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What is missing in the SM?

SM is exceptionally successful in explaining a wide range of phenomena
across a wide range of energy scales

However...

(Assuming baryogenesis)

Fine-tuning Evidence-based Sakharov Conditions;

TT—T = _ _ = = e

. H . Nettrina | / + CP-violation needed
' » Hierarchy Problem | | o Neutrino masses |

| Dark Matter ! BUT

, i‘ SM CP-violation is not
- * Baryon Asymmetry |

e Strong CP problem

e Flavor puzzle

————— A — — = —_— __ ——— — — —_——

{k Enough!

[Gavela et al.,hep-ph/9312215]
[Huet Sather, hep-ph/9404302]
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New sources of CP violation are necessary!
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Where looking for new sources of CP-violation?

Electric dipole moments are the ideal candidates to look for new sources of CPV.

General features
A particle with spin can interact with an electric field according to:

—

= O QFT iz
H = _dE ~ , CEDM:_§deuuV5fFMV
/ Loop process in any ren. theory
EDM Vector x Pseudo-vector l
/ Sensitive to particles

In the loop

P(CP)-odd interaction —

Indirect search for CP-odd NP
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eEDM is particularly well suited for the search NP

Extremely suppressed
In SM

CP-violation: Jarlskog invariant ( J)

1/

J appears at 4 loops
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L [Pospelov, Ritz, 2014]
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Electron EDM

eEDM is particularly well suited for the search NP

Extremely suppressed
In SM

CP-violation: Jarlskog invariant ( J)

q ‘;-
i W W i
| J appears at 4 loops
P de ~ O(10"*H)e-em ¢

[Pospelov, Ritz, 2014]
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Electron EDM

eEDM is particularly well suited for the search NP

Extremely suppressed
In SM

CP-violation: Jarlskog invariant ( J)

1/

J appears at 4 loops
' de ~ O(10~**) e - ecm

L [Pospelov, Ritz, 2014]

vV 2 e B L -7 g o Bs- Lo DSBS gr oo - 2 gD = NNt - hn Bd- Lo R SBE
Eadmid e = g = - Y d;

_ =~

Impressive Experimental
sensitivty

Experiment Current bound/Upcoming sensitivity

JILA eEDM <4.1x 1073 e cm /
ACME III ~1x 107" e cm

YBF ~1x107% e cm

BaF ~1x 1073 e cm

Still far from SM prediction !

Detection of an eEDM in the forthcoming

years would be a clear evidence for NP
4

Ten order of magnitude
better than the muon
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Theory vs Experiments

eEDM is typically investigated in paramagnetic atoms or molecules (n,p,e)

—

Exps. look for specific energy shift ~ Proportional to a larger class
sensitive to CP-violation of CP-odd interactions
than eEDM

Effective Lagrangian at the Exp. Scale:

. . )
N = (i) LoP—odd = ;. eouYse \/gCS eryselN IV

_— — N

eEDM Semi-leptonic CP-odd interaction Nuclei-spin dependent,
between e and nucleons Z-N suppressed,...
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Ay < 1.1 x107% e - cm [Ema et al.,hep-ph/2202.10524] Still room for NP
l Dominated by
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SMEFT in a nutshell

No clues about the possible UV completion of the SM

Model independent parametrization of our ignorance about the UV theory

™
[fSMEFT — £SM - Z /(n-40’§ ) » b9 operatorsforn = 6
Loop effects can induce operators mixing according to
d
Ren. scale -+ M@C@' = ’yijCj

Long story short:

Running, mixing and matching across the various EF s is such that the
equiv. EDM is sensitive to a broad class of operators

v
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We fixed NP scale at 10 TeV
One operator at a time o

l ;

wilson . Automated running and matching
SMEFT-LEFT
LEFT
SU(3)e X U(1)em |
~2GeV A Matching
EFT + LQCD

[Hoferichter et al.,hep-ph/092301]
[P. M. Junnarkar et al.,hep-ph/114510]
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We fixed NP scale at 10 TeV
One operator at a time -OZ(”)

|

wilson . Automated running and matching
SMEFT-LEFT
LEFT
: SU(S)C X U(l)em | |
wree " Matching 2 d. e RV GFC' sirvee NN
‘ EFT + LQCD - g deamune P+ ZECseinge
[Hoferichter et al.,hep-ph/092301] —

Eeap [P. M. Junnarkar et al.,hep-ph/114510]



A tower of EFTs

We fixed NP scale at 10 TeV
One operator at a time -OZ(”)

|

wilson . Automated running and matching
SMEFT-LEFT
LEFT
1_ SU(3)e X U(1)em v !
~2GeV Matching i, ,  Gr . .
" EFT + LQCD . —3 de €0 Y5e F'HY A 73 Cseiyse NN
[Hoferichter et al.,hep-ph/092301]
Eexp [P. M. Junnarkar et al.,hep-ph/114510]

d%qf%il =d.+Cgx0.9x107%" e-cm
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Results |:

Large set of operators where d°4"V- ~ d,

Ao < 4.1 x 1073 e - em

A =10TeV

Largest effects from:

* Dipole operators ¢2X ¥

* Mixing featuring heavy quarks (LR)(LR)

e Mod. of SM coupling (Barr Zee) 2 p°

‘|' — — —
((p (p) (lpe’f‘SO) (lpU“Ver)SOB;u/ ( %er)gjk(qgut) (lg)JNVeT)Ejk(qfaﬂyut)
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Results |:

Large set of operators where d°4"V- ~ d,

Ao < 4.1 x 1073 e - em

A =10TeV

10'4—;
10'6—;
10'8—;

10‘10—;

10-12 _:

Consistency with previous works

[Kley et al., 2109.15085]
[Panico et al., 1810.09413]

Largest effects from:

* Dipole operators ¢2X ¥

* Mixing featuring heavy quarks

 Mod. of SM coupling (Barr Zee)

(l_ga';wer) €k (Q’:O’“V’U,t)

(LR)(LR)

W

QQOS
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: - Light quarks contribution
N 10'4—§
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Results |l;

equivalent EDM is more sensitive than eEDM to some semileptonic operators

oo A =10TeV
- e Running and matching:
107 Scalar:
: * Light quarks contribution

N 10'4—§
S »Heavy quarks contribution
= :
et & | s .

10~ 1-loop mixing:

Lo - Tensor-to-scalar with u

10-10_E

N Y 0 i > A
G g a8 g SOl

10



Conclusion

e Flectron dipole moment searches are conducted on atoms or molecules
e [hey are sensitive to a linear combination of eEDM and a semileptonic CP-odd int.
*Previous works focused just on eEDM sensitivity to SMEFT operators
Results
e Extension of the analysis to explore the full direction probed by electron EDM exps.

e Sensitivities of the eEDM experiments to a larger classes of operators than previously
recognized

11






C; (10°)

' (- N

What if we have 2 or more Exps?

In EDM experiments | want to measure the energy shift when s is aligned with E
Compare to when is anti-aligned

Roussy et al.,hep-ph/2212.11841 hf = =2deEcry +2WsCg

d‘;ﬁ};”" = d. +#Cge-cm
Two experiments with different
Can disentangle eEDM and Cs.

ThO ~ 1.5 x 10729
HfFT ~ 0.9 x 10=%

v

Combined fit
d, (1029ecm)
d.| < 2.1 x107* e cm

HfFjL ThO Cg| < 1.9 x 1077



https://arxiv.org/abs/2212.11841

Matching at the nucleon scale

Non-perturbative matching at the confinement scale: connecting quark and gluons to Nucleons

Relevant LEFT operators: Oxy = (éPxe) (¢Prq) — ; " Im [C, + C%) (evse) (Gq) = C(Eivse) (Gq)
Light quarks contribution: Heavy quarks contribution:
(N|gg| N) ~Gg Y N|NN|N) One loop matching to Oec = (€ivse) (G}, GE")
P with
g=u|g=a|qg=s _ _%(mQ) o
G& | 9 | 82 | 042 Ce6 = " Yontm, & (M)
Gh| 81 | 9 | 042 18
D, 1 A > a ” B T™mpyN —
’ (N|G;, G| N) = g TN INN|N)

Final expression matching Cs and semileptonic in LEFT:

2
A\/CiF Z GNC(u Z 2my C2(mg)
q=u,d,s Q=c,b,t



A bit of dipoles

Crucial for this work are the dipole operators at dimension 6
Qew | (Lo* e, )T W,

QeB (lpo"er)p B,

Spontaneous symmetry breaking and gauge boson eigenstates:

. (O v+h\" B, =cosf,A, —sinb, 2,
’ V2 Wj = sinf,A,, + cos 0,2,

Matching to our Effective lagrangian: Lgzpy = —éd fou vsf FM

de(pt) = %Im 50y, Cew (1) — coyy CeB(1)]

But

S;olution of _I?G'E (SMEFT or LEFT): Dipole operators at low energy can stem from the mixing

Cur) =C(u)U (s, i) > under the RGE




Result |I: some detalls
Leading log:

,dCJly ijim : - -
167 g —28N.C, 3y Yl — [Xe 1ij (gZ(CHW +iChy) + 810 + Y )(Crwp + lCHWB))
2 dC:,’JB i jlm 0 . 3 .
16 Jlny. =4g,N.(y, + }’q)Czequ(?,)[Y“]'"’ — ¥, lii 2811 + ¥ )(Cup + iCpz) + EgZ(CHWB +1C i p)
Electron Yukawa Supressed Heavy quarks Yukawa enhanced (especially top)

NLL:
733

Most relevant effect from operators mixing with C lequ(3)

(3 1 1
Cl(eq)u = 8 (_4 (yq + y'u,) (zye — Yq + Yu) g% + 39%) C’l(eq)u
prst prst

Flavor conserving scalar interaction.



Result |I: Barr-Zee

Effects induced by modification of SM coupling

a) !
Fr,
Y \\ S
Fp ‘
o o
de ~ 5 -5 Im[CL] f(mp fm)

SM fermion in the inner loop

Yukawa couplings not proportional
to the mass matrix

Oe(b can induce a modification between
Higgs-fermions coupling

———

2

vV
— (M 1 4+ cHxin C)
v:r[ ¥lps (1 + CHkin] 75

Yy, =

100 —

b / ™ )
-~ 7
7 ,'
-1 ~ ,"
10 s
7

— - —

11 1 11

small z ;

f(z)~(z/2)(In z)® ~
g(z)~(z/2)(In z)* ~

—h(z)~—z In z

ll 1 1 lllllll

~v

large z
(1/3)ln z +13/18
(1/2)In z +1
(1/2)(In z +1)

10—%°

10—1 100
VA

101

Contribution with the
W Boson in the loop
are also relevant



Result II: Some detalls

Dominant effects in the in QCD running of scalar operator.

Cs dominates over de for almost all the semileptonic scalar interaction:

: 1133
Exception: Cjcgut

< Matching to Cs suppressed by 1/mt Q

Mixing to the dipole at second order by enhanced by y:

One-loop mixing effect:

. 1111 .
Mixing to Clequl at one loop via electroweak gauge boson exchange

1111
Clequg >~ Mixing to Cé‘l/ In the RGE at one loop with yu suppression Q

Matching to Ci‘l/ non pert. ~ one order magnitude larger than RGE

_ _ ) 2 N
(ELpo* err)(qLouwqr) — —2Qqe A1 (ELpo" e, ) FH o Ay ~ ert® — op
X

C s contribution still dominant!




A closer look at the SM contribution

Leading contribution given by kaons exchange

' Liee = =2V 2fgm,iyse(Ks x InPgy + K X RePry)

\

) apm(myz)
s d —_— T = X V* V x I
, PEW ts ¥V td 4ﬂ'Sin20W (xt)

Cine .

x 2.84(0.7pp + fin) |
|Vuqus‘f0 ( ) |
X (Re(ViyVys)Ks + Im

(VidVus)K1)

N+0.72 % 13[my+]*f2m, G y agm! (x,) Cs(LO +NLO) ~6.9 x 1071

Co~J X .
s=J A m% 7 sin 6% = d. ~1.0x 107 ecm.

J =Im(Vi VgV Vi) ~3.1 x 1075



