDT_{CRLow}) \end{array} & \begin{array}{c} \textbf{Low} \Delta \textbf{R} \textbf{CR} \\ (BDT_{CRLow}) \end{array} \\ \begin{array}{c} \textbf{High} \Delta \textbf{R} \textbf{CR} \\ (p_{T}^{W}) \end{array} & \begin{array}{c} \textbf{High} \Delta \textbf{R} \textbf{CR} \\ (p_{T}^{W}) \end{array} \end{array}$		Low ΔR CR (BDT _{CRLow}) High ΔR CR (p_{T}^{W})		Low ΔR CR (BDT _{CRLow}) High ΔR CR (p_T^W)				CR	Top CR (m _J)			
2. 2.	$\begin{cases} Q_{\ell} \cos \delta^+ \\ \leq 0 \\ (BDT_{VH}) \end{cases}$	$\begin{array}{c} Q_{\ell} \cos \delta^+ \\ > 0 \\ (\text{BDTVH}) \end{array}$	$egin{aligned} & Q_\ell \cos \delta^+ \ & \leq 0 \ (\text{BDT}_{VH}) \end{aligned}$	$Q_{\ell} \cos \delta^+ > 0$ (BDTVH)	$Q_{\ell} \cos \delta^+ \leq 0 \ (\text{BDT}_{VH})$	$Q_\ell \cos \delta^+ > 0$ (BDTVH)	$Q_{\ell} \cos \delta^+ \leq 0$ (BDT _{VH})	$Q_{\ell} \cos \delta^+ > 0$ (BDTVH)	$egin{aligned} Q_\ell \cos \delta^+ \ \leq 0 \ (\text{BDT}_{VH}) \end{aligned}$	$Q_\ell \cos \delta^+ > 0$ (BDTVH)	$Q_{\ell} \cos \delta^{+} \\ \leq 0 \\ (BDT_{VH})$	$Q_{\ell} \cos \delta^+ \\ > 0 \\ (BDTVH)$	SR	$egin{aligned} & Q_\ell \cos \delta^+ \ & \leq 0 \ & (\text{BDT}_{VH}) \end{aligned}$	$Q_\ell \cos \delta^+$ > 0 (BDT _{VH})
75 GeV		150 GeV			250 GeV				400	GeV p		p _T ^W			

References

1. Search for CP violation in *WH* production in 13 TeV *p p* collisions with the ATLAS detector ATL-PHYS-PUB-2025-022

3. Probing the Higgs boson CP properties in vector-boson fusion production in the $H \rightarrow \tau + \tau -$ channel with the ATLAS detector, arXiv:2506.19395

4. I. Brivio, SMEFTsim 3.0 — a practical guide, JHEP 04 (2021) 073, arXiv: 2012.11343

EPS-HEP 2025 Palais du Pharo, Marseille, France July 7-11, 2025