

Flavour Deconstructing the Composite Higgs

SEBASTIANO COVONE

UNIVERSITÄT ZURICH

BASED ON 2407.10950

IN COLLABORATION WITH J. DAVIGHI, G. ISIDORI, M. PESUT

07/08/2025, MARSEILLE

Outline

- Main Standard Model (SM) problems tackled;
- Flavour non-universal interactions and Higgs compositeness;
- Model specifics: Yukawa sector and Higgs potential;
- Phenomenological analysis of the model;
- Conclusions and outlook.

Flavour puzzle 10⁻⁴ 10⁻³ 10^{-2} 10⁻¹ 10^{1} 10^{2} 1 GeV t g \boldsymbol{u} de(S)h μ C Š $\Lambda_{\rm NP}$

- Strongly hierarchical Yukawa sector (fermion masses and mixings) : Flavour Puzzle.
- Possible solution: introducing New Physics (NP) at high energy scales.
- Consequences on the Higgs hierarchy problem.

Higgs Hierarchy Problem

- Heavy NP (scale Λ) : corrections to Higgs mass very far from measured value;
- Precise cancellation between bare mass and corrections (in principle unrelated!)
- Fine tuning (Δ) = ratio between corrections and observed mass;
- Taking Λ = M_{GUT} ,one gets Δ = 10²⁴;
- Acceptable tuning (O(1%)) if $\Lambda \sim \text{TeV}$.

$$H \longrightarrow \delta_{\rm SM} m_H^2 = \frac{3y_t^2}{8\pi^2} \Lambda_{\rm SM}^2 \qquad \longrightarrow \qquad \Delta \ge \frac{\delta_{\rm SM} m_H^2}{m_H^2} = \frac{3y_t^2}{8\pi^2} \left(\frac{\Lambda_{\rm SM}}{m_H}\right)^2 \simeq \left(\frac{\Lambda_{\rm SM}}{450 \,{\rm GeV}}\right)^2$$

Hints from the Standard Model $\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm gauge} + \mathcal{L}_{\rm Higgs}$

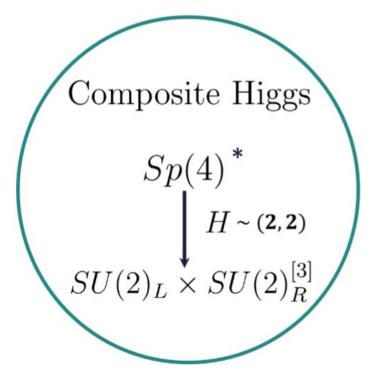
- Gauge sector does not distinguish fermion flavour (flavour-universal, U(3)⁵ symmetry);
- The Higgs sector breaks this symmetry, introducing a hierarchy among families;
- Approximate U(2)⁵ symmetry for the light families;
- Third family appears to be separated from the light ones.

$$V_{\text{CKM}} \approx \begin{pmatrix} 1 & 0.2 & 0.004 \\ 0.2 & 1 & 0.04 \\ 0.009 & 0.04 & 1 \end{pmatrix}$$

$$\begin{array}{c} \text{Maybe the SM is only flavour universal at low energies!} \\ \text{Approximate U(2)^5 symmetry} \\ \text{Small light-to-heavy FCNCs} \end{array}$$

$$-rac{m_t}{m_u}pproxrac{173~{
m GeV}}{2~{
m MeV}}pprox10^5$$

Non-universal dynamics and composite Higgs



Non-universal dynamics + composite Higgs

Yukawa hierarchies + stable m_H

Higgs : pNGB from global Sp(4) breaking .

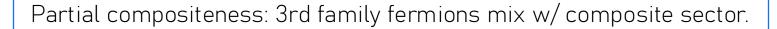
Shift symmetry: no Higgs mass at LO. Potential generated at one-loop.

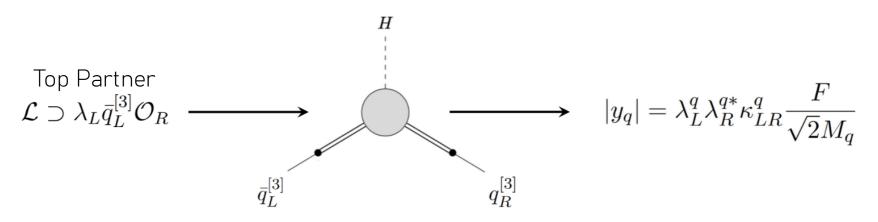
Higgs mass is shielded from high energy corrections.
 Reduced fine tuning

Breaking pattern

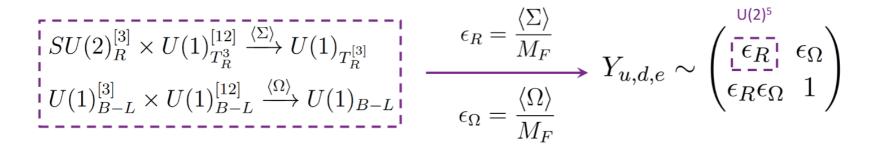
$$SU(3)_c \times Sp(4) \times U(1)_{B-L}^{[3]} \times U(1)_Y^{[12]}$$
Non-perturbative $\bigwedge \Lambda_{\rm HC} \qquad H \sim (\mathbf{2}, \mathbf{2})$

$$SU(3)_c \times SU(2)_L \times SU(2)_R^{[3]} \times U(1)_{B-L}^{[3]} \times U(1)_Y^{[12]}$$

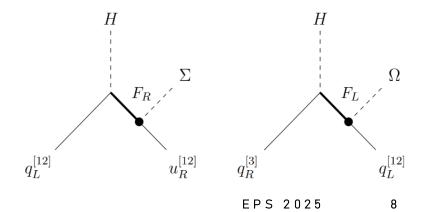




$\begin{array}{l} & \text{Breaking pattern} \\ & SU(3)_c \times SU(2)_L \times SU(2)_R^{[3]} \times U(1)_{B-L}^{[3]} \times U(1)_Y^{[12]} \\ & \\ & \text{Horizontal} \\ & \text{breaking} \end{array} \quad \left[\overline{\langle \Sigma_R \rangle} \right] = \overline{\langle \Omega \rangle} \\ & SU(3)_c \times SU(2)_L \times U(1)_Y \end{array}$



- VEV of elementary scalars generate breaking to G_{SM} at low energy ;
- Yukawa coupling effectively generated through insertion of heavy vector-like fermions (100 TeV).



7/6/2025

Yukawa sector

• Observed Yukawa matrices are obtained by tuning the ratio of the scalar VEV and the VLF mass

$$\epsilon_R = \frac{\langle \Sigma \rangle}{M_F} \qquad \epsilon_\Omega = \frac{\langle \Omega \rangle}{M_F}$$

• Tuning requirements on the Higgs potential do not uniquely fix the scale of flavour non universality !

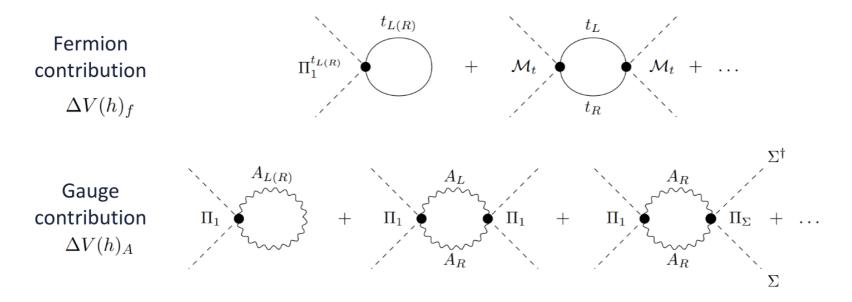
 $Y_{u,d,e} \sim \begin{pmatrix} \mathbf{I} & \mathbf{\epsilon}_{R} & \mathbf{I} & \mathbf{\epsilon}_{\Omega} \\ \mathbf{\epsilon}_{R} \mathbf{\epsilon}_{\Omega} & \mathbf{I} \end{pmatrix}$

$$\epsilon_{\Omega} = O\left(|V_{cb}|\right) = O\left(10^{-1}\right)$$

$$\epsilon_R = O\left(m_c/m_t\right) = O\left(10^{-2}\right)$$

Higgs potential

- Sp(4) explicitly broken by Gauge interactions and mixing w/ composite sector;
- Radiatively generated potential (Coleman Weinberg);
- VEV of $\boldsymbol{\Sigma}$ induces changes on tuning.



Higgs potential

• Potential is periodic in h, comprising 2 independent trig. functions.

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$

• Tuning requirements from matching to SM.

$$\frac{c_1}{F^4}\Big|_{\rm phys.} = \frac{m_h^2}{F^2} \longrightarrow \text{Tuning} \left(\frac{m_h^2}{F^2} \lesssim 0.03 \right) \qquad \qquad \frac{c_2}{F^4}\Big|_{\rm phys.} = \frac{2m_h^2}{v^2} \approx \frac{1}{2}$$

• Flavour non-universality: freedom to choose suitable SU(2)R coupling.

Higgs potential: quadratic term

- Tuning only stems from c₁
- To stabilize Higgs potential, we need:
 - o Introduction of L-R symmetry.
 - o Suitable choice of gR to suppress top-partner contribution

$$\frac{c_1}{F^4} = \frac{N_c}{8\pi^2} \left[\left(\lambda_R^t \right)^2 \kappa_R^t - \left(\lambda_L^t \right)^2 \kappa_L^t \right] \frac{M_f^2}{F^2} + \underbrace{\frac{N_c y_t^2}{4\pi^2} \frac{M_T^2}{F^2}}_{\text{L-R symmetry}} \right] \frac{M_f^2}{F^2} + \underbrace{\frac{N_c y_t^2}{4\pi^2} \frac{M_T^2}{F^2}}_{\text{L-R symmetry}} \int \frac{M_f^2}{F^2} \int \frac{M_f^2}$$

 $\frac{c_1}{F^4}\Big|_{\rm phys.} = \frac{m_h^2}{F^2} \longrightarrow {\rm Tuning} \left(\frac{m_h^2}{F^2} \lesssim 0.03 \right)$

Higgs potential: quadratic term

$$\frac{c_1}{F^4} \supset \frac{N_c y_t^2}{4\pi^2} \frac{M_T^2}{F^2} - \frac{9g_R^2}{32\pi^2} \left(1 - \frac{g_R^2 v_{\Sigma}^2}{2M_{\rho}^2}\right) \frac{M_{\rho}^2}{F^2}$$

- Potential stabilized by appropriate g_R choice (allowed by non-universality)
- Large enough to be of the same order of \boldsymbol{y}_t contribution
- Small enough not to generate a sign inversion in the Gauge contribution

$$g_{R,3} = O(1) \gg g_{R,12} \approx g_Y^{SM}$$

$$M_{W_R}^2 = \frac{1}{4}g_R^2 v_{\Sigma}^2 < \frac{1}{2}M_{\rho}^2$$

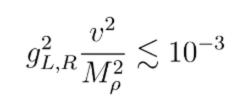
Experimental constraints: super-strong sector

• Effects on VVh and VVhh couplings

• Top partners, TeV scale resonances

 $M_T \gtrsim 1.5 \text{ TeV} \longrightarrow \Lambda_{\text{HC}} \gtrsim 15 \text{ TeV}$ $M_{\rho} \gtrsim 5 \text{ TeV}$

• EWPO, S parameter



Experimental constraints: Gauge bosons

- Flavour (e.g. B ightarrow X, + y) and Z-pole $v_{\Sigma}\gtrsim 3\,{
 m TeV}$
- Drell-Yan from LHC

$$v_{\Sigma} \gtrsim 2.7 \,\mathrm{TeV}$$

 $v_{\Sigma} \gtrsim 2 \,\mathrm{TeV}$

• B_s mixing

Summary of model

- O(1) SU(2)_R gauge coupling from third family \square
- 3% fine tuning

• Light top-partner (2 TeV) and 10 TeV resonances \longrightarrow • O(1%) modifications to Higgs couplings

• Compositeness scale Λ ~ 20 TeV and v_{\Sigma} ~ 3 TeV \implies • O(10^{-3}) modifications to EW sector

Conclusions and outlook

- TeV scale NP coupled to 3rd generation is compatible with current exp. bounds.
- Higgs compositeness + non-universality \rightarrow Predictive BSM model
- Future direction: composite link fields

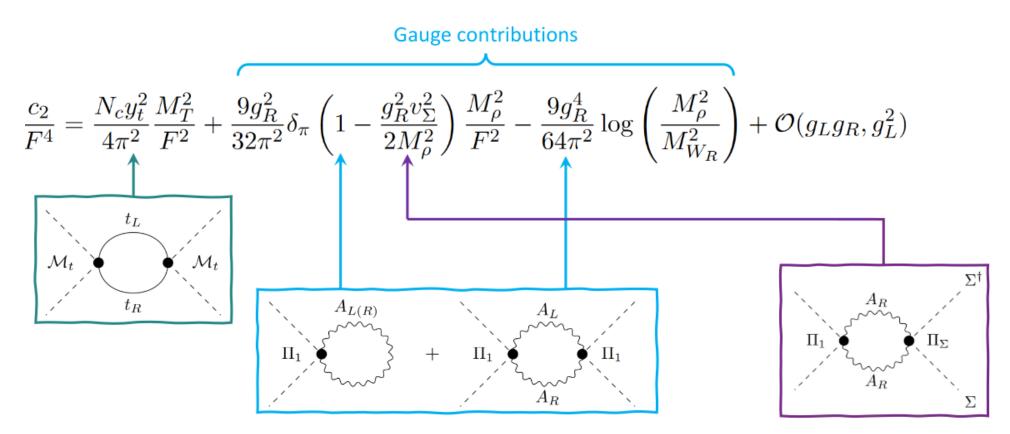
 $Sp(6)_{\text{global}} \longrightarrow SU(2)_L \times SU(2)_R^{[3]} \times SU(2)_R^{[12]}$

Thank you for your attention!

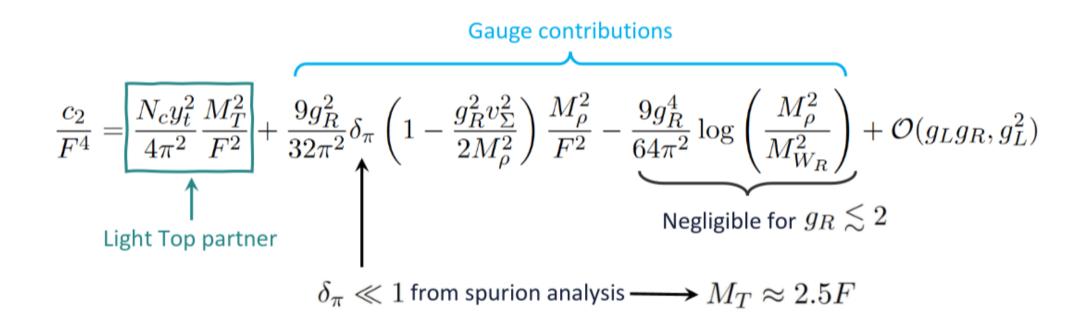
Backup slides

Elementary fields		$U(1)_{B-L}^{[3]}$	$U(1)_{Y}^{[12]}$	$SU(2)_L$	$SU(2)_{R}^{[3]}$
chiral	$q_{L}^{[12]}$	0	1/6	2	1
light quarks	$u_{R}^{[12]}$	0	2/3	1	1
	$d_{R}^{[12]}$	0	-1/3	1	1
chiral	$q_{L}^{[3]}$	1/6	0	2	1
$3^{\rm rd}$ gen. quarks	$q_R^{[3]}$	1/6	0	1	2
vector-like	F_L^q	1/6	0	2	1
quarks	F_R^q	0	1/6	1	2
scalar	Σ_R	0	1/2	1	2
link fields	Ω_q	-1/6	1/6	1	1
	Ω_ℓ	1/2	-1/2	1	1

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$



$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$



Potenziale di Higgs: termine quartico

 c_2 naturale (O(1)) dal matching con il MS

$$\left. \frac{c_2}{F^4} \right|_{\text{phys.}} = \frac{2m_h^2}{v^2} \approx \frac{1}{2}$$

Constraint sul rapporto M_T/F

$$\frac{c_2}{F^4} = \frac{N_c y_t^2}{4\pi^2} \frac{M_T^2}{F^2} + \begin{array}{c} \text{Gauge contributions} \\ \text{(suppressed)} \end{array}$$

$$\uparrow \\ \text{Top partner} \longrightarrow M_T \approx 2.5F$$