Exploring Background Contributions in $H \rightarrow Z\gamma$ Decay

Aliaksei Kachanovich Université libre de Bruxelles July 8, 2025

European Physical Society Conference on High Energy Physics

< D >

Plan

Motivation

2 Theory

- The SM
- The NP contribution

Operation of the second sec

4 Conclusion

Motivation

Motivation

- Rare Standard Model (SM) processes may shed light on open questions, such as dark matter, baryon asymmetry, and neutrino masses.
- The decay $H \rightarrow Z\gamma$ is a rare process within the SM.
- ATLAS and CMS reported a branching fraction of $(3.4 \pm 1.1) \times 10^{-3}$ for $H \rightarrow Z\gamma$ process, which is higher by a factor of 2.2 ± 0.7 compared to the SM prediction.
- The excess has been interpreted as a modification of the $HZ\gamma$ vertex.
- Detectors measure $H \rightarrow \ell \ell \gamma$; excess events may also be due to new physics (NP) backgrounds.

The content of this talk closely follows the analysis in [arXiv:2503.08659] (published in: JHEP 06 (2025) 043), in collaboration with J. Kimus (ULB), S. Lowette (VUB, IIHE), and M.H.G. Tytgat (ULB).

イロン (四) イモン (日) 日日

Motivation

- EFT and UV-complete models responsible for the branching fraction of $(3.4 \pm 1.1) \times 10^{-3}$ for $H \rightarrow Z\gamma$.
- Methods to falsify background scenarios.
- Constraints on our models from other observed phenomena.

The content of this talk closely follows the analysis in [arXiv:2503.08659] (published in: JHEP 06 (2025) 043), in collaboration with J. Kimus (ULB), S. Lowette (VUB, IIHE), and M.H.G. Tytgat (ULB).

(日本) (日本) (日本) (日本)

Theory

Theory. The SM

Tree-level amplitude. Due to the small electron Yukawa coupling, this contribution is relevant only for the dimuon channel.

Loop amplitudes (schematic) contributing to $H \rightarrow \ell \ell \gamma$.

315

< E

< □ > < A >

• The one-loop amplitude can be expressed as [arXiv:2001.06516]

$$egin{split} \mathcal{M}_{\mathsf{SM},\mathsf{loop}} &= ig[(q_\mu p_{1
u} - g_{\mu
u} \, q \cdot p_1)ar{u}(p_2)ig(A_1\gamma^\mu P_R + B_1\gamma^\mu P_Lig)v(p_1) \ &+ (q_\mu p_{2
u} - g_{\mu
u} \, q \cdot p_2)ar{u}(p_2)ig(A_2\gamma^\mu P_R + B_2\gamma^\mu P_Lig)v(p_1)ig]arepsilon^{*
u}(q)\,, \end{split}$$

• Tree level

$$\mathcal{M}_{\text{SM, tree}} = -\frac{e^2 m_{\mu} \varepsilon_{\nu}^*(q)}{2 m_W \sin \theta_W} \\ \times \left[\frac{\bar{u}(p_1) (\gamma^{\nu} \not{q} + 2p_1^{\nu}) v(p_2)}{t - m_{\ell}^2} - \frac{\bar{u}(p_1) (\gamma^{\nu} \not{q} + 2p_2^{\nu}) v(p_2)}{u - m_{\ell}^2} \right]$$

Theory. The NP contribution

 On the level of effective field theory, the contribution to the *ll*γ background is described by a dimension-8 effective operator [arXiv:1008.4884]

$$\mathcal{L}_{ ext{eff}} \supset rac{g'}{\Lambda_R^4} |H|^2 \partial_
u (ar{\ell}_R \gamma_\mu \ell_R) B^{\mu
u} \, .$$

• Other effective operators also contribute to the $H \rightarrow \ell \ell \gamma$ process.

Theory. The NP contribution

• One of possible UV-complete solution which can provide missing events described by the Dark matter model [arXiv:1405.6921]

$$\mathcal{L} \supset rac{1}{2} \partial_\mu S \partial^\mu S - rac{1}{2} m_S^2 S^2 + ar{\Psi} (i D - m_\Psi) \Psi - \sum_\ell (y_\ell S ar{\Psi} \ell_R + h.c.) - rac{\lambda_{hs}}{2} S^2 |H|^2$$

 • This Lagrangian gives rise to three new Feynman diagrams contributing to $H \to \ell \ell \gamma$

General overview

- The experimental branching fraction can be obtained for the scale $\Lambda_R = 246$ GeV.
- In the UV-complete theory, there are 4 new parameters that impact the decay rate.
- One solution can be at $m_{\Psi} = m_S = 62.5$ GeV with the $\ell S\Psi$ vertex coupling $y_{\ell} = 1.66$ and HSS vertex coupling $y_{hs} = 0.26$.
- Another scenario: $m_{\Psi} = m_S = 100$ GeV with $y_{\ell}^2 \cdot y_{hs} = 28.1$.

Definition of resonant contribution

• The loop contribution consists of resonant and non-resonant parts [arXiv:2109.04426]:

$$a_{1(2)}(s,t) = a_{1(2)}^{nr} + a_{1(2)}^{res}(s)$$

where

$$a_{1(2)}^{nr} \equiv \tilde{a}_{1(2)}(s,t) + rac{lpha(s) - lpha(m_Z^2)}{s - m_Z^2 + im_Z \Gamma_Z}, \quad a_{1(2)}^{res}(s) \equiv rac{lpha(m_Z^2)}{s - m_Z^2 + im_Z \Gamma_Z}.$$

SM contribution to $H \rightarrow \ell \bar{\ell} \gamma$

• The resonant contribution corresponds to the process $H \rightarrow Z\gamma$, while the non-resonant contribution includes box diagrams and $H \rightarrow \gamma\gamma$.

Contribution with rescaled resonant part

• To simulate the differential decay rate from the experiment, we rescale the resonant contribution in the process $H \rightarrow \ell \ell \gamma$.

Effective operator

The differential decay rate with the contribution of the effective operator.

UV-complete theory

The differential decay rate with the contribution of the UV-complete theory.

Kinematical cuts impact

Theoretical decay rates and the experiment-to-theory ratio for a typical choice of cuts.

#	Cuts	$m_{\ell\ell}^{min}$	$m_{\ell\ell}^{max}$	$\Gamma_{ m tot}^{ m SM}$	$\Gamma_{\mathrm{tree}}^{\mathrm{SM}}$	$\frac{Br_{resc}}{Br_{SM}}$	$\frac{Br_{\rm EFT}}{Br_{\rm SM}}$	$\frac{Br_{\rm UV}}{Br_{\rm SM}}$
1	None	50	125	0.768	0.287	1.67	1.86	2.07
2	None	50	100	0.504	0.028	2.01	2.21	2.57
3	CMS	40	125	0.455	0.011	2.04	2.10	2.13
4	CMS	50	125	0.451	0.011	2.06	2.06	2.06
5	CMS	70	125	0.440	0.011	2.07	1.80	1.71
6	CMS	70	100	0.432	0.006	2.08	1.74	1.68
7	CMS	80	100	0.416	0.005	2.09	1.48	1.39

Table: CMS cuts: $E_{\gamma} \ge 15$ GeV, $E_1 \ge 7$ GeV, $E_2 \ge 25$ GeV and $t_{min}, u_{min} \ge (0.1m_H)^2$. $m_{\ell\ell}^{min(max)}$ are in GeV, $\Gamma_{\text{tot(tree)}}^{SM}$ are in keV. UV-complete theory: $m_S = m_F = 62.5$ GeV.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの(?)

Phenomenological Constraints

- The UV-complete model is consistent with the $(g 2)_{\ell}$ measurement $(\lambda_{hs}y_{\ell}^2 = 0.72 \text{ and } \lambda_{hs}y_{\ell}^2 = 28.1 \text{ for } m_{\Psi} = m_S = 62.5 \text{ GeV and } 100 \text{ GeV},$ respectively).
- The UV-complete model satisfies electroweak precision tests.
- Collider constraints: $m_F \gtrsim 67$ GeV (within 5% uncertainty); the benchmark with $m_{\Psi} \gtrsim m_S = 62.5$ GeV is borderline, while $m_{\Psi} \gtrsim m_S = 100$ GeV is safe.
- $m_S = 100 \text{ GeV}$ is strongly excluded as a single-component dark matter candidate by direct detection, while $m_S = 62.5 \text{ GeV}$ remains viable due to proximity to the Higgs resonance.

Conclusion

Conclusion

- There is background from $H\to\gamma\gamma,$ tree-level bremsstrahlung, and box diagrams, which is cut-dependent.
- Appropriate kinematics cuts substantially reduce the background.
- EFT provides a possible explanation for the enhanced decay rate at the scale $\Lambda_R=246$ GeV.
- There is a possible solution in terms of the UV-complete theory.
- The differential decay rate from the experiment is needed.
- Both the UV-complete model and EFT remain consistent with the current muon g 2 measurement, electroweak precision tests (EWPT), and collider measurements.
- Different kinematic cuts provide the possibility to constrain the model parameters.

ULE

Merci beaucoup!

Muon magnetic dipole moment

• Contribution to the muon's electromagnetic form factor $F_2(q^2)$ with q photon momenta

$$\Delta F_2(0) \stackrel{\circ}{=} \Delta \left(\frac{g_\mu - 2}{2}\right) \stackrel{\circ}{=} \Delta a_\mu = \frac{y_l^2}{192\pi^2} \frac{m_\mu^2}{M^2}$$

is positive.

- For $y_{\ell} = 1.28$ and $m_S = 62.5$ GeV (corresponding to $\lambda_{hs}y_{\ell}^2 = 0.72$ if $\lambda_{hs} = 0.44$, is $\Delta a_{\mu} = 2.5 \cdot 10^{-9}$. A similar shift can be obtained with $y_{\ell} = 2.05$.
- For $m_S = 100$ GeV, corresponding respectively to $\lambda_{hs} y_{\ell}^2 = 28.1$ for $\lambda_{hs} = 6.7$.
- The Standard Model prediction for the muon anomalous magnetic moment is $a_{\mu}(\exp) a_{\mu}(SM) = (251 \pm 59) \cdot 10^{-11}$, that lies within the range of the UV model prediction.

Electroweak precision tests (EWPT)

• For $m = m_S = 62.5(100)$ GeV

$$\begin{aligned} \frac{\Delta\Gamma}{\Gamma} \Big|_{inv} &= 0.0002 (0.00005) < 0.003 \\ \frac{\Delta\Gamma}{\Gamma} \Big|_{\ell\ell} &= 0.0002 (0.00006) < 0.001 \\ \Delta m_W &= 0.0082 (0.0026) \,\text{GeV} < 0.013 \,\text{GeV} \end{aligned}$$

 Oblique corrections are significantly smaller than the current 1σ experimental uncertainties.

Constraints from colliders

- Masses of Ψ and S are degenerate, with $m_{\Psi} \gtrsim m_S$.
- As the Yukawa coupling is not small, the process $\stackrel{(-)}{\Psi} \rightarrow S + \stackrel{(-)}{\ell}$ leads to soft leptons, which escape detection. The production of $\Psi\bar{\Psi}$ is thus equivalent to missing energy, $pp \rightarrow \text{jets} + \not{\!\!\!E}$.
- Collider detection limits can be estimated by comparing the processes $q\bar{q} \rightarrow Z' \rightarrow \chi \bar{\chi}$ and $q\bar{q} \rightarrow Z/\gamma \rightarrow \Psi \bar{\Psi}$.
- Bound: $m_F \gtrsim 67$ GeV (within 5%); benchmark with $m_{\Psi} \gtrsim m_S = 62.5$ GeV is borderline, while $m_{\Psi} \gtrsim m_S = 100$ GeV is safe.

Comments on DM direct detection

- In thermal freeze-out, the abundance $Y_S = n_S/s$ (with s the entropy density) scales as $Y_S \propto 1/\langle \sigma v \rangle \propto 1/\lambda_{hs}^2$.
- For the benchmark S particle with mass $m_S = 100$ GeV, thermal freeze-out requires a large quartic coupling: $\lambda_{hs} \gtrsim 2.2$.
- For S to account for all of DM ($f_S = 1$), one would instead need $\lambda_{hs} \approx 0.04$.
- If stable, the S particle would therefore be a subdominant DM component: $f_S \approx (0.04/2.2)^2 \approx 3 \cdot 10^{-4}$.
- This benchmark is excluded by direct detection. A lighter S particle, with m_S slightly above $m_H/2$, may still evade direct detection due to proximity to the Higgs resonance.

